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Abstract
Objective To evaluate the methodological rigor of radiomics-based studies using noninvasive imaging in ovarian setting.
Methods Multiple medical literature archives (PubMed, Web of Science, and Scopus) were searched to retrieve original studies
focused on computed tomography (CT), magnetic resonance imaging (MRI), ultrasound (US), or positron emission tomography
(PET) radiomics for ovarian disorders’ assessment. Two researchers in consensus evaluated each investigation using the
radiomics quality score (RQS). Subgroup analyses were performed to assess whether the total RQS varied according to first
author category, study aim and topic, imaging modality, and journal quartile.
Results From a total of 531 items, 63 investigations were finally included in the analysis. The studies were greatly focused (94%)
on the field of oncology, with CT representing the most used imaging technique (41%). Overall, the papers achieved a median
total RQS 6 (IQR, −0.5 to 11), corresponding to a percentage of 16.7% of the maximum score (IQR, 0–30.6%). The scoring was
low especially due to the lack of prospective design and formal validation of the results. At subgroup analysis, the 4 studies not
focused on oncological topic showed significantly lower quality scores than the others.
Conclusions The overall methodological rigor of radiomics studies in the ovarian field is still not ideal, limiting the reproduc-
ibility of results and potential translation to clinical setting.More efforts towards a standardizedmethodology in the workflow are
needed to allow radiomics to become a viable tool for clinical decision-making.
Key Points
• The 63 included studies using noninvasive imaging for ovarian applications were mostly focused on oncologic topic (94%).
• The included investigations achieved a median total RQS 6 (IQR, −0.5 to 11), indicating poor methodological rigor.
• The RQS was low especially due to the lack of prospective design and formal validation of the results.
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CT Computed tomography
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MRI Magnetic resonance imaging
PET Positron emission tomography
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PRISMA Preferred Reporting Items for Systematic
Reviews and Meta-analyses

PROSPERO International Prospective Register of
Systematic Reviews

RQS Radiomics quality score
US Ultrasound

Introduction

Radiomics represent a new comprehensive research field
combining quantitative image analysis, artificial intelligence,
and medical imaging [1]. This discipline allows for the
extraction of information from imaging data that could
not be detectable by the human eye [2, 3]. Such data
may be used to create classification models able to pro-
vide diagnostic and prognostic outputs and serve as
decision-support tools [4, 5]. Several studies applied
radiomics to the field of ovarian imaging, being espe-
cially focused on oncologic patients [6–8]. As a matter
of fact, in the last decade, there has been an increasing
clinical demand for improvements in diagnostic accura-
cy and patient risk stratification. In this light, predictors
extracted by noninvasive imaging techniques could be
worthy in several clinical scenarios, such as for classi-
fying ovarian masses or predicting their clinical outcome
[9–11]. However, radiomics applications still remain con-
fined to academic research due to the intrinsic complex-
ity of the method and the limited reproducibility of the
numerous processes involved, especially regarding im-
age segmentation, feature extraction, and dataset ana-
lysis [12]. Therefore, a standardized assessment of the
accuracy, reproducibility as well as the clinical utility of
radiomics data is needed. Aiming to respond to these
demands, Lambin et al proposed the radiomics quality
score (RQS), a system of metrics for the overall evalu-
ation of the methodological validity and thoroughness of
radiomics-based studies [13]. This tool has been already
adopted to assess the scientific rigor of radiomics-based
studies in different topics, mainly focused on oncology,
such as prostate, renal, and breast cancer [14–16]. In the
last years, together with the increasing clinical demand
for non-invasive diagnostic techniques in the ovarian
field, we have been experiencing an ever-growing
number of scientific research extracting features from
medical images, aimed at tumor detection and character-
ization or to predict prognosis and response to therapy
[10, 17, 18].

Therefore, the aim of our systematic reviewwas to evaluate
the methodological rigor of investigations using computed
tomography (CT), magnetic resonance imaging (MRI), posi-
tron emission tomography (PET), or ultrasound (US) for

ovarian assessment on which radiomics-based models for di-
agnostic or prognostic purposes have been explored.

Methods

Protocol and registry

This study followed the PRISMA (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses) statement
[19]. The review protocol is registered on PROSPERO
(CRD42021293541).

Search strategy

An English literature search was performed in consensus by
two investigators (A.P. and A.S.) using the PubMed, Scopus,
andWeb of Science databases to identify articles published up
to November 19th, 2021. The following search terms and their
variations were used: “radiomics” AND “ovary” AND “com-
puted tomography” OR “magnetic resonance” OR “positron
emission tomography” OR “ultrasound”. The detailed search
string is available in the supplementary materials. After the
removal of duplicates, all abstracts were assessed to remove
papers other than original research (e.g., reviews, editorials,
case reports), investigations not focused on the topic of inter-
est, or not involving human subjects.

Data collection and study evaluation

The RQS was used to evaluate the methodological rigor of
included papers [13]. It consists of 16 items regarding dif-
ferent steps in the workflow of radiomics. The summed
total score ranges between −8 and 36, while the percentage
is calculated on a 0–36 scale (Table 1). Two readers with
previous experience in radiomics and the RQS (A.P. and
G.S.) evaluated the papers in consensus. Disagreements
were resolved by a third reviewer (R.C.), who reviewed
the controversial items after reading the corresponding full
text and discussed them with the other readers to reach a
consensus. The full manuscripts were assessed to collect
the following data: first author category (medical or other),
study aim (diagnostic or prognostic), topic (oncology or
other) and design (single-center or multi-center), imaging
modality (CT, MRI, PET or US), journal quartile (first or
other, based on Scopus data), segmentation strategy, ma-
chine learning algorithm, and total number of included
patients.

Statistical analysis

The Shapiro-Wilk test was performed to evaluate the normal-
ity of distribution for continuous variables. These are
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presented as median and interquartile range (IQR) whereas
categorical data are as counts and percentages. Subgroup anal-
yses were performed to establish whether the total RQS varied
according to first author category, study aim, topic, imaging
modality, and journal quartile, using theMann-Whitney U test
or Kruskal-Wallis rank test. When a paper belonged to more
than one category it was counted for each within the sub-
analysis. Statistical analyses were performed with the “stats”
(v4.1.3) R package (v4.1.3) [20]. A p value < 0.05 was con-
sidered statistically significant.

Results

Literature search

The study selection flowchart is shown in Fig. 1. The initial
search identified 531 potentially eligible articles, 346 of which
were duplicates. The reviewers, after the evaluation of the
titles and abstracts of the remaining 185 papers studies re-
moved 116 citations. Then, investigators blindly reviewed

the full text of the remaining 69 articles, and 6 of these were
excluded. Finally, 63 papers were included in the systematic
review.

Study characteristics

The characteristics of the included studies are shown in the
supplementary Table 1. The median population number was
105 (IQR, 67–217). Among the included papers, 49% (31/63)
were published in 2021, 17% (11/63) in 2020, 13% (8/63) in
2019, 8% (5/63) in 2018, 3% (respectively 2/63 per year) in
2013 and 2017, and 2% (respectively 1/63 per year) in 2011,
2014, 2015, and 2016 (Fig. 2). The first author of most of the
investigations (78%, 14/63) was a medical doctor. Radiomics
analysis was conducted with diagnostic and prognostic aims
respectively in 68% (43/63) and 30% (19/63) of the studies,
whereas in 2% (1/63) of the investigations it was used with
both intended purposes. CT was the most used imaging tech-
nique (41%, 26/63). MRI andUSwere respectively adopted in
34% (22/63) and 22% (14/63) of the studies, whereas in 2%
(1/63) of the investigations both PET and CT were used. As

Table 1 Overview of radiomics quality score items and mode of the corresponding scores in the included papers

RQS
checkpoint

RQS item number and name Description and (points) Mode

First Item 1: Image protocol quality Well-documented protocol (+1) AND/OR publicly available protocol (+1) 1

Second Item 2: Multiple segmentation Testing feature robustness to segmentation variability: e.g. different
physicians/algorithms/software (+1)

0

Item 3: Phantom study Testing feature robustness to scanner variability: e.g. phantom studies/different vendors/scanners
(+1)

0

Item 4: Multiple time points Testing feature robustness to temporal variability: e.g. organ movement/expansion/shrinkage
(+1)

0

Third Item 5: Feature reduction Either feature reduction OR adjustment for multiple testing is implemented (+3); otherwise (-3) 3

Item 6: Multivariable analysis Non-radiomics feature are included in/considered for model building (+1) 0

Item 7: Biological correlates Detecting and discussing the correlation of biology and radiomics features (+1) 0

Item 8: Cut-off analysis Determining risk groups by either median, pre-defined cut-off, or continuous risk variable (+1) 0

Item 9: Discrimination statistics Discrimination statistics and its statistical significance are reported (+1); a resampling technique
is also applied (+1)

1

Item 10: Calibration statistics Calibration statistics and its statistical significance are reported (+1); a resampling technique is
also applied (+1)

0

Item 11: Prospective design Prospective validation of a radiomics signature in an appropriate trial (+7) 0

Item 12: Validation Validation is missing (-5) OR internal validation (+2) OR external validation on a single dataset
from one institute (+3) OR external validation on two datasets from two distinct institutes (+4)
OR validation of a previously published signature (+4) validation is based on three or more
datasets from distinct institutes (+5)

-5

Item 13: Comparison to “gold
standard”

Evaluating model’s agreement with/superiority to the current “gold standard” (+2) 2

Item 14: Potential clinical
application

Discussing model applicability in a clinical setting (+2) 0

Item 15: Cost-effectiveness
analysis

Performing the cost-effectiveness of the clinical application (+1) 0

Item 16: Open science and data Open-source scans (+1) AND/OR open-source segmentations (+1) AND/OR open-source code
(+1) AND/OR open-source representative features and segmentations (+1)

0

RQS indicates radiomics quality score [13]
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for the segmentation method, regions of interest were largely
annotated manually on medical images (78%, 49/63), being
three-dimensional inmost cases (70%, 44/63). Finally, regard-
ing machine learning algorithms, a high heterogeneity was
found, with a minority of works adopting deep learning strat-
egies (8%, 5/63) and the most embraced approach being over-
all logistic regression (40%, 25/63).

Study evaluation

Results are detailed in Table 2. Overall, the 63 included in-
vestigations obtained a median total RQS of 6 (IQR, −0.5 to
11), corresponding to a percentage of 16.7% (IQR, 0–30.6%)
(Fig. 3). Median RQS distribution over the years is shown in
Fig. 4. In regard of the first RQS checkpoint, the Authors
included comprehensive information of their imaging proto-
col in 71% (45/63) of the corresponding investigations. In the
second RQS checkpoint, features robustness to segmentation
variability was assessed in 29% of the papers (18/63), while
only one study (2%) performed a phantom experiment.
Concerning the third RQS checkpoint, 76% (48/63) of the
studies used reduction techniques to avoid feature overfitting,
while less than half of the investigations (29/63) included non-
radiomics features for model building. Discrimination statis-
tics were usually performed (86%, 59/63), while only 6%
(4/63) of the investigations had a prospective design.
Validation, either internal or external, of the results was miss-
ing in about half of the included studies (51%, 32/63). A direct
comparison between radiomics and the current gold standard
was performed in 52% (33/63) of the investigations, whereas
24% (15/63) of the papers presented a formal assessment of
radiomics models’ clinical utility. Finally, only one study

Fig. 1 Literature search and study
selection flowchart

Fig. 2 Count plot showing the number of CT, MRI, PET, and US
radiomics studies in ovarian setting published over the years
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Table 2 Radiomics quality scores for all included studies

Author (year) Item
1

Item
2

Item
3

Item
4

Item
5

Item
6

Item
7

Item
8

Item
9

Item
10

Item
11

Item
12

Item
13

Item
14

Item
15

Item
16

RQS
(total)

RQS
(%)

Acharya (2013) 1 0 0 0 -3 0 0 0 0 0 0 2 0 2 0 0 2 5,6

Acharya (2014) 0 0 0 0 3 0 0 0 1 0 0 -5 2 0 0 0 1 2,8

Ai (2021) 1 0 0 0 3 1 0 1 2 0 0 2 2 0 0 0 12 33,3

Al-Karawi
(2021)

0 0 0 0 -3 0 0 0 2 0 0 -5 2 2 0 0 -2 0

An (2021) 1 1 0 1 3 1 0 0 1 0 0 -5 2 0 0 0 5 13,9

Beer (2020) 1 1 0 0 -3 1 1 1 1 0 0 -5 0 0 0 1 -1 0

Chen (2021) 1 1 0 1 3 1 0 0 2 1 0 2 2 2 0 0 16 44,4

Chen (2021) 1 1 0 0 3 0 0 0 2 1 0 2 2 2 0 0 14 38,9

Chiappa (2021) 0 1 0 1 3 0 0 0 0 0 0 2 2 0 0 0 9 25

Chiappa (2021) 0 0 0 0 -3 1 0 0 1 0 0 -5 2 2 0 1 -1 0

Danala (2017) 1 0 0 0 3 0 0 0 1 0 0 -5 2 0 0 0 2 5,6

Faschingbauer
(2013)

0 0 0 0 -3 0 0 0 2 0 0 -5 0 0 0 0 -6 0

Fathi Kazerooni
(2018)

1 0 0 0 3 0 0 0 0 0 7 -5 0 0 0 0 6 16,7

He (2020) 1 1 0 0 -3 0 0 0 1 0 0 -5 0 0 0 0 -5 0

Himoto (2019) 1 0 0 0 -3 1 0 0 2 0 0 -5 0 0 0 1 -3 0

Hu (2021) 1 0 0 0 3 1 0 0 2 1 0 2 0 0 0 0 10 27,8

Jian (2021) 0 0 0 0 3 0 1 1 0 0 0 5 0 0 0 0 10 27,8

Khazendar
(2015)

0 0 0 0 -3 0 0 0 2 0 0 -5 2 0 0 0 -4 0

Kiruthika (2018) 0 0 0 0 3 0 0 0 1 0 0 -5 0 0 0 0 -1 0

Kyriazi (2011) 1 1 0 1 -3 1 1 0 1 0 7 -5 2 0 0 0 7 19,4

Lee (2021) 0 0 0 0 -3 0 0 0 0 0 0 -5 0 0 0 0 -8 0

Li H (2021) 0 0 0 0 3 1 0 1 1 0 0 2 0 0 0 0 8 22,2

Li HM (2019) 1 0 0 0 -3 0 1 0 1 0 0 -5 0 0 0 1 -4 0

Li HM (2020) 1 1 0 0 -3 0 1 0 1 0 0 -5 0 0 0 0 -4 0

Li HM (2021) 1 0 0 0 3 1 0 0 1 0 0 -5 2 0 0 0 3 8,3

Li MR (2021) 1 0 0 0 3 0 0 0 1 0 0 2 2 0 0 0 9 25

Li NY (2021) 1 1 0 0 3 0 0 0 1 0 0 -5 2 0 0 1 4 11,1

Li S (2021) 1 0 0 0 3 1 0 0 1 1 0 3 2 2 0 0 14 38,9

Li YA (2020) 1 1 0 0 3 0 0 0 1 0 0 4 2 0 0 0 12 33,3

Lu H (2019) 0 0 0 0 3 1 1 0 0 0 0 3 2 0 0 1 11 30,6

Lu J (2021) 1 0 0 1 -3 0 0 1 1 0 0 -5 2 0 0 0 -2 0

Lupean (2020) 0 0 0 0 3 1 0 0 1 0 0 -5 0 0 0 0 0 0

Lupean (2020) 1 0 0 0 -3 0 0 1 1 0 0 -5 0 0 0 0 -5 0

Meier (2019) 1 0 0 0 3 0 0 0 0 0 0 -5 0 0 0 0 -1 0

Mimura (2016) 1 0 0 0 -3 0 0 0 1 0 0 -5 2 0 0 0 -4 0

Nero C (2020) 0 0 0 0 3 0 0 0 2 0 0 2 2 0 0 0 9 25

Pan (2020) 1 0 0 0 3 1 0 0 1 1 0 3 0 2 0 0 12 33,3

Park H (2021) 1 0 0 0 3 1 0 0 1 0 0 -5 0 0 0 0 1 2,8

Qi (2021) 0 0 0 0 3 1 0 0 1 1 0 2 2 2 0 0 12 33,3

Qian (2020) 1 1 0 0 3 1 1 0 2 2 0 2 2 2 0 0 17 47,2

Rizzo (2018) 1 0 1 0 3 1 0 0 1 0 0 -5 2 0 0 0 4 11,1

Seo (2021) 1 1 0 0 3 0 0 0 0 0 0 -5 0 0 0 0 0 0

Song (2021) 1 0 0 0 3 1 0 0 2 1 7 2 0 2 0 0 19 52,8

Song (2021) 1 1 0 0 3 0 0 0 1 1 7 2 2 2 0 1 21 58,3

Stefan (2021) 1 1 0 0 3 0 0 1 1 0 0 -5 0 0 0 0 2 5,6

Ștefan (2021) 1 1 0 1 3 0 1 1 1 0 0 -5 2 0 0 0 6 16,7
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(2%) performed a cost-effectiveness analysis and 8 studies
(13%) made their code and/or data publicly available.

Subgroup analysis

Table 3 shows the results of the subgroup analysis according
to first author category, study aim and topic, imaging modal-
ity, and journal quartile. The 4 studies not based on the onco-
logic topic received significantly lower scores than the others

(p = 0.01). Conversely, no statistically significant differences
were found between papers according to first author category
(p = 0.75), study aim (p = 0.9), and imaging modality (p =
0.48). Moreover, in studies published in first quartiles
journals, the total RQS percentage was higher than that of
investigations published in lower quartiles journals (median
19.4 vs. 8.3), but this difference was not statistically signifi-
cant (p = 0.09).

Table 2 (continued)

Author (year) Item
1

Item
2

Item
3

Item
4

Item
5

Item
6

Item
7

Item
8

Item
9

Item
10

Item
11

Item
12

Item
13

Item
14

Item
15

Item
16

RQS
(total)

RQS
(%)

Vargas (2017) 0 0 0 0 3 0 0 0 0 0 0 -5 0 0 0 0 -2 0

Veeraraghavan
(2020)

0 0 0 0 3 0 1 0 1 0 0 -5 2 0 0 0 2 5,6

Wang R (2021) 1 1 0 0 3 1 0 0 2 0 0 2 0 0 0 1 11 30,6

Wang S (2019) 1 0 0 0 3 1 0 0 1 0 0 3 2 0 0 0 11 30,6

Wang X (2021) 1 0 0 0 3 1 0 0 2 1 0 2 0 0 0 0 10 27,8

Wei C (2020) 1 0 0 0 3 1 0 0 2 0 0 -5 2 0 0 0 4 11,1

Wei W (2018) 0 0 0 0 3 0 0 0 1 0 0 2 0 0 0 0 6 16,7

Wei W (2019) 1 0 0 0 3 1 0 0 2 1 0 3 2 0 0 0 13 36,1

Yao (2021) 1 1 0 0 3 1 0 1 1 0 0 2 2 0 0 0 12 33,3

Ye (2021) 1 0 0 0 3 1 1 0 1 0 0 2 2 0 0 0 11 30,6

Yi (2021) 1 0 0 0 3 1 0 0 1 1 0 2 0 2 0 0 11 30,6

Xu XP (2021) 1 1 0 0 3 0 0 0 1 0 0 2 0 0 0 0 8 22,2

Yu XY (2021) 1 0 0 0 3 1 0 0 1 1 0 2 0 2 0 0 11 30,6

Zargari (2018) 1 0 0 0 3 0 0 0 2 0 0 -5 0 0 0 0 1 2,8

Zhang H (2019) 1 0 0 1 3 0 0 1 1 0 0 2 2 2 0 0 13 36,1

Zhang L (2019) 0 0 0 0 3 0 0 0 1 0 0 2 0 0 1 0 7 19,4

Zhu (2021) 1 0 0 0 3 1 0 1 2 2 0 2 2 2 0 0 16 44,4

The total score ranges from −8 to 36 and the percentage was based on the maximum value of 36

RQS indicates radiomics quality score [13]

Fig. 3 Distribution of median total RQS percentage score of
investigations included in our review. This is presented both as a
histogram (bars) and its corresponding density function (line)

Fig. 4 Line plot of median total RQS percentage in relation to the
publication year
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Discussion

Several radiomics-based investigations have been performed
either with a diagnostic or prognostic aim for various ovarian
pathologies, being especially focused on oncologic topics [9,
10, 17, 21–23]. Of note, CT was the most used diagnostic
technique, even if it does not represent the imaging of choice
in clinical routine.

However, despite the promising results, their translation to
clinical routine still appears as a distant goal. This is particu-
larly due to the complexity of the method and the low repro-
ducibility of the several processes involved [3, 24, 25].

In our systematic review, the overall methodological rigor
of ovarian radiomics investigations either with CT,MRI, PET,
or US resulted to be unsatisfactory, with a median RQS total
score of 6, corresponding to 16.7% of the maximum possible
rating. Moreover, our results do not represent an exception.
Indeed, previous studies highlighted that the overall method-
ological quality of radiomics studies is heterogenous and low-
er than desirable in various fields of medical imaging [14–16,
26–29]. In particular, Granzier et al for breast cancer, Ugga
et al for meningioma, and Ursprung et al for renal cell carci-
noma reported in their systematic reviews low average or me-
dian total RQS percentage, respectively of 11.8%, 19%, and

9.4% [15, 16, 27]. The trend of RQS over the years is fairly
inconsistent, even though the increase in 2021 could rep-
resent a positive sign for the future. Considering that al-
most half of the investigations (31/63) were published in
2021, and that “how to” guides have been recently pub-
lished aiming to standardize practice in radiomics, we
could be cautiously optimistic that the tendency will be
towards an overall improvement [2, 30]. A greater focus
on this issue by journals and editors could also assist in
improving the quality and diagnostic efficacy level of
these types of investigations, in turn facilitating their in-
troduction into clinical practice [21, 31].

Our systematic review has pointed out several issues in the
included studies that will necessarily have to be solved in future
radiomics-based research in the field of ovarian imaging. In
detail, a comprehensive documentation of the imaging protocol
is still lacking in some investigations; however, the correspond-
ing item seems to have been better scored compared to the
studies focused on different topics [14, 15]. Another major issue
is represented by the overall lack of testing features robustness
either to segmentation, scanner, or temporal variability. This
could be at least partly due to the predominant retrospective
design of the included investigations, which also represents a
significant limitation. Segmentation definitely represents a cru-
cial step in radiomics workflow as data are extracted from the
segmented regions of interest. Of note, in the included papers,
regions of interest were mostly annotated manually on medical
images. However, the “ideal” segmentation strategy is still de-
bated [32]. Some authors employ manual segmentation by ex-
pert readers as the ground truth, but this method can be highly
time-consuming [33]. Automatic segmentation of the whole vol-
ume of interest could overcome this issue, but intensive user
correction might be necessary for inhomogeneous lesions [34].

Moreover, as patient numbers are limited and countless
radiomics features can be extracted, it is fundamental to reduce
feature number, especially removing those poorly reproducible
that could affect algorithm performance [3, 25, 35]. On a positive
note, 76% of the reviewed papers performed feature reduction,
thus lowering the risk of overfitting. Furthermore, even if the
need of validating radiomics has been extensively discussed
[36], less than half of the included investigations conducted a
validation, either internal or external, of their results. However,
the scores of this specific item obtained in the ovarian field are
slightly better than those reported for prostate as well as breast
cancer radiomics-based research [14, 15].

Open science remains a major issue also in ovarian setting,
with 87% of the included papers not sharing their data and/or
code. Publicly available datasets, such as the Cancer Genome
Atlas Program and National Cancer Institute Imaging Data
Commons, may represent a possible solution, helping to in-
crease knowledge regarding the impact of varying factors in
radiomics [37–39]. Of note, none of the included studies used
public image protocols.

Table 3 Subgroup analysis according to first author category, study
aim, topic and design, imaging modality, and journal quartile

Group Studies (n) RQS percentage p value

First author category 0.75

Medical 49 19.4 (0–30.6)

Other 14 13.9 (3.5–29.9)

Study aim 0.9

Diagnostic 44 18 (0–31.2)

Prognostic 20 13.9 (2.1–30.6)

Study topic 0.01

Oncology 59 19.4 (2.8–30.6)

Other 4 0 (0–0)

Study design 0.08

Single-center 52 12.5 (0–30.6)

Multi-center 11 30.6 (15.3–33.3)

Imaging modality 0.48

CT 27 22.2 (2.8–31.9)

MRI 22 18.1 (0–30.6)

PET 1 27.8

US 14 5.6 (0–23.6)

Journal quartile 0.09

First 31 19.4 (5.6–30.6)

Others 29 8.3 (0–28.5)

Values are expressed as number or median (interquartile range)

RQS indicates radiomics quality score [13]
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Subgroup analyses pointed out that the papers focused on the
oncologic topic showed significantly higher RQS total scores
than the non-oncologic ones. However, it should be taken into
account that most of the studies (94%) aimed to assess radiomics
performance in the field of oncology. Moreover, even if not
reaching statistical significance, papers published in first quartile
journals showed higher median RQS percentage than those pub-
lished in the other quartile ones, possibly due to the greater
demand of the high-ranking journals in terms of methodological
rigor, especially regarding validation of the results.

Of note, the RQS may not represent the perfect tool to eval-
uate the methodological quality of a radiomics study. For exam-
ple, due to the nature of its items, the RQSmight penalize studies
using deep learning algorithms, that are at risk of getting lower
scores for lacking feature selection or multiple segmentations
(which are not necessarily limitations in deep learning studies)
[40]. Furthermore, the relative weight of some items might be
unbalanced and penalize those preliminary, exploratory studies
that were retrospectively designed but needed as a first ground
on which stronger evidence must be built. Finally, it should be
considered that generalizability is one of the key issues for the
clinical translation of radiomics models but needs external inde-
pendent validation that was rare in this experience (11%, 7/63).
To increase the scientificmerit andmethodological robustness of
radiomics studies, researchers might want to focus on validating
previously published radiomics signatures using their datasets as
independent validation cohorts rather than building newmodels.
However, open science represents a necessary prerequisite to
achieve this goal.

Our study suffers from some limitations that should be ac-
knowledged. First of all, inter-reader agreement of RQS assess-
ment was not explored; however, the two readers evaluating the
papers had previous experience with this system of metrics [14,
28]. Second, since the field of radiomics is constantly evolving,
even in terms of nomenclature, potential eligible investigations
could have been missed. Finally, some included studies were
published before the introduction of the RQS.

In conclusion, the overall scientific rigor of ovarian
radiomics studies was unsatisfactory, resulting particularly
lacking in terms of features reproducibility and formal valida-
tion of the results. More efforts towards a standardized meth-
odology in the pipeline are needed to allow radiomics to be-
come a viable tool for clinical decision-making.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00330-022-09180-w.
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