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Abstract
Objective In this study, based on PET/CT radiomics features, we developed and validated a nomogram to predict progression-
free survival (PFS) for cases with diffuse large B cell lymphoma (DLBCL) treated with immunochemotherapy.
Methods This study retrospectively recruited 129 cases with DLBCL. Among them, PET/CT scans were conducted and baseline
images were collected for radiomics features along with their clinicopathological features. Radiomics features related to recur-
rence were screened for survival analysis using univariate Cox regression analysis with p < 0.05. Next, a weighted Radiomics-
score (Rad-score) was generated and independent risk factors were obtained from univariate and multivariate Cox regressions to
build the nomogram. Furthermore, the nomogram was tested for their ability to predict PFS using time-dependent receiver
operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA).
Results Blood platelet, Rad-score, and gender were included in the nomogram as independent DLBCL risk factors for PFS. We
found that the training cohort areas under the curve (AUCs) were 0.79, 0.84, and 0.88, and validation cohort AUCs were 0.67,
0.83, and 0.72, respectively. Further, the DCA and calibration curves confirmed the predictive nomogram’s clinical relevance.
Conclusion Using Rad-score, blood platelet, and gender of the DLBCL patients, a PET/CT radiomics-based nomogram was
developed to guide cases’ recurrence risk assessment prior to treatment. The developed nomogram can help provide more
appropriate treatment plans to the cases.
Key Points
• DLBCL cases can be classified into low- and high-risk groups using PET/CT radiomics based Rad-score.
• When combined with other clinical characteristics (gender and blood platelet count), Rad-score can be used to predict the
outcome of the pretreatment of DLBCL cases with a certain degree of accuracy.

• A prognostic nomogram was established in this study in order to aid in assessing prognostic risk and providing more accurate
treatment plans for DLBCL cases.
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Abbreviations
DCA Decision curve analysis
DHL Double-hit lymphoma
HL Hodgkin’s lymphoma
IL-6 Interleukin-6
IPI International Prognostic Index
LDH Lactate dehydrogenase
LMR Lymphocyte-to-monocyte ratio
MIP Maximum intensity projection
MTV Metabolic tumor volume
NHL Non-Hodgkin’s lymphoma
NLR Neutrophil-to-lymphocyte ratio
OS Overall survival
PFS Progression-free survival
PLR Platelet-to-lymphocyte ratio
Rad-score Radiomics score
ROC Receiver operating characteristic
SUV Standardized uptake value
TLG Total lesion glycolysis

Introduction

In addition to being one of the most common forms of non-
Hodgkin lymphoma (NHL), diffuse large B cell lymphoma
(DLBCL) also exhibits pronounced genetic, phenotypic, and
clinical heterogeneity and a wide range of prognostic effects
due to the high biological heterogeneity of DLBCL [1, 2].
Despite standard treatments such as immunochemotherapy
of rituximab combined with cyclophosphamide, doxorubicin,
vincristine, and prednisone, about 30–40% of cases suffer
relapses or refractory disease with poor outcomes [3].
Therefore, one of the most important topics in the current
diagnosis and treatment of lymphoma is to identify subtypes
of such tumors based on their imaging and biological charac-
teristics to reveal the biological risk and guide precise clinical
treatments for the cases [4].

Considering the growing evidence of the heterogeneity of
DLBCL, more clinical features, rather than a single clinicopath-
ologic entity, need to be included to predict the prognosis [5].
Inflammation has long been associated with cancer biology [6],
and it has been suggested that systemic inflammation plays a
critical role in prognosis across a wide range of cancers [7–9].

The prognosis of lymphoma can also be improved with early
detection and treatment, and it is recommended to evaluate
DLBCL cases using 18F-fluorodeoxyglucose positron emission
tomography/computed tomography ([18F]FDG PET/CT) before
treatment [10]. Multiple studies have suggested that semiquan-
titative metabolic parameters of PET/CT images, including total
lesion glycolysis (TLG), baseline metabolic tumor volume
(MTV), and standardized uptake values (SUV), are independent
prognostic factors for lymphoma, and they can be used to assist
risk stratification, particularly among cases at high risk [11, 12].

More recently, radiomics has become an emerging concept
as an intersection of computer science andmedicine. Radiomics
applies complex mathematical algorithms by deeper mining to
obtain mass medical imaging data information from CT, MR,
and PET [13]. Radiomics greatly combines the information
from various medical images, and therefore the spatial and tem-
poral heterogeneity of tumors can be observed in a comprehen-
sive, noninvasive, and quantitative way [14, 15]. Many cancers,
including lymphoma, have made significant progress in using
radiomics features to evaluate efficacy and prognosis [16–18],
but clinical guidelines incorporating these encouraging results
have not yet been developed.

As a consequence, the objective of this study is to construct
an effective clinical nomogram based on PET/CT radiomics
signature (R-signature) and independent clinical prognostic
markers for cases with DLBCL in order to predict their sur-
vival and guide individual treatment plans accordingly.

Materials and methods

DLBCL patient recruitment

From January 2013 to December 2018, we retrospectively en-
rolled cases with histologically confirmed DLBCL who had
received PET/CT imaging scans at Harbin Medical University
Cancer Hospital prior to treatment. There was no requirement
for evidence of informed consent to be submitted since this
study was retrospective, and the Institutional Review Board of
the hospital approved the study. The following criteria were
required for inclusion: (1) newly pathologically confirmed
DLBCL; (2) no previous cancer history; (3) [18F]FDG PET/
CT done less than two weeks prior to first treatment; (4) no
antitumor therapy prior to scanning; and (5) availability of clin-
ical and follow-up data. To determine their disease status, cases
received anthracycline-based chemotherapy followed by CT or
PET/CT scans with [18F]FDG. Following treatment for the first
2 years, follow-up assessments were performed every 3
months, then every 6months, and the study’s primary end point
is a patient’s PFS rate, which can be defined as the period
between diagnosis and the date of the first relapse, progression,
or death due to any cause. At the time of the last known follow-
up, cases who had not experienced any events were censored.

Administration of [18F]FDG and PET/CT acquisition

Fasting was required for 6–8 h before the examination, and
blood glucose levels were controlled to be less than 11.1
mmol/L. Using Discovery 690 Elite (GE Healthcare), PET/
CT scans were conducted on patients using [18F]FDG, which
has a radiochemical purity of 98%.Approximately 1 h after IV
[18F]FDG intravenous administration, a PET/CT scan was
performed, covering the skull to the upper thigh anatomically.
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Cases firstly underwent spiral CT scanning at 120 kV, 140
mA, 1.25-mm pitch, and 3.75-mm layer thickness for 20–30 s.
Next, PET imaging was conducted with a total of six to seven
beds in 3D mode, for 2.5 min per bed, while the cases stayed
in the same position. An ordered subset expectation maximi-
zation approach was used to iteratively reconstruct PET im-
aging data, and attenuation correction was carried out with CT
data. The data were transmitted to a Xeleris™ Workstation
(GE Healthcare) for PET/CT image fusion processing.

VOI drawing and feature extraction

PET/CT images were transferred to an Advantage Workstation
4.5 (GE Healthcare) and reviewed by two experienced radiolo-
gists. Region of interest (ROI) was then extracted based on 41%
of SUVmax as the threshold, and we calculated PET/CT meta-
bolic parameters includingMTV, SUVmax, SUVpeak, and TLG
within ROI using PET VACR software [19]. Using Lugano
classification, lesions were selected for analysis of texture fea-
tures [20]. Lifex software (http://www.lifexsoft.org/.version 6.
10) and ITK software (http://www.itksnap.org/.version 3.8.0)
were then used to visualize PET and CT images of the target
lesions. Additionally, texture features of the delineated target
lesions were extracted using AK software 3.3 (GE Healthcare).
In the analysis, 2074 radiomic features were extracted from CT
and PET images, including the first order, shape, gray-level dif-
ference matrix, gray-level co-occurrence matrix, neighborhood
gray tone difference matrix, gray-level size zone matrix, and
gray-level run length matrix.

Randomly, 70% of the data were assigned to the training
cohort and the rest of the data were assigned as the validation
cohort. Texture features of the training cohort samples were an-
alyzed by univariate Cox regression and then preliminarily
screened for features related to the PFS (p < 0.05). The survival
analysis was also further analyzed by Lasso-Cox regression to
identify radiomic features associated with recurrence. Next, a
Rad-score was constructed using the retained radiomic features
and weighted by their coefficients obtained from linear

combination calculations. Based on the median Rad-score ob-
tained, cases were split into high-risk and low-risk groups, and
their Kaplan-Meier survival curves were plotted in conjunction
with the Rad-scores for each group. Log-rank tests were used to
assess survival differences between groups, and ROC curves
were used to assess the predictive value of PFS.

Univariate Cox regression was performed to analyze clinico-
pathological variables, PET/CT metabolic parameters, and Rad-
score to determine significant risk factors (p < 0.05). Statistically
significant variableswere further analyzedwithmultivariate step-
wise Cox regression to determine independent risk factors.

Nomogram construction and performance
assessment

Taking advantage of the radiomic features and independent
risk factors, we further developed a nomogram for DLBCL
patients based on PET/CT Rad-score. DCA, calibration
curves, and ROC curves were used to assess the nomogram’s
clinical utility and predictive capabilities.

Statistical analyses

R software (version 3.4.2) was used throughout this study for
statistical analysis. p < 0.05 indicated significant difference.

Results

Patients and groups

The study flowchart of the cases screening is presented in Fig. 1,
and the statistical description of basic data is listed in Table 1. A
total of 129 DLBCL cases were ultimately enrolled with 65
males and 64 females. Among the participants, the median age
was 59 years old (range, 21 to 83 years old). The ratio of recur-
rence to non-recurrence during the follow-up period was 4:3.
According to Table 1, no statistical differences were seen

Fig. 1 Flowchart of the enrolled
patients according to inclusion
and exclusion criteria
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between the training cohort and validation cohort for any vari-
ables (p > 0.05).

Features selection and Rad-score construction

We first screened the variables associated with PFS using a
univariate Cox regression based on radiomics features from
the training cohort. Using p < 0.05 as the statistical signifi-
cance, 731 features were obtained (Supplementary Table 1).
In addition, to screen out features with non-zero coefficients,

Lasso-Cox regression was performed, and Rad-score equa-
tions were constructed based on their coefficients as follows:

Rad−score=original_shape_Elongation.PET ×
(−0.27781)
+wavelet.HLH_ngtdm_Coarseness.PET × (−0.0758)
+original_shape_Elongation.CT × (−0.04707)
+original_shape_MajorAxisLength.CT × 0.001085
+original_shape_Maximum2DDiameterRow.CT ×
0.000138

Table 1 The baseline characteristics of patients with DLBCL in the training and validation cohorts

Characteristic No. of patients p value

Overall (n = 129) Training (n = 88) Validation (n = 41)

SUVmax 25.44 (18.02, 35.93) 27.45 ± 11.16 25.56 ± 10.31 0.348

SUVpeak 21.56 (14.66, 28.28) 22.74 ± 9.88 20.90 ± 9.08 0.3011

tMTV 93.71 (24.56, 205.89) 95.01 (25.04, 198.27) 51.30 (21.82, 235.70) 0.9094

TLG 1099.36 (300.30, 3415.80) 1121.73 (271.31, 3417.46) 983.96 (311.44, 2723.78) 0.8635

GCB

0 94 (72.87%) 65 (73.86%) 29 (70.73%) 0.873

1 35 (27.13%) 23 (26.14%) 12 (29.27%)

Ki67 70 (50, 80) 80 (57.5, 81.25) 70 (50, 80) 0.0958

Leukocyte 6.97 (5.53, 8.52) 7.09 (5.46, 8.62) 6.89 (5.79, 8.44) 0.9154

Neutrophil 4.59 (3.46, 5.92) 4.58 (3.46, 5.94) 4.63 (3.49, 5.51) 0.9677

Blood.platelet 242 (201, 311) 231 (199.25, 309.50) 265 (209, 321) 0.3639

Lymphocyte 1.52 (1.06, 2.07) 1.51 (1.10, 2.07) 1.52 (1.00, 1.97) 0.777

Hemoglobin 128.67 ± 18.49 128.85 ± 17.81 128.26 ± 20.10 0.8727

Monocyte 0.56 (0.43, 0.82) 0.57 (0.43, 0.84) 0.56 (0.42, 0.77) 0.9617

Age 59 (51,68) 62 (53, 8.25) 56 (51, 66) 0.1587

Gender

Male 65 (50.39%) 45 (51.14%) 20 (48.78%) 0.9521

Female 64 (49.61%) 43 (48.86%) 21 (51.22%)

ECOG 1 (0, 2) 1 (0.75, 2) 1 (0, 2) 0.9678

B.sympotom

0 101 (78.29%) 69 (78.41%) 32 (78.05%) 1

1 28 (21.71%) 19 (21.59%) 9 (21.95%)

Ann.Arbor

1 18 (13.95%) 16 (18.18%) 2 (4.88%) 0.1021

2 42 (32.56%) 25 (28.41%) 17 (41.46%)

3 25 (19.38%) 15 (17.05%) 10 (24.39%)

4 44 (34.11%) 32 (36.36%) 12 (29.27%)

IPI 2 (1, 3) 2 (1, 3) 2 (1, 3) 0.6996

LDH 236 (180, 379) 242 (176.25, 381.50) 236 (187, 370) 0.7119

LMR 2.71 (1.60, 4.22) 2.67 (1.63, 4.36) 2.89 (1.60, 3.86) 0.9335

NLR 3.10 (2.05, 4.36) 3.13 (1.99, 4.40) 2.89 (2.13, 3.86) 0.8694

PLR 169.42 (118.52, 251.14) 172.57 (109.94, 241.85) 162.09 (129.71, 251.94) 0.5901

Recurrence

0 57 (44.19%) 40 (45.45%) 17 (41.46%) 0.8145

1 72 (55.81%) 48 (54.55%) 24 (58.54%)
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Radiomics features assessment

The training cohort was divided into two groups based on the
median Rad-score as shown in Fig. 2a and b. The higher the
Rad-score, the greater the risk and the more likely a recur-
rence. Figure 2c indicates the K-M survival curves of cases
from two groups of the training cohort and shows a statistical-
ly significant difference in recurrence risk (p < 0.0001). As
shown in Fig. 2d, similar results were observed. The ROC
curves plotted in Fig. 2e show the prediction of the recurrence
at 1, 2, and 5 years with Rad-scores, and AUC values of 0.79,
0.82, and 0.83, respectively. Validation cohort results are
shown in Fig. 2f, with AUC values of 0.61, 0.78, and 0.64,
respectively.

Nomogram construction

Using clinical variables, metabolic parameters, and Rad-
scores for the training cohort samples, univariate Cox re-
gression was carried out and the result is shown in
Table 2. In the following multivariate stepwise Cox re-
gression analysis, clinical variables that were statistically
significant in the univariate analysis were included. The
results are shown in Table 3. Blood platelet count, gender,
and Rad-score were found to be statistically significant
independent prognostic factors for predicting PFS using
multivariate analysis, and a nomogram was built thereaf-
ter to predict the individualized PFS (Fig. 3a).

Model assessment

The degree of fit between the cases’ outcomes and the nomo-
gram prediction was calculated after calibration curves were
plotted. Figure 3b, c and d show the calibration curves of the
1-, 2-, and 5-year PFS of this nomogram. A model with a
higher accuracy will be closer to a diagonal dotted line, dem-
onstrating excellent agreement between predictions and clini-
cal observations.

ROC curves for the prediction model were also config-
ured. Figure 4 represents the time-dependent ROC curves
of the training (Fig. 4a, b and c) and validation (Fig. 4d, e
and f) cohorts with or without Rad-score parameters at 1-,
2-, and 5-year PFS, respectively. Results showed that
clinically independent prognostic factors with Rad-scores
significantly improved the predictive accuracy and the
clinical diagnostic ability of the model (training cohort:
1-year PFS AUC 0.79 vs. 0.61; 2-year PFS AUC 0.84
vs. 0.69; 5-year PFS AUC 0.88 vs. 0.71; validation co-
hort: 1-year PFS AUC 0.67 vs. 0.69; 2-year PFS AUC
0.83 vs. 0.65; and 5-year PFS AUC 0.72 vs. 0.52).

A Rad-score was not included in the validation and training
cohorts of the clinical model to demonstrate the Rad-score’s
contribution. Figure 5 displays the decision curves with or

without Rad-scores of the training cohorts (Fig. 5a, b and c)
and validation (Fig. 5d, e and f) cohorts, respectively. The
results showed that the clinical prediction benefit was better
after combining Rad-scores, indicating that it has a certain
clinical application value.

Independent verification

To further verify the value of the prediction model in
practical application, we included another 32 cases newly
diagnosed with DLBCL from January 2019 to December
2020 from the same hospital for independent validation.
The results confirmed that 23 cases who received standard
treatment had the same status as the nomogram predicted,
with an accuracy of 72%.

Typical cases presentation

In order to demonstrate the clinical application of the
radiomics nomogram, we show the maximum intensity pro-
jection images from [18F]FDG PET scans of several typical
cases with DLBCL (Fig. 6 and Supplementary Figure 1). As
the nomogram successfully predicted, the prognosis of the
first case (Fig. 6a, b and c) showed no recurrence after 4.2
years of standard treatment after diagnosis. Similar to the no-
mogram prediction for the second case (Fig. 6d, e, f and g) that
had a higher risk of recurrence, it was observed that the dis-
ease progressed 3 months after the standard treatment. It is
remarkable that the immunohistochemical results of the sec-
ond case showed a double-hit lymphoma (DHL), with a BCL-
2 rearrangement, c-MYC rearrangement, and BCL-6 non-re-
arrangement (Fig. 6g).

Discussion

In conclusion, we developed a nomogram based on Rad-
score, gender, and blood platelet analyses of the cases with
DLBCL for individualized prediction of recurrence, which
was also validated. We validated PFS of the cases at 1, 2,
and 5 years. The results demonstrated that the combined
Rad-score and clinical factors model significantly improved
prediction accuracy as compared to models that only included
clinical factors or Rad-score alone.

The outcomes of DLBCL were conventionally evaluated
only based on PFS and/or overall survival (OS). Previous
studies have used 2-year PFS as an endpoint for outcomes
in the disease-related DLBCL immunochemotherapy [17,
21, 22].

Therefore, in this study, we evaluated the prediction power
of PFS but not the OS, especially with regard to 2-year PFS.
The results of the validation and training cohort of 2-year PFS
were satisfactory in this combined prediction model (training
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Fig. 2 Rad-score analysis of patients in the training and validation
cohorts. Risk chart of the training cohort (a) and validation cohort (b).
Rad-score measured byK-M survival curves of the training cohort (c) and
validation cohort (d), the log-rank test was used to calculate p values, p <

0.05 and the differences were significant, both cohorts were divided into
high-risk and low-risk groups. The ROC curves of the training cohort (e)
and validation cohort (f) to predict the 1-PFS, 2-PFS, and 5-PFS
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cohort: 2-year PFSAUC= 0.84, validation cohort: 2-year PFS
AUC = 0.83).

Currently, SUVmax, MTV, and TLG are the most
widely employed indexes in the literature for predicting
survival in lymphoma patients. Some retrospective studies
have noted that SUVmax may predict the histological
transformation of FL [23, 24], but the GALLIUM study
[25] demonstrated that SUVmax alone may provide little
to no benefit.

Indeed, SUV can be affected by many factors, including
but not limited to partial volume effects, the time between
injection and imaging acquisition, and the decay of the
injected dose [26]. Domenico et al [27] found a significant
correlation between baseline MTV, TLG, and therapeutic re-
sponse, which predicted outcomes (OS and PFS) of Burkitt’s
lymphoma. However, these parameters can only provide in-
formation about glucose metabolism in the tumor, but not the
heterogeneity of metabolism.

In our study, neither MTV nor TLG was independent pre-
dictors, and both were significantly associated with PFS, al-
though only at the univariate level. Our results suggested that
identifying tumor heterogeneity from imaging information
can be a promising approach.

Radiomic features from [18F]FDG-PET/CT images can
quantify the spatial heterogeneity of tumors and have be-
come potential prognostic predictors of many diseases
[28–31]. However, as [18F]FDG PET/CT radiomics has
not been widely applied to predict the clinical prognosis
of cancer cases, there is no consensus on the screening of
texture features [28].

Nonetheless, radiomics features play an increasingly
crucial role in predicting the prognosis and characterizing
intratumor heterogeneity of DLBCL cases [16, 32, 33].
The high tumor heterogeneity is an essential biomarker
for prognosis as it often suggests higher chances of tumor
recurrence and metastasis [34]. Therefore, a radiomics ap-
proach is beneficial due to its noninvasive nature for
assessing tumor heterogeneity, and can potentially im-
prove tumor management plans for cases.

Our study found that platelet count was a significant
independent predictor of progression-free survival of
cases with DLBCL. The role of platelets in tumor growth
and progression is very important [35]. Studies have dem-
onstrated that high platelet counts increase the risk of
metastasis [36], and are related to poorer prognosis
[37–39]. A complex relationship exists between platelets
and cancer pathogenesis, however. Various cancer entities
can release inflammatory cytokines, which can then stim-
ulate megakaryocyte proliferation, thereby producing
platelets [40]. Laurie et al [41] concluded, from a large
number of clinical and experimental studies, that within
the circulatory system, platelets could assist tumor cells in
evading immune elimination, promote vasculature growth
arrest, and contribute to tumor growth and metastasis.
Therefore, blood platelets could be a valuable biomarker
for clinical cancer progression, prognosis prediction, and
treatment monitoring [42].

Table 2 Univariate Cox regression on clinical variables of the training
cohort samples

Variables HR HR (95% CI) p

SUVmax 1.007893 0.9840812–1.03228 0.519

H_SUVpeak 1.009681 0.983314–1.036756 0.475

tMTV 1.001717 1.000734–1.0027 0.0006

TLG 1.000102 1.000031–1.000173 0.005

GCB 1.516 0.8229–2.792 0.182

Ki67 0.992 0.9752–1.009 0.353

Leukocyte 1.068 0.973–1.171 0.167

Neutrophil 1.099 0.9892–1.222 0.0786

Blood.platelet 1.003 1.001–1.006 0.0157

Lymphocyte 0.7266 0.4998–1.056 0.0942

Hemoglobin 0.9956 0.9799–1.012 0.588

Monocyte 3.558 1.677–7.55 0.0009

Age 1.014 0.9918–1.037 0.214

Gender 1.861 1.036 –3.342 0.0377

ECOG 1.207 0.8418–1.731 0.306

B.sympotom 1.292 0.6713–2.487 0.443

Ann.Arbor 1.587 1.22–2.064 0.0006

IPI 1.459 1.152–1.849 0.0017

LDH 1.001 1.001–1.002 < 0.0001

LMR 0.7183 0.5924–0.8711 0.0008

NLR 1.207 1.079–1.351 0.0011

PLR 1.004 1.002–1.006 0.0009

Rad-score 7.222 3.762–13.87 < 0.0001

Table 3 Multivariate Cox regression on statistically significant clinical
variables in the univariate analysis

Variables HR HR (95% CI) p

Blood platelet 1.0048 1.0016–1.0080 0.0039

Gender 2.0373 1.0849–3.8260 0.0269

Rad-score 9.4649 3.3503–26.7390 < 0.0001
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Fig. 3 The visualization of PFS survival models based on pre-treatment
PET-CT radiomics signatures combined with clinical characteristics and
the calibration curves. a The nomogram combined with the Rad-score
and the independent clinical risk factors, including gender and blood
platelet, to predict the risk of PFS at 1, 2, and 5 years. b–d To predict

the PFS of DLBCL using the nomogram and calibrate for the predictive
model. The diagonal dotted line represents the ideal state, and the solid
red line represents the actual predictive value: the closer it is to the
diagonal dotted line, the better the predictive power

Fig. 4 The ROC curves of the models for evaluating the PFS in the
training and validation cohorts. a–c The ROC curves of the
comparison between the model with or without Rad-score to predict the
1-, 2-, and 5-year PFS in the training cohort. d–f The ROC curves of the

comparison between the model with or without Rad-score to predict the
1-, 2-, and 5-year PFS in the validation cohort. It was found that the model
with Rad-score was better than the model without Rad-score in predicting
PFS
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It is noteworthy that in the prediction model, we can
intuitively observe that gender does not show sufficient
predictive power on the basis of univariate-associated
PFS. However, the lower proportion of prediction, vis a
vis PFS, does not definitively imply that gender is unim-
portant. In addition, Scott et al [43] have shown that the
female gender is an independent positive prognostic indi-
cator for survival. It was found that NHL cases of the
female gender have a protective effect on survival.
Similarly, this point of view may be further supported
by findings from Jennifer et al [44] that pregnancy lowers
the risk of B cell NHL. Therefore, gender cannot be ex-
cluded from the prediction model due to its clinical
significance.

According to the literature [45, 46], DHL is a rapidly
progressive type of DLBCL with a very poor prognosis
from a pathological standpoint. Remarkably, in the second
typical case (Fig. 6), DHL was confirmed by FISH test in
a high-risk case with a short recurrence time period.
Despite the possibility that this is due to chance, we be-
lieve that the nomogram’s prediction of high-risk cases is

consistent with immunohistochemical results. Our
radiomics nomogram may be used to predict and support
FISH test results in future studies.

The treatment efficiency for DLBCL has increased sig-
nificantly in recent years. Cases with a favorable progno-
sis should be given the most standard treatment to avoid
adverse reactions caused by excessive treatment. For
cases with relapsed or refractory DLBCL, early diagnosis
and treatment are essential for effective treatment [47] (for
instance, increasing the intensity of chemotherapy, using
stem cell transplantation, CAR-T therapeutic options, the
addition of new drugs, etc.), so that these high-risk cases
can receive the best treatment timing and maximum sur-
vival benefit [48–51].

Nonetheless, there are still limitations and deficiencies
in this study. First, inherent selection limitation was inev-
itable due to the nature of retrospective studies. Second,
our data were only limited to cases from one medical
center and the size was relatively small. Thus, clinical
support for the prediction model is limited. Future studies
with a larger external validation from multiple medical

Fig. 5 The DCA curves of the models in training and validation cohorts.
a–c The DCA curves of the comparison between the model with or
without Rad-score to predict the 1-, 2-, and 5-year PFS in the training
cohort. d–f The DCA curves of the comparison between the model with

or without Rad-score to predict the 1-, 2-, and 5-year PFS in the validation
cohort. DCA curves showed that the model with Rad-score benefits for
patients in the prediction of PFS at 1, 2, and 5 years
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centers are required. Finally, genomic characteristics have
not yet been included. Until now, radiogenomics research
has primarily focused on imaging phenotypes and gene
expression [52], and therefore more comprehensive stud-
ies are needed in the future.

Conclusion

Hematological indicators are available and economically
needed in the clinic. This study provides a radiomics

nomogram that includes gender and blood platelet counts
with a Rad-score based on [18F]FDG PET/CT images. Our
results showed that the prediction model incorporating
radiomics features is significantly more powerful than
clinical indicators. This model might be used more effec-
tively to assess the prognostic risk of pretreatment
DLBCL cases and further assist clinicians in directing
treatment to benefit outcomes.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00330-022-09301-5.

Fig. 6 Two typical cases with DLBCL to show the clinical application of
the nomogram. a–c Female, 75 years old, who underwent 6 cycles of R-
CHOP regimen chemotherapy after firstly diagnosed of DLBCL (a) and
was confirmed as completely response (CR) b. Blood platelet: 192, the
Rad-score: 0.18. Vertical lines of each variable were drawn (c) and total
points: (0 + 1.76 + 2.85 = 4.61). c–g Female, 46 years old, who

underwent 4 cycles of R-CHOP regimen chemotherapy after firstly
diagnosed of DLBCL (d) and was confirmed as progression disease (PD)
e. Blood platelet: 264, the Rad-score: 1.09. Vertical lines of each variable
were drawn (f) and total points (0 + 2.63 + 7.5 = 10.13). FISH test results
confirmed as a double-hit lymphoma (g)
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