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Abstract
Objectives Evaluation of the feasibility of using cardiovascular magnetic resonance (CMR) radiomics in the prediction of
incident atrial fibrillation (AF), heart failure (HF), myocardial infarction (MI), and stroke using machine learning techniques.
Methods We identified participants from the UKBiobank who experienced incident AF, HF,MI, or stroke during the continuous
longitudinal follow-up. The CMR indices and the vascular risk factors (VRFs) as well as the CMR images were obtained for each
participant. Three-segmented regions of interest (ROIs) were computed: right ventricle cavity, left ventricle (LV) cavity, and LV
myocardium in end-systole and end-diastole phases. Radiomics features were extracted from the 3D volumes of the ROIs. Seven
integrative models were built for each incident cardiovascular disease (CVD) as an outcome. Each model was built with VRF,
CMR indices, and radiomics features and a combination of them. Support vector machine was used for classification. To assess
the model performance, the accuracy, sensitivity, specificity, and AUC were reported.
Results AF prediction model using the VRF+CMR+Rad model (accuracy: 0.71, AUC 0.76) obtained the best result. However,
the AUC was similar to the VRF+Rad model. HF showed the most significant improvement with the inclusion of CMR metrics
(VRF+CMR+Rad: 0.79, AUC 0.84). Moreover, adding only the radiomics features to the VRF reached an almost similarly good
performance (VRF+Rad: accuracy 0.77, AUC 0.83). Prediction models looking into incident MI and stroke reached slightly
smaller improvement.
Conclusions Radiomics features may provide incremental predictive value over VRF and CMR indices in the prediction of
incident CVDs.
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Key Points
• Prediction of incident atrial fibrillation, heart failure, stroke, and myocardial infarction using machine learning techniques.
• CMR radiomics, vascular risk factors, and standard CMR indices will be considered in the machine learning models.
• The experiments show that radiomics features can provide incremental predictive value over VRF and CMR indices in the
prediction of incident cardiovascular diseases.
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Abbreviations
AF Atrial fibrillation
AUC Area under the curve
CMR Cardiovascular magnetic resonance imaging
CVD Cardiovascular disease
ED End diastole
EF Ejection fraction
ES End systole
HES Hospital Episode Statistics
HF Heart failure
ICD International Classification of Diseases
LV Left ventricle
M Mass
MI Myocardial infarction
ML Machine learning
MYO Myocardium
NHS National Health Service
Rad Radiomics
ROC Receiver operating characteristic
ROI Region of interest
RV Right ventricle
SFFS Sequential feature forward selection
SV Stroke volume
SVM Support vector machine
UKB UK Biobank
V Volume
VRF Vascular risk factor

Introduction

Cardiovascular disease (CVD) is the most common cause of
morbidity and mortality worldwide [1]. Accurate risk stratifi-
cation has a key role in ensuring appropriately targeted pre-
ventive strategies. Existing disease prediction algorithms reli-
ant on demographic and clinical variables have been proposed
for prediction of selected major CVDs [2–4].

Cardiovascular magnetic resonance (CMR) is the reference
modality for quantification of cardiovascular structure and
function and is widely used in clinical and research settings
[5]. The rich phenotyping provided by CMR allows charac-
terisation of pre-clinical organ-level remodelling [6].
Therefore, there is growing interest in the integration of imag-
ing biomarkers into CVD prediction algorithms [7]. However,

existing approaches to CMR image analysis are limited to
simplistic volumetric measurements or qualitative assess-
ments [8]. These conventional CMR metrics (left ventricular
ejection fraction or maximal end-diastolic wall thickness)
have shown potential for the early detection of cardiac deteri-
oration and the characterisation of subclinical diseases [9].

Radiomics is a quantitative image analysis method, which
allows extraction of highly detailed information about ventric-
ular shape and myocardial character, thereby providing new
information from existing standard-of-care images [10].
Radiomics features may be used as predictor variables in clin-
ical models, often developed using machine learning (ML)
methods. A key advantage of radiomics analysis over unsu-
pervised ML algorithms is the interpretability of the models;
that is, the radiomics features can be traced back to the heart’s
morphological and tissue level alterations [11]. CMR
radiomics is in the early stages of its development and thus
far existing work has largely focused on demonstrating feasi-
bility of the technique for disease discrimination [12, 13]. The
CMR radiomics analysis is more mature within oncology and
in this context, radiomics models have been successful for
prediction of incident health events [14]. The value of CMR
radiomics models for incident CVD prediction has not been
previously studied.

In this work, we aim to evaluate the feasibility and clinical
utility of CMR radiomics for the prediction of four key inci-
dent CVDs: atrial fibrillation (AF), heart failure (HF), myo-
cardial infarction (MI), stroke. To evaluate the incremental
value of CMR radiomics over existing approaches, we hierar-
chically built supervised ML models incorporating traditional
vascular risk factors (VRFs) and conventional CMR metrics.

Methods

Population and setting

The UK Biobank (UKB) is an extensive cohort study that
comprises over half a million individuals recruited between
2006 and 2010. The UKB provides a rich source of health data
including comprehensive medical history, risk factors, bio-
markers, and physical measurements [15]. The UKB imaging
study commenced in 2015 and aims to scan 100,000 partici-
pants from the original dataset, and includes CMR [16].
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Participants’ incident outcomes are tracked through the na-
tional data sources, including Hospital Episode Statistics
(HES) and death registers to provide continuous longitudinal
follow-up [17].

Ethical approval

This study complies with the Declaration of Helsinki; the
work was covered by the ethical approval for UKB studies
from the National Health Service (NHS) National Research
Ethics Service on 17 June 2011 (Ref 11/NW/0382) and ex-
tended on 18 June 2021 (Ref 21/NW/0157) with written in-
formed consent obtained from all participants.

Definition of the study sample

From the UK Biobank, most of the participants start with a
healthy condition developing diseases along the time. We
identified individuals who experienced incident AF (N =
193), HF (N = 209), MI (N = 218), or stroke (N = 199) until
the censoring date, 28 February 2021. Outcomes were
ascertained through linked HES data with diseases defined
according to the standardised International Classification of
Diseases (ICD) codes (Supplementary Table 1). Individuals
with the outcome of interest at imaging were not included. We
selected comparator groups for each outcome (AF, HF, MI,
stroke) comprising an equal number of randomly selected
subjects who did not develop the outcome of interest during
follow-up to eliminate class imbalance bias (Fig. 1).

Vascular risk factors

We selected VRFs based on biological plausibility and report-
ed associations in the literature, including the following vari-
ables: age, sex, body mass index, material deprivation,

education, current smoking, alcohol intake, physical exercise,
high cholesterol, diabetes mellitus, and hypertension [18]. The
definition used for the ascertainment of high cholesterol, dia-
betes mellitus, and hypertension is given in Supplementary
Table 1.

Conventional CMR measures

All CMR scans were completed in dedicated UKB imaging
centres using 1.5-T scanners (MAGNETOM Aera, Syngo
Platform VD13A, Siemens Healthcare) under pre-defined ac-
quisition protocols [19]. Standard long-axis images and a
short-axis stack covering both ventricles from base to apex
were captured using balanced steady-state free precession se-
quence [19]. CMR examinations of the first 5065 UKB par-
ticipants were assessed manually using CVI42 post-
processing software (version 5.1.1, Circle Cardiovascular
Imaging Inc.) [20]. This analysis set was used to develop a
fully automated quality-controlled pipeline and extract the
contours for the 32,121 CMR studies [21, 22].

The following conventional CMR indices were considered
during our analysis: LV end-diastolic volume (LVEDV), LV
end-systolic volume (LVESV), RV end-diastolic volume
(RVEDV), RV end-systolic volume (RVESV), LV stroke vol-
ume (LVSV), RV stroke volume (RVSV), LV ejection frac-
tion (LVEF), RV ejection fraction (RVEF), LV mass (LVM).
For ease of interpretation, we gave LV and RV ventricular
volumes and masses in body surface area standardised format.

Background of CMR radiomics

CMR radiomics is a novel image analysis technique permit-
ting the computation of multiple indices of shape and texture
[10]. Three classes of features are extracted: shape, first-order,
and texture-based features. First-order features are histogram-

Fig. 1 Definition of the study
sample. Abbreviations: AF, atrial
fibrillation; HF, heart failure; MI,
myocardial infarction
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based and related to the distribution of the grey level values in
the tissue. Shape features describe geometrical properties of
the organ, such as volume, diameter, minor/major axis, and
sphericity. Texture features are derived from images that en-
code the global texture information, using mathematical for-
mulae based on the spatial arrangement of pixels. Radiomics
features can appreciate the heart’s complexity in detail by
revealing patterns invisible to the naked eye. Thus, it furnishes
a nearly limitless supply of imaging biomarkers with potential
added value over conventional CMR metrics. However, cau-
tion should be taken regarding the reproducibility of different
features [23].

Radiomics feature extraction

The radiomics workflow is illustrated in Fig. 2. We used the
short-axis stack contours for conventional image analysis to
define three regions of interest (ROIs) for radiomics analysis:
RV cavity, LV cavity, LV myocardium in ES and ED phases.
We calculated these features from the 3D volumes of the
ROIs. The open-source PyRadiomics platform (version
2.2.0.) was adopted to extract radiomics features. The grey
value discretisation was performed using a binwidth of 25 to
pull the intensity-based and texture radiomics features. A total
of 262 radiomics features were included from each CMR
study (LV shape n = 26, RV shape n = 26, MYO shape n =

26, LV myocardium first-order n = 36, LV myocardium tex-
ture n = 148).

Radiomics feature selection

Sequential feature forward selection (SFFS) algorithm [24]
was applied to select the most relevant subset of features to
improve computational efficiency or reduce the model’s gen-
eralisation error. SFFS starts with zero feature and finds the
one that maximises a score when an estimator is trained on this
single feature. This procedure is repeated until the total num-
ber of features is reached or there is no improvement. The
score selected was given from a support vector machine
(SVM) model [25, 26]. The objective of SVM is to maximise
the margin between cases and controls, which is defined as the
distance between the separating hyperplane (decision bound-
ary) and the training samples that are closest to this hyper-
plane, as shown in Fig. 3.

Statistical analysis

Data analysis and graph visualisation were performed using
Matlab (version 2001b), R (version 4.1.2, R package: gplots
package heatmap.2 function), and RStudio (version
2022.02.3) programs. We assessed the intercorrelation be-
tween conventional CMR metrics and radiomics features

Fig. 2 Flowchart to create the models for incident CVD. Abbreviations: CMR, cardiacmagnetic resonance imaging; CVD, cardiovascular disease; VRF,
vascular risk factor
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using Pearson’s correlation. Due to the large number of
radiomics features, we grouped the inter-correlated variables
into six clusters using hierarchical clustering, as per our pre-
vious publication [27].

We created hierarchical models to understand the influence
of vascular risk factors (VRFs), conventional CMR indices and
radiomics features, and their integrated use in the prediction of
incident CVDs (AF, HF,MI, and stroke). The first threemodels
assess the performance of VRF, conventional CMR indices,
and CMR radiomics separately. Next, we combined categories
as follows: VRF-CMR indices, VRF-radiomics, and CMR in-
dices-radiomics. Finally, we merged all three components into
an integrative model: VRF-CMR indices-radiomics. The sum-
mary of the process is shown in Fig. 2.

Training datasets are used to train and tune the parameters
of the model, then a separate testing set is used to assess the
performance of the model to see that the model built is able to
generalise to unseen data. SVM is used for classification. We
chose SVM due to its properties: good performance in real-
world applications, computationally efficient, robust in high
dimension, and sound in theoretical foundations. In order to
tune the SVM parameters, brute force exhaustive search also
known as greedy optimisation is used. The model is then
trained with the parameters optimised. This procedure of
tuning and training is performed five times each with different
partitions of training (80%) and test (20%) samples to reduce
overfitting. The average error of the testing folds determines
the performance of the model.

We determined model performance using receiver operat-
ing characteristic (ROC) curve and area under the curve
(AUC) scores. To assess the model accuracy, the mean accu-
racy, sensitivity, specificity, and AUC are reported. Welch’s t-
test and chi-squared test were used for group-wise compari-
sons for continuous and categorical values, respectively.

Results

Baseline characteristics

The subjects’ characteristics are summarised in Table 1. CMR
data was available for 32,121UKB participants. For the whole
imaging set, the average age was 63.3 (± 7.5) years, and the
sample included 51.9% women. Over 3.7 (± 1.3) years of
prospective follow-up, 193 participants had incident AF, 209
incident HF, 218 incident MI, and 199 incident stroke. Men
were more likely to experience all incident CVDs considered.
As expected, individuals who experienced incident CVD
events had a greater overall risk factor burden.

Conventional CMR metrics differed among at-risk groups
and the whole imaging set: participants, who later developed
AF, HF,MI, or stroke had on average higher LVMi (p < 0.05).
The HF group had larger LVEDVi, and reduced LVEF (p <
0.05) compared to the whole imaging set.

Correlation between CMR metrics and radiomics
features

Figure 4 shows the correlation pattern between conventional
CMR metrics and the imaging set’s radiomics features.
Overall, size radiomics features showed the strongest correla-
tion with conventional metrics. Moreover, some parameters
from the local uniformity and shape groups also correlated
with conventional metrics. Contrary to that, the majority of
global intensity, local dimness, and global variance features
showed inconsistent correlation patterns with CMR indices.
Thus, although there is some overlap of conventional and
radiomics CMR metrics, there are many areas where
radiomics features provide new information.

Identification of metrics for each CVD outcome

The features selected for each model are shown in
Supplementary Tables 2, 3, 4, and 5. Feature importance is
shown as the accuracy given by the SVM algorithm for each
standalone feature.

The SFFS algorithm chose hypertension for all predictive
models; its standalone accuracy was similar among incident
outcomes, except for stroke which was lower (accuracy: AF
vs HF vs MI vs Stroke — 0.59 vs 0.62 vs 0.58 vs 0.55). Sex
was included in all but the HF models. LVM and LVSV were
the two conventional features consistently selected by the
SFFS. The accuracy of LVM alone was higher in all models
compared to LVSV.

The identified radiomics signatures for each incident out-
come are depicted in Table 2. Overall, ventricular shape and
myocardial texture feature dominated all models and there
was only a marginal role for first-order features. Indeed, HF
and MI prediction models included only shape and texture

Fig. 3 SVM process of maximising the margin. The objective of the
support vector machine model is to maximise the margin between cases
and controls, which is defined as the distance between the separating
hyperplane (decision boundary) and the training samples that are closest
to this hyperplane, which is the so-called support vectors (marked with
circles)
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features. Radiomics features derived from the LV blood pool
and myocardium dominated all prediction models. Notably,
when conventional CMRmetrics and radiomics features were
included alongside each other, the latter were selected more
frequently than the former.

Shape features depicting the “maximum diameter” present-
ed the most discriminative power in AF, alongside texture
features of non-uniformity. In the HF model, shape features
(maximum diameter, minor axis, and volume) presented the

greatest selective power, whilst in the MI model, the texture
features, such as coarseness or large area emphasis, were more
prominent.

The degree of discrimination achieved for each
incident CVD

Results from the hierarchical models are summarised in
Table 3. The average error of the testing folds determines

Table 1 Baseline characteristics

Characteristics Whole imaging set
(n = 32,121)

Incident atrial
fibrillation (n = 193)

Incident heart failure
(n = 209)

Incident myocardial
infarction (n = 218)

Incident stroke
(n = 199)

Age mean (std) 63.3 (± 7.5) 66.9 (± 6.4) 68.7 (± 6.2) 66.2 (± 7.3) 67 (± 8)

Female sex, n (%) 16,658 (51.7%) 59 (30.6%) 72 (34.4%) 66 (30.3%) 75 (37.7%)

Townsend Deprivation Index, median (IQR) −2.0 (3.3) −2.6 (2.9) −2.6 (2.9) −2.5 (3.8) −3.0 (2.5)

Body mass index, mean (kg/m2) 26.6 (± 4.4) 27.0 (± 4.4) 28.3 (± 4.9) 27.7 (± 4.0) 27.0 (± 3.5)

Current smoker, n (%) 2032 (6.3%) 13 (6.7%)* 15 (7.2%)* 20 (9.2%)* 11 (5.5%)*

Diabetes status, n (%) 993 (3.1%) 10 (5.2%)* 15 (7.2%) 11 (5.0%)* 8 (4.0%)*

Hypertension status, n (%) 4397 (13.7%) 54 (28.0%) 79 (37.8%) 60 (27.5%) 42 (21.1%)

High cholesterol status, n (%) 7272 (22.6%) 49 (25.4%)* 84 (40.2%) 64 (29.4%) 61 (30.7%)

IPAQ (MET minutes/week), median [IQR] 1528 [2360] 1519 [2892]* 1470 [2574]* 1281 [2262]* 1706 [2419]*

Education level, n (%)

Left school age 14 or younger 421 (1.3%) 2 (1.0%)* 3 (1.4%) 2 (0.9%) 3 (1.5%) **

Left school age 15 or older 2260 (7.0%) 13 (6.7%)* 33 (15.8%) 26 (11.9%) 15 (7.5%)

High school diploma 4229 (13.2%) 32 (16.6%)* 37 (17.7%) 39 (17.9%) 24 (12.1%)

Sixth form qualification 1820 (5.7%) 11 (5.7%)* 11 (5.3%) 13 (6.0%) 12 (6.0%)

Professional qualification 8953 (27.9%) 64 (33.2%)* 57 (27.3%) 68 (31.2%) 52 (26.1%)

Higher education university degree 14,438 (44.9%) 71 (36.8%)* 68 (32.5%) 70 (32.1%) 93 (46.7%)

Alcohol intake, n (%)

Never 1547 (4.8%) 14 (7.3%) 10 (4.8%) (**) 14 (6.4%) (**) 8 (4.0%) (**)

Special occasions only 2646 (8.2%) 9 (4.7%) 15 (7.2%) 20 (9.2%) 15 (7.5%)

1–3 times a month 3452 (10.7%) 17 (8.8%) 26 (12.4%) 26 (11.9%) 23 (11.6%)

1–2 times a week 8284 (25.8%) 37 (19.2%) 55 (26.3%) 51 (23.4%) 43 (21.6%)

3–4 times a week 9094 (28.3%) 65 (33.7%) 58 (27.8%) 61 (28.0%) 55 (27.6%)

Daily or almost daily 7098 (22.1%) 51 (26.4%) 45 (21.5%) 46 (21.1%) 55 (27.6%)

CMR indices mean (± std)

LVEDVi, ml/m2 78.5 (± 14.2) 84.2 (± 21.7) 88.0 (± 24.9) 80.2 (± 13.9)* 81.3 (± 17.3)*

LVESVi, ml/m2 32.0 (± 8.8) 36.2 (± 16.1) 42.6 (± 21.0) 33.7 (± 10.3) 35.0 (± 12.0)

LVSVi, ml/m2 46.5 (± 8.5) 48.0 (± 11.7) 45.5 (± 11.0) 46.5 (± 8.4)* 46.4 (± 9.1)*

LVMi, g/m2 45.6 (± 8.9) 50.8 (± 11.8) 53.7 (± 14.7) 49.8 (± 9.4) 49.8 (± 10.6)

LVEF, % 59.5 (± 6.2) 57.8 (± 8.5)* 53.2 (± 10.3) 58.5 (± 7.6)* 57.6 (± 7.0)

RVEDVi, ml/m2 82.9 (± 15.5) 86.8 (± 17.9) 82.6 (± 17.8)* 82.6 (± 15.0)* 83.7 (± 15.1)*

RVESVi, ml/m2 35.7 (± 9.4) 38.9 (± 11.0) 37.7 (± 11.7) 36.1 (± 9.4)* 36.9 (± 9.4)*

RVSVi, ml/m2 47.2 (± 8.9) 47.9 (± 10.6)* 44.9 (± 10.2) 46.5 (± 8.8)* 46.9 (± 8.4)*

RVEF, % 57.2 (± 6.2) 55.5 (± 7.1) 54.7 (± 7.9) 56.6 (± 6.5)* 56.3 (± 5.8)

Abbreviations: n, number of cases; IPAQ, International Physical Activity Questionnaire;METS, metabolic equivalents; EF, ejection fraction; EDV end-
diastolic volume; ESV, end-systolic volume; LV, left ventricle; RV, right ventricle; SV, stroke volume. “*” indicates no statistical differences between the
whole population and the incident cardiovascular event using Welch’s t-test for continuous values and chi-squared test for categorical variables (p value
> 0.05). “**” indicates no statistical difference for the categorical variables computed as a single groupwise for alcohol intake and education level
variables
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the performance of the model. Radiomics models alone
yielded slightly better discrimination and higher sensitivity
than VRFs or conventional CMR models in each outcome.
AF and HF prediction models performed generally better than
MI and stroke prediction models. The addition of radiomics
features improved the performance of VRF models in AF
(AUC: 0.67 vs 0.76) and HF (AUC: 0.73 vs 0.83) prediction
(Fig. 5).

Moreover, VRFs and radiomics features’ combination
reached better performance than VRFs and conventional
CMR metrics in AF, HF, and stroke prediction models. We
reached the best performance in the incident AF prediction
model combining VRFs, CMR indices, and radiomics features
(Table 3).

In Supplementary Table 6, we have added an additional
experiment defining the healthy controls as subjects not hav-
ing any cardiovascular disease or stroke at the baseline visit
and during follow-up to see if the models behave in the same
way. The results followed the same pattern for all the models
except in the sensitivity which was lower. Additionally, the
models stabilised with 40 features in the univariate feature
selection. We could conclude that the performance of our
model is rather similar regardless of the comparator groups,
suggesting that the patterns we pick up are stable.

Discussion

In this study, we demonstrate the feasibility of CMR-
derived radiomics features to predict incident AF, HF, MI,
and stroke. Additionally, using hierarchically built SVM
models, we demonstrate the incremental value of CMR
radiomics features for risk prediction over VRFs and con-
ventional CMR metrics.

Comparison with existing literature

To the best of our knowledge, this is the first study to demon-
strate the value of CMR radiomics models for incident CVD
prediction. Previous research supports the utility of CMR
radiomics in the differential diagnosis of left ventricular hy-
pertrophy [28], especially the diagnosis of hypertrophic car-
diomyopathy (HCM) [12, 29, 30]. Cetin et al have shown the
technique’s potential to identify imaging signatures associated
with cardiovascular risk factors such as diabetes or hyperten-
sion [13]. Furthermore, Raisi-Estabragh et al demonstrated the
independent associations of CMR phenotypes with sex, age,
and important VRFs [27]. Recently, Ma et al concluded that a
non-contrast T1 map–based radiomics nomogram is suitable
for predicting major adverse cardiac events in patients with
acute MI [31].

We built hierarchical models to test the utility and added
benefit of including radiomics features in predicting AF, HF,
MI, and stroke using the SFFS algorithm. Not surprisingly,
hypertension proved a crucial predisposing factor linked to all
considered outcomes. This finding is consistent with the over-
whelming evidence showing that among all risk factors for
CVD, hypertension is associated with the strongest causal link
to adverse outcomes [32–36]. Sex was selected for inclusion
in all predictive models, except for HF, a finding that is in line
with the results from major epidemiological studies [37, 38]
showing that the lifetime risk of HF is comparable among
males and females. Of note, we did not differentiate subgroups
of HF, which clearly show sex-specific differences as
emphasised by Lam et al [39]. Left ventricular hypertrophy
(most commonly assessed by LVM increase) is a remarkable
prognostic marker that incorporates a broad range of patholo-
gies, such as hypertrophic and infiltrative cardiomyopathies,
although it is most commonly caused by chronic pressure and
volume overload [40]. Early studies have recognised

Fig. 4 Correlation matrix of conventional CMR indices vs radiomics
features in the whole sample. The correlation matrix illustrates
correlation of each radiomics feature on the x-axis with the
conventional CMR metrics indicated on the y-axis. Due to the large
number of radiomics features, we grouped the inter-correlated variables
into six clusters using hierarchical clustering using Ward’s algorithm.

Abbreviations: LVEDV, left ventricular end-diastolic volume; LVEF, left
ventricular ejection fraction; LVESV, left ventricular end-systolic vol-
ume; LVM, left ventricular mass; RVEDV, right ventricular end-
diastolic volume; RVESV, right ventricular end-systolic volume;
RVSV, right ventricular stroke volume
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Table 2 Radiomics features selected for each incident CVD event

Incident cardiovascular outcome Radiomics feature Feature type ROI Phase SVM model alone

Atrial fibrillation Maximum 2D diameter slice Shape MYO ES 0.67 (± 0.07)

Energy First-order MYO ES 0.57 (± 0.03)

Maximum 2D diameter column Shape LV ES 0.58 (± 0.01)

Maximum 2D diameter row Shape MYO ES 0.60 (± 0.07)

Dependence non-uniformity Texture MYO ES 0.65 (± 0.08)

Inverse difference moment Texture MYO ED 0.58 (± 0.06)

Large area low grey level emphasis Texture MYO ED 0.59 (± 0.06)

Large area low grey level emphasis Texture MYO ES 0.59 (± 0.03)

Maximum 2D diameter row Shape LV ES 0.56 (± 0.04)

Surface area Shape LV ES 0.63 (± 0.07)

Maximum 2D diameter slice Shape LV ED 0.62 (± 0.05)

Maximum 3D diameter Shape MYO ES 0.61 (± 0.05)

Sum of squares Texture MYO ES 0.55 (± 0.02)

Zone variance Texture MYO ED 0.64 (± 0.09)

Maximum 2D diameter row Shape MYO ED 0.58 (± 0.06)

Energy First-order LV ED 0.58 (± 0.03)

Grey level non-uniformity Texture MYO ES 0.65 (± 0.04)

Run percentage Texture MYO ED 0.60 (± 0.08)

Major axis Shape MYO ES 0.63 (± 0.06)

Heart failure Maximum 2D diameter slice Shape MYO ES 0.68 (± 0.06)

Minor axis Shape LV ES 0.66 (± 0.06)

Volume Shape RV ED 0.56 (± 0.05)

Large area low grey level emphasis Texture MYO ES 0.58 (± 0.02)

Volume Shape LV ES 0.64 (± 0.06)

Informal measure of correlation Texture MYO ED 0.57 (± 0.07)

Small dependence emphasis Texture MYO ED 0.52 (± 0.05)

Grey level non-uniformity Texture MYO ED 0.64 (± 0.07)

Surface area Shape MYO ED 0.63 (± 0.03)

Myocardial infarction Coarseness Texture MYO ES 0.64 (± 0.02)

Maximum 2D diameter row Shape RV ED 0.54 (± 0.05)

Dependence variance Texture MYO ES 0.52 (± 0.03)

Inverse variance Texture MYO ED 0.56 (± 0.02)

Large area emphasis Texture MYO ED 0.62 (± 0.02)

Grey level variance Texture MYO ED 0.52 (± 0.04)

Sphericity Shape RV ES 0.53 (± 0.04)

Sphericity Shape MYO ED 0.61 (± 0.02)

Complexity Texture MYO ES 0.56 (± 0.04)

Stroke Surface area to volume ratio Shape MYO ED 0.64 (± 0.02)

Median First-order MYO ES 0.57 (± 0.06)

Busyness Texture MYO ES 0.57 (± 0.04)

Large area low grey level emphasis Texture MYO ES 0.55 (± 0.04)

Grey level non-uniformity Texture MYO ES 0.63 (± 0.01)

Root mean squared First-order MYO ES 0.54 (± 0.05)

Large area low grey level emphasis Texture MYO ED 0.57 (± 0.04)

Mean First-order MYO ES 0.55 (± 0.06)

Large dependence low grey level emphasis Texture MYO ED 0.57 (± 0.04)

Sphericity Shape LV ED 0.52 (± 0.05)

Contrast Texture MYO ED 0.56 (± 0.03)

Grey level non-uniformity Texture MYO ES 0.61 (± 0.01)
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increased LVM as a risk factor for stroke in the Framingham
Heart Study [41]. LVM has been widely utilised ever since
due to its ability to predict a variety of clinical outcomes [40].
Whilst conventional metrics quantify LVM according to mass
or wall thickness, radiomics analysis can additionally quantify
the distribution and pattern of myocardial signal intensities
within the LV myocardium. As such, radiomics features ex-
tracted from the myocardium may provide more granular dis-
tinction of health and disease in comparison to conventional
CMR indices where, rather crudely, the single most discrim-
inatory feature for all risk factors was higher LVM [13].
Indeed, Schofield et al showed that texture radiomics features
derived from bSSFP sequences can differentiate between the
aetiologies of LV hypertrophy [42]. These findings suggest

that radiomics has the capability to enrich risk information
beyond the limits of LVM. In our study, texture features were
identified as the most defining model predictors, highlighting
the clinical relevance of these metrics.

Finally, we illustrated that radiomics features derived from
CMR could provide incremental discriminative value over
VRFs and CMR indices in the prediction of incident AF and
HF. The HFmodel showed the most robust improvement with
the addition of radiomics features, whilst stroke prediction
showed only a slight improvement in the hierarchical models.
This might be partially due to the aetiology: diseases such as
dilated cardiomyopathy (the most common non-ischaemic
cause of HF [30]) that primarily affect the global muscular
structure of the heart may be better captured by CMR

Table 2 (continued)

Incident cardiovascular outcome Radiomics feature Feature type ROI Phase SVM model alone

Difference entropy Texture MYO ED 0.57 (± 0.04)

Energy First-order MYO ES 0.48 (± 0.03)

Sphericity Shape MYO ED 0.59 (± 0.04)

Joint average Texture MYO ES 0.56 (± 0.05)

Range First-order MYO ED 0.56 (± 0.07)

Large area emphasis Texture MYO ED 0.60 (± 0.01)

Sum entropy Texture MYO ES 0.54 (± 0.02)

Abbreviations: ROI, region of interest; SVM model alone, support vector machine model performance showing the mean and standard deviation using
each radiomics feature individually; LV, left ventricle; RV, right ventricle; MYO, left ventricle myocardium; ED, end diastolic

Table 3 The performance of all the models computing the average and standard deviation of accuracy, sensitivity, specificity, and AUC of 5 different
test folds

VRF CMR Radiomics VRF + CMR VRF + radiomics CMR + radiomics VRF + CMR + radiomics

AF Accuracy 0.67 (± 0.03) 0.66 (± 0.03) 0.68 (± 0.05) 0.67 (± 0.04) 0.69 (± 0.06) 0.70 (± 0.07) 0.71 (± 0.08)

Sensitivity 0.69 (± 0.04) 0.68 (± 0.02) 0.77 (± 0.06) 0.68 (± 0.1) 0.73 (± 0.07) 0.76 (± 0.1) 0.72 (± 0.1)

Specificity 0.64 (± 0.05) 0.63 (± 0.09) 0.60 (± 0.06) 0.64 (± 0.05) 0.70 (± 0.08) 0.66 (± 0.03) 0.70 (± 0.08)

AUC 0.67 (± 0.05) 0.68 (± 0.04) 0.73 (± 0.06) 0.67 (± 0.06) 0.76 (± 0.06) 0.73 (± 0.07) 0.76 (± 0.07)

HF Accuracy 0.66 (± 0.03) 0.70 (± 0.02) 0.71 (± 0.03) 0.74 (± 0.02) 0.77 (± 0.02) 0.70 (± 0.06) 0.79 (± 0.02)

Sensitivity 0.63 (± 0.04) 0.61 (± 0.01) 0.82 (± 0.06) 0.80 (± 0.06) 0.74 (± 0.06) 0.63 (± 0.08) 0.73 (± 0.04)

Specificity 0.69 (± 0.06) 0.82 (± 0.05) 0.65 (± 0.05) 0.66 (± 0.06) 0.79 (± 0.04) 0.75 (± 0.1) 0.85(± 0.03)

AUC 0.73 (± 0.03) 0.74 (± 0.02) 0.75 (± 0.02) 0.82 (± 0.03) 0.83 (± 0.03) 0.76 (± 0.8) 0.84 (± 0.02)

MI Accuracy 0.67 (± 0.02) 0.67 (± 0.02) 0.70 (± 0.06) 0.69 (± 0.01) 0.67 (± 0.05) 0.67 (± 0.05) 0.71(± 0.04)

Sensitivity 0.69 (± 0.06) 0.58 (± 0.08) 0.75 (± 0.05) 0.70 (± 0.05) 0.69 (± 0.04) 0.64 (± 0.07) 0.76 (± 0.05)

Specificity 0.58 (± 0.03) 0.75 (± 0.04) 0.64 (± 0.1) 0.66 (± 0.04) 0.66 (± 0.06) 0.73 (± 0.08) 0.65 (± 0.05)

AUC 0.70 (± 0.03) 0.73 (± 0.04) 0.75 (± 0.04) 0.73 (± 0.03) 0.72 (± 0.04) 0.71 (± 0.04) 0.76 (± 0.04)

Stroke Accuracy 0.58 (± 0.03) 0.61 (± 0.01) 0.64 (± 0.03) 0.65 (± 0.04) 0.63 (± 0.03) 0.64 (± 0.03) 0.64 (± 0.03)

Sensitivity 0.63 (± 0.03) 0.60 (± 0.04) 0.81 (± 0.05) 0.61 (± 0.02) 0.51 (± 0.07) 0.81 (± 0.05) 0.74 (± 0.06)

Specificity 0.52 (± 0.03) 0.62 (± 0.06) 0.45 (± 0.03) 0.69 (± 0.03) 0.74 (± 0.03) 0.45 (± 0.03) 0.64 (± 0.03)

AUC 0.58 (± 0.02) 0.65 (± 0.03) 0.68 (± 0.04) 0.61 (± 0.04) 0.63 (± 0.04) 0.68 (± 0.04) 0.63 (± 0.05)

Abbreviations: CMR, cardiac magnetic resonance; VRF, vascular risk factor, AF, atrial fibrillation, HF, heart failure; MI, myocardial infarction
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radiomics. In contrast, MI typically comprises more focal
areas of myocardial injury and stroke is a primary cerebral
illness.

Clinical interpretation of radiomics findings

Shape features and texture radiomics features presented the
most discriminative value in AF prediction models. The most
prominent shape feature was the maximum diameters of the
LV and the ventricular wall in different phases of the cardiac
cycle. This refers to the notion that the adverse remodelling of
the heart described by larger chamber sizes and hypertrophy
predispose AF. Alterations of the non-uniformity levels (“de-
pendence non-uniformity” and “grey level non-uniformity”)
are referring to changes in the heterogeneity of intensity
values, which might reflect on the adverse changes in tissue
composition of the myocardial structure. Similarly, “large area
low grey level emphasis” suggests larger myocardial regions
with low signal intensity (dimmer) pixels. Indeed, LV diastol-
ic dysfunction has been linked to an increased risk of AF in the

general population [43], and more recently Tian et al demon-
strated the association between adverse LV remodelling and
AF among HCM patients [44].

In the HF models, shape features, derived from the myo-
cardium, LV, and RV demonstrated strong discriminatory val-
ue. This can be explained by adverse and often biventricular
remodelling that characterises HF patients. Our results sug-
gested that apart from the diameter of a given slice, the elon-
gation of the heart (depicted by “minor axis”) also provides
additional information.

Limitations

Although our analysis is performed with different partitions of
data to have a model independent to the samples by
minimising the case of over-fitting, the model might still be
biased to the participants obtained in the UKB. In this proof-
of-concept study, we limited our investigations to LV and RV
metrics derived from bSSFP images. The clinical utility of this
proof-of-concept study is limited in its current state: (1) CMR

Fig. 5 ROC curves showing the discriminative power of vascular risk
factors alone and the combination of vascular risk factors and radiomics
feature in all incident outcome prediction model. The combination of
vascular risk factors (VRFs) and radiomics features (orange) reached

better performance in the prediction of AF and HF compared to VRF
alone (blue) (p < 0.05). Abbreviations: AF, atrial fibrillation; HF, heart
failure; MI, myocardial infarction
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is not a routine examination; (2) CMR should not be perform-
ed for the sole purpose of risk stratification. However, we
believe it is reasonable to postulate that the radiomics models
may be a useful enhancement to existing CMR scans perform-
ed with a clinical indication and may improve risk stratifica-
tion in the future.

Moreover, no external validation has been performed, and
the case-control design leaves significant risk of residual con-
founding. Of note, only 5% of the UK Biobank population
was studied and a 2.5% event rate in this hypothesis generat-
ing study. Thus, the predictiveness of the model if these
radiomic metric were deployed in the general cohort remains
unanswered.

Conclusions

We demonstrated the feasibility of using CMR-derived
radiomics features to predict key cardiovascular outcomes.
Radiomics features provided additional information over
VRFs, although the improvement was only marginal com-
pared to conventional CMR metrics. The improvement was
most prominent in AF and HF prediction, which highlight that
the performance of radiomics models is dependent on the
disease aetiology and mechanism.
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