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Abstract
Objectives To provide an overarching evaluation of the value of peritumoral CT radiomics features for predicting the prognosis
of non-small cell lung cancer and to assess the quality of the available studies.
Methods The PubMed, Embase, Web of Science, and Cochrane Library databases were searched for studies predicting the
prognosis in patients with non-small cell lung cancer (NSCLC) using CT-based peritumoral radiomics features. Information
about the patient, CT-scanner, and radiomics analyses were all extracted for the included studies. Study quality was assessed
using the Radiomics Quality Score (RQS) and the Prediction Model Risk of Bias Assessment Tool (PROBAST).
Results Thirteen studies were included with 2942 patients from 2017 to 2022. Only one study was prospective, and the others
were all retrospectively designed. Manual segmentation and multicenter studies were performed by 69% and 46% of the included
studies, respectively. 3D-Slicer andMATLAB software weremost commonly used for the segmentation of lesions and extraction
of features. The peritumoral region was most frequently defined as dilated from the tumor boundary of 15mm, 20mm, or 30mm.
The median RQS of the studies was 13 (range 4–19), while all of included studies were assessed as having a high risk of bias
(ROB) overall.
Conclusions Peritumoral radiomics features based on CT images showed promise in predicting the prognosis of NSCLC,
although well-designed studies and further biological validation are still needed.
Key Points
• Peritumoral radiomics features based on CT images are promising and encouraging for predicting the prognosis of non-small
cell lung cancer.

• The peritumoral region was often dilated from the tumor boundary of 15 mm or 20 mm because these were considered safe
margins.

• The median Radiomics Quality Score of the included studies was 13 (range 4–19), and all of studies were considered to have a
high risk of bias overall.

Keywords Carcinoma, non-small-cell lung . Solitary pulmonary nodule . Prognosis . Tomography, X-ray computed . Machine
learning
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Introduction

Non-small cell lung cancer (NSCLC) is the most common type
of lung cancer, accounting for 85% of all cases [1, 2]. The precise
survival risk stratification of patients with NSCLC is a crucial
step in treatment. Although the tumor, node, and metastasis
(TNM) classification for lung cancer is the most objective and
authoritative indicator of the prognosis, those in identical tumor
stages still have heterogeneous prognoses [3–5]. To improve the
management of NSCLC and make proper treatment decisions,
numerous studies have reported other independent clinical prog-
nostic factors, including age, sex, and performance status [6–8].
In addition, medical imaging, such as CT, can also derive poten-
tial markers of prognosis, including tumor volume, pleura effu-
sion, and radiomics [9–14].

Radiomics based on medical imaging can assess the tumor
and its environment in its entirety, which can provide addi-
tional information for predicting cancer outcomes [15–17].
Several studies have successfully applied intratumor
radiomics features to predict the overall survival, the progno-
sis of cancer recurrence, and time to progression in patients
with NSCLC [17–19]. Other studies have investigated the
clinical use of quantifying peritumoral regions at CT to help
predict tumor invasiveness, tumor spread through air spaces,
and especially prognostic outcomes [20–23]. For example,
Wang et al found that the combination of radiomics features
extracted from intra- and peritumoral areas could enhance the
accurate prognosis prediction of pure-solid NSCLC [23].
However, the added value of extratumoral radiomics and the
quality of the studies have not been systematically assessed to
further explore the potential association between peritumoral
radiomics features and prognosis in NSCLC.

Therefore, the aim of this study was to systematically re-
view and appraise the results from published studies that ex-
amined the prognostic value of CT-based peritumoral
radiomics features in NSCLC patients, and the potential bio-
logical underpinnings were also summarized.

Materials and methods

This systematic review was reported in accordance with the
Preferred Reporting Items for Systematic Reviews and Meta-
Analysis (PRISMA) guidelines [24]. The review was regis-
tered on PROSPERO before initiation (registration no.
CRD42022322916).

Search strategy

The PubMed, Embase,Web of Science, and Cochrane Library
databases were comprehensively searched up to February 21,
2022, to identify studies that used CT-based peritumoral
radiomics to evaluate the prognosis in patients with NSCLC.

The reference lists of the included articles and the relevant
literature were also manually searched. The following basic
search terms were used: NSCLC, pulmonary nodule, CT,
radiomics, peritumoral, and prognosis. The detailed search
criteria are described in the supplementary material. The re-
trieval was performed without language and date restrictions.

Study selection

Original research articles will be included in the study.
Eligibility criteria included the following: (1) patients with
NSCLC; (2) evaluating the prognosis of patients by a
peritumoral radiomics approach on CT. Studies were exclud-
ed if they (1) were case studies, editorials, letters, review arti-
cles and conference abstracts; (2) were not in the field of
interest; or (3) were overlaps in study populations.

Data extraction

Data to be extracted will include the following: (1) study de-
tails: first author, publication year, country, study design; (2)
patient details: the source of data acquisition (single-center/
multicenter), type of cohort, sample size, TNM staging, histo-
logical subtype, type of treatment, prognostic outcome; (3)
imaging details: CT tube voltage, reconstruction slice thick-
ness (mm), plain or contrast CT; (4) radiomics details: seg-
mentation software, segmentation method, peritumoral defini-
tion, and reference, feature extraction software, type of
radiomics features, number of radiomics features, radiomics
feature selection methods, type of models constructed, final
classifier, number of radiomics features in the final model,
type of radiomics features in the final model, and performance
of the models. Two independent reviewers (L.W. and C.G.)
completed the initial screening and extracted data from all
enrolled studies.

Risk of bias assessment

The methodological quality of each study was evaluated by
using the Radiomics Quality Score (RQS) [25] and the
Predict ion Model Risk of Bias Assessment Tool
(PROBAST) [26]. The RQS provides a standardized and
quantitative evaluation criterion for the methodology of
radiomics researches. The RQS assessment contains sixteen
key components from data selection, medical imaging, feature
extraction, and exploratory analysis to modelling. Each item
contributes to the final score and the total score ranges from -8
to 36 points [25]. Detail description of each item of RQS and
the corresponding scores is provided in Table S1. PROBAST
is a tool to assess the risk of bias (ROB) and the application of
prediction models for diagnosis or prognosis. The risk of bias
assessment of all enrolled studies was made by two reviewers
(L.W. and C.G.) with a consensus agreement.
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Results

Literature search and data extraction

The flow diagram of the literature search of the Preferred
Reporting Items for Systematic Reviews and Meta-Analysis
is shown in Fig. 1. A total of 433 studies were identified, in
which 432 studies were identified by the comprehensive liter-
ature search and one study was identified by a hand search of
the relevant literature. After screening and evaluating, 13 stud-
ies with 2942 patients meeting the criteria were included in
this systematic review [22, 23, 27–37].

Patient and study characteristics

The patient characteristics of 13 studies are summarized in
Table 1. The included studies were published from 2017 to
2022. Almost all the studies (12/13, 92%)were retrospectively
designed [22, 23, 27–36], except one of the studies, which was
prospective [37]. Patients from seven studies (7/13, 54%)
were from one center [22, 28–30, 34, 36, 37], and the others
(6/13, 46%) were from multiple center [23, 27, 31–33, 35].
Most studies (10/13, 77%) included a training cohort and
validation/test cohort, in which six studies conducted external
tests from another center [23, 27, 31–33, 35]. The number of
patients included in the studies ranged from 90 to 592. The
type of treatment and type of prognostic outcome are summa-
rized in Table 1. The type of treatment varied, such as surgery,
adjuvant chemo-/radiotherapy, and immune checkpoint treat-
ment. The prognostic outcome included prediction of survival

[23, 27–29, 31–35, 37], distant metastasis [22, 30, 36] and
response status [28, 29, 31, 34]. The most frequent study pur-
pose was the prediction of overall survival [27, 28, 29, 31,32,
34, 37] (7/13, 54%).

Radiomics workflow

The details of the acquisition parameters of the images in the
radiomics studies are shown in Table 1. The slice thickness of
CT ranged from 0.6 to 5 mm in most studies except for one
study in which the thickness was not mentioned [32]. Some
studies (6/13, 46%) conducted radiomics using contrast-
enhanced CT images [22, 27, 30, 31, 35, 36] while only one
study used non-contrast CT images [29]. Two studies (2/13,
15%) conducted radiomics using either contrast-enhanced or
non-contrast CT images for further analysis [33, 34]. The oth-
er studies (4/13, 31%) did not mention it [23, 28, 32, 37].

The study details of the radiomics workflow, including region
of interest (ROI) segmentation, feature extraction and selection,
and model construction, are summarized in Table 2. The ROI
segmentation was manual in most studies (9/13, 69%) [22, 23,
28, 29, 31, 33–35, 37], semi-automatic in three studies [27, 30,
32], and automatic in one study [36]. The most commonly used
software for ROI segmentation was 3D-Slicer (5/13, 38%), and
the most commonly used software for radiomics feature extrac-
tion was MATLAB (8/13, 62%) in the included studies
(Table 2). The types of extracted radiomics features included
texture features and/or first-order statistics and shape features
[22, 23, 28–37]. Moreover, some novel radiomics features were
introduced in the studies. For example, Tunali et al generated

Fig. 1 Flowchart of the study
screening and selection process of
this systematic review
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radial gradient and radial deviation features that represent voxel-
by-voxel gradient changes [27]. And Vaidya et al analyzed
radiomics features of quantitative vessel tortuosity that represent
the curvedness of tumor vessels [34].

The number of extracted radiomics features ranged from 48
to 5309. The radiomics feature selection methods frequently
included intraclass correlation coefficients, univariable analy-
ses, and multivariable analyses. The types of models construct-
ed in these studies ranged from 2 to 24. The model constructed
in the final radiomics model was usually a multivariable Cox
model [22, 27, 28, 30, 31, 35, 36]. The number of radiomics
features in the final radiomics model ranged from 2 to 18.

The peritumoral radiomics model and possible
biological underpinnings

All the included studies segmented both the intra- and peri-
tumoral regions; however, the definitions of peritumoral re-
gions varied. Three different definitions for peritumoral re-
gions were summarized in Fig. 2. Almost all the performances
of erosion and dilation were based on the morphology of tu-
mors and can be classified into three types. In type 1, the
border mask was defined to be inward erosion 12.5/15 mm
[27] or 3 mm [22, 35, 36] to outward dilation 7.5/10 mm [27]
or 3 mm [22, 35, 36] along the tumor border. The outside
mask was defined as an area expanding outside from the tu-
mor to 17.5/22.5 mm [27] or 3/6 mm [35]. The exterior mask
was defined as an area 3 to 9 mm away from the tumor [22]. In
type 2, the border mask was defined to be the region that
expands 3 mm away from the tumor boundary [32] while
the criteria for the outside mask was 15 mm [23, 28, 29, 33,
34] or 20 mm [30] or 30 mm [31]. In type 3, the gross tumor
volume equalled the original volume of the tumor lesion with-
out any erosion or dilation performance. The clinical target
volume contained gross tumor volume plus an area expanding
outside from tumor boundary. The planning target volume
was defined as the combination of tumor volume and the area
dilated from the tumor border, which was necessary to man-
age internal motion and set-up reproducibility [37].

Moreover, the references of peritumoral region researches
applied also varied in these included studies. The peritumoral
regions were often dilated from the tumor boundary of 15mm,
20 mm, or 30 mm (7/13, 54%) [23, 28–31, 33, 34]. Some of
them (6/13, 46%) referred to previous findings, where a resec-
tion margin > 15mm did not decrease the risk of recurrence or
a resection margin ≥ 20 mm was the safe margin [28–31, 33,
34]. An area outside the border of the tumor was chosen as the
peritumoral region in several studies (4/13, 31%), where mi-
croscopic extension of cancerous islets or “real invasive front”
can still be found [22, 35–37].

Several researchers have explored the biological underpin-
nings of peritumoral radiomics features in the prediction of the
prognostic outcome of patients with NSCLC [27, 31–33].Ta

bl
e
2

(c
on
tin

ue
d)

‘S
m
al
lD

ep
en
de
nc
e
H
ig
h
G
ra
yL

ev
el
E
m
ph
as
is
’

of
G
L
D
M
_p
er
itu

m
or
;

G
L
C
M

M
C
C
_p
er
itu

m
or

A
m
ic
o,
20
20

[3
7]

24
(r
ad
io
m
ic
s
m
od
el
s)

9
(A

da
B
oo
st
_C

T
V
)

U
3D

L
B
P
ku
rt
os
is
;3

D
L
B
P
en
er
gy
;R

I
3D

L
B
P

m
ax
A
ss
;3

D
L
B
P
en
er
gy

ar
ou
nd

m
ax
A
ss
;R

I
3D

L
B
P
en
er
gy
;U

3D
L
B
P
en
er
gy

ar
ou
nd

m
ax
R
el
;U

3D
L
B
P
en
tr
op
y;

U
3D

L
B
P
sk
ew

ne
ss
;i
nv
er
se

G
L
C
M

(−
1,
−
1,
0)

A
da
B
oo
st
_C

T
V
ra
di
om

ic
s

m
od
el
(O

S)
A
U
C
0.
83

(O
S)

W
an
g,
20
22

[2
3]

3
(c
lin

ic
al
m
od
el
;r
ad
io
m
ic
s
m
od
el
;

cl
in
ic
al
+
ra
di
om

ic
s
m
od
el
)

18
E
ig
ht
in
tr
at
um

or
al
3D

R
O
If
ea
tu
re
s,
fi
ve

in
tr
at
um

or
al

2D
R
O
I
fe
at
ur
es
,f
iv
e
pe
ri
tu
m
or
al
fe
at
ur
es

(S
um

E
nt
ro
py
;C

or
re
la
tio

n;
C
om

pl
ex
ity

;
G
ra
y
L
ev
el
V
ar
ia
nc
e;
G
ra
y
L
ev
el

N
on
un
if
or
m
ity

N
or
m
al
iz
ed
)

C
lin
ic
al
+
ra
di
om

ic
s

m
od
el
(R
FS

)
C
-i
nd
ex

0.
81

(t
ra
in
in
g)
,0
.7
7
(t
es
t1

),
0.
75

(t
es
t2

)
(R
FS

)

A
U
C
,t
he

ar
ea

un
de
rt
he

re
ce
iv
er
op
er
at
in
g
ch
ar
ac
te
ri
st
ic
cu
rv
e;
C
-in

de
x,
co
nc
or
da
nc
e
in
de
x;
C
A
R
T,
C
la
ss
if
ic
at
io
n
A
nd

R
eg
re
ss
io
n
T
re
e;
C
A
R
T
D
T,
C
A
R
T
D
ec
is
io
n
T
re
e;
C
oL

lA
G
e,
co
-o
cc
ur
re
nc
e
of

lo
ca
l

an
is
ot
ro
py

gr
ad
ie
nt
or
ie
nt
at
io
ns
;C

TV
,c
lin

ic
al
ta
rg
et
vo
lu
m
e;
D
el
R
A
D
x,
ra
di
om

ic
s
ba
se

on
th
e
pe
rc
en
tc
ha
ng
e
of

fe
at
ur
e
st
at
is
tic
s
be
tw
ee
n
ba
se
lin

e
an
d
po
st
-
6–
8
w
ee
k
sc
an
s;
D
F
S,
di
se
as
e-
fr
ee

su
rv
iv
al
;

D
LD

A
,d
ia
go
na
ll
in
ea
rd

is
cr
im

in
an
ta
na
ly
si
s;
D
M
,d
is
ta
nt
m
et
as
ta
si
s;
G
LC

M
,g
ra
y
le
ve
lc
o-
oc
cu
rr
en
ce

m
at
ri
x;
G
LD

M
,g
ra
y
le
ve
ld
ep
en
de
nc
e
m
at
ri
x;
G
LR

LM
,g
ra
y-
le
ve
lr
un

le
ng
th
m
at
ri
x;
G
LS

ZM
,g
ra
y-

le
ve
l
si
ze

zo
ne

m
at
ri
x;

H
O
G
,h

is
to
gr
am

of
or
ie
nt
ed

gr
ad
ie
nt
;
H
P
s,
di
st
in
gu
is
hi
ng

hy
pe
rp
ro
gr
es
so
rs
fr
om

ot
he
r
re
sp
on
se
rs
;I
C
C
,i
nt
ra
cl
as
s
co
rr
el
at
io
n
co
ef
fi
ci
en
t;
LB

P
,l
oc
al
bi
na
ry

pa
tte
rn
;
LD

A
,l
in
ea
r

di
sc
ri
m
in
an
t
an
al
ys
is
;
LR

,
lo
ca
l
re
cu
rr
en
ce
;
M
P
R
,
m
aj
or

pa
th
ol
og
ic
al

re
sp
on
se
;
N
G
TD

M
,
ne
ig
hb
or
in
g
gr
ay

to
ne

di
ff
er
en
ce

m
at
ri
x;

O
S,

ov
er
al
l
su
rv
iv
al
;
P
TV

,
pe
ri
tu
m
or
al

vo
lu
m
e;

Q
D
A
,
qu
ad
ra
tic

di
sc
ri
m
in
an
ta
na
ly
si
s;
Q
V
T,

qu
an
tit
at
iv
e
ve
ss
el
to
rt
uo
si
ty
;R

F
,r
an
do
m

fo
re
st
;R

F
E
,r
ec
ur
si
ve

fe
at
ur
e
el
im

in
at
io
n;

R
s,
di
sc
ri
m
in
at
io
n
of

re
sp
on
de
rs
fr
om

no
nr
es
po
nd
er
s;
R
TC

,r
es
po
ns
e
to

ch
em

ot
he
ra
py
;

SD
,s
ta
nd
ar
d
de
vi
at
io
n;
SV

M
,s
up
po
rt
ve
ct
or

m
ac
hi
ne
;T

R
,t
ot
al
re
cu
rr
en
ce
;T

TP
,t
im

e
to
pr
og
re
ss
io
n;
W
LC

X
,W

ilc
ox
on

ra
nk

su
m
;X

G
B
,X

G
B
oo
st
;–
:n
ot
m
en
tio

n;
*:
th
e
pr
og
no
si
s
ou
tc
om

e
is
to
id
en
tif
y

hy
pe
rp
ro
gr
es
so
rs
fr
om

ot
he
r
re
sp
on
se
rs

2111European Radiology (2023) 33:2105–2117



Khorrami et al investigated associations between changes in
radiomics features and the density of tumor-infiltrating lympho-
cytes on digitized hematoxylin-eosin images [31]. Pérez-Morales
et al analyzed the associations between the final two radiomics
features with gene probesets [32]. Vaidya et al investigated asso-
ciations between prognostic radiomics features and tumor-
infiltrating lymphocytes (radiopathomic analysis), as well as the
radiomics features and mRNA sequencing data (radiogenomic
analysis) [33]. Tunali et al explored potential biological under-
pinnings by analyzing the correlations of radiomics features with
semantic radiological features [27]. Others also discussed the
possible pathological basis of prognostic radiomics features from
the peritumoral region, such as “real invasive front,” hypoxic
tumor environment, neovascularization and angiogenesis in the
tumor microenvironment, lymphovascular tumor invasion and
micrometastasis [22, 28–30, 34, 35].

The performance of the models

The models with the best performance and the corresponding
performance metrics in the included studies were summarized
in Table 2. The concordance index (C-index) and the area under
the receiver operating characteristic curve (AUC) were used to
evaluate the performance of these models in twelve of thirteen of
included studies [22, 23, 28–37]. The peritumoral radiomics

features played an important role in the survival models [22,
23, 27–37]. The values of C-index or AUC of these best-
performance models ranged from 0.65 to 0.90 [22, 23, 28–37].

Quality assessment

The total RQS and the percentages of the maximum score
are summarized in Table 3. The median RQS of the stud-
ies was 13 (range 4–19), and the corresponding percent-
age of the score was 36.11% (range 11.11–52.78%).
Figure 3 shows the percentages of scores in the studies
for the sixteen components of RQS. The results of the
ROB and the applicability assessments of these studies
were presented in Table 4. Figure 4 presents the percent-
age of the studies rated by level of concern, ROB, and
applicability for each domain. All of studies were
assessed as high ROB overall [22, 23 27–32, 33–37].
Most studies (12/13, 92%) were considered low concern
regarding the applicability [22, 23, 28–33, 35–37].

Discussion

In this systematic review, we found that the radiomics features
extracted from the peritumoral lung parenchyma on CT

Fig. 2 The three different types of definitions for peritumoral regions
were as follows: Type 1: Border Mask: (−12.5 or −15 to + 7.5 or +10)
mm [27], (−3 to + 3) mm [22, 35, 36]; Outside Mask: (0 to +17.5 or +
22.5) mm [27], (0 to + 3 or + 6) mm [35]; Exterior Mask: (+3 to +9) mm
[22]. Type 2: Border Mask: (0 to +3) mm [32]; Outside Mask: (0 to +15)

mm [23, 28, 29, 33, 34], (0 to +20) mm [30], (0 to +30) mm [31]. Type 3:
Tumor Mask: gross tumor volume; Border Mask: clinical target volume
minus TumorMask; OutsideMask: planning target volumeminus Tumor
Mask [37]. −: inward erosion; +: outward dilation; 0: tumor boundary
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images can be considered a potential prognostic factor for
patients with NSCLC. However, the included studies showed
considerable variability and heterogeneity (including CT ac-
quisition parameters and radiomics methodology) in each step
of radiomics analysis.

Using standardized radiomics analysis was advocated to
eliminate unnecessary confounding variability [25, 38]. With
included studies having a wide range of section thicknesses
(0.6–5 mm), the impact of section thickness on the perfor-
mance of the model should be evaluated. Khorrami et al

Table 4 Prediction model risk of bias assessment of included studies (PROBAST)

Study ID Risk Applicability Overall

Participants Predictors Outcome Analysis Participants Predictors Outcome ROB Applicability

Tunali, 2017 [27] - + - - + - ? - -

Dou, 2018 [22] - ? ? - + + + - +

Khorrami, 2019 [28] - + ? - + + + - +

Khorrami, 2019 [29] - + + - + + + - +

Antonoli, 2020 [30] - ? ? + + + + - +

Khorrami, 2020 [31] - ? ? - + + + - +

Pérez-Morales, 2020 [32] - ? ? - + + + - +

Vaidya, 2020 [33] - ? ? + + + + - +

Vaidya, 2020 [34] - ? ? - + + ? - ?

Liu, 2022 [35] - ? ? - + + + - +

Davey, 2021 [36] - ? ? - + + + - +

Amico, 2020 [37] + + ? - + + + - +

Wang, 2022 [23] - ? ? + + + + - +

ROB, risk of bias; PROBAST, prediction model risk of bias assessment tool; + indicates low ROB/low concern regarding applicability; − indicates high
ROB; ? indicates unclear ROB/unclear concern regarding applicability

Fig. 3 Quality assessment of included studies by the Radiomics Quality Score (RQS) and presenting the percentages of scores of the included studies
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evaluated the impact of section thickness on the performance
of the classifier and found that the areas under the receiver
operating characteristic curves for the radiomics model de-
creased slightly when the section thickness increased [28,
29, 31]. Bettinelli et al found that the agreement of seven
radiomics software programs varied [39]. The test-retest and
differences in the inter-CT and intra-CT protocols can affect
the stability of radiomics features to different degrees [40].
Therefore, several studies selected stable and reproducible
features on the test-retest RIDER lung CT dataset and retained
features with an intraclass correlation coefficient of 0.75, 0.8,
0.85 or greater [22, 27–29, 31–34].

ROIs can be segmented manually or (semi)automatically.
However, manual segmentation remained the main method in
the radiomics studies, and 69% of included studies segmented
the ROI manually [22, 23, 28, 29, 31, 33–35, 37]. The vari-
ability in manual delineations can be reduced by multiple
segmentation, but it is time-consuming [25]. Hence, rapid
and reliable automatic ROI segmentation is highly desired
and is still challenging. Some efforts to automatically segment
the lung nodules have been made, which is promising in the
future [41–43]. Feature selection, modelingmethodology, and
validation were three major aspects of the radiomics model.
Feature reduction for high-throughput radiomics features was
performed to decrease the risk of overfitting bymultiple meth-
odologies, such as max-relevance and min-redundant, the
least absolute shrinkage and selection operator method [22,
28, 29, 33, 35]. Validation is an indispensable component of
radiomics analysis [25]. Most of the included studies conduct-
ed internal validation or even external validation from another
center [22, 23, 27–29, 31–35].

CT images may contain information that reflects the under-
lying pathophysiology of the tumor and that results in the
conversion of images into structured data to assist in clinical
decision support [38]. Peritumoral mask segmentation is usu-
ally based on morphologic operations (dilation) from the le-
sion boundary. Features are often extracted from three-

dimension volume of interest and/or a section-by-section basis
[22, 23, 27–31], while a few studies extracted from the three
slices have the maximum area of the tumor [33, 34]. With an
underlying biological rationale, such as “real invasive front”
and micrometastasis around the tumor, the peritumoral re-
gions of the included studies were dilated from the tumor
boundary between 3 and 30 mm [22, 23, 27–36]. The biolog-
ical underpinning of radiomics is significantly important to its
wider use and further validation. Efforts to explain the biolog-
ical meaning of radiomics are emerging, including relation-
ships with semantic features, gene expression, microscopic
histopathologic findings, and macroscopic histopathologic
marker expression [44]. Encouragingly, several researchers
have investigated the correlation between prognostic
radiomics features and the density of tumor-infiltrating lym-
phocytes and gene and mRNA sequencing data [31–33]. This
exploration will reinforce our understanding of the biological
meaning of peri-tumoral radiomics in the predicting prognosis
of NSCLC patients.

The RQS was used to assess the methodology, analysis,
and reporting of a radiomics study. The median RQS of the
studies was 13 (range 4–19), which indicates that most of the
included studies did not reach a median level of radiomics
quality. All the included studies conducted feature reduction,
and biological correlates discussions. None of the included
studies conducted a cost-effectiveness analysis, and most of
the studies lacked open science. According to the PROBAST,
all of the studies were considered to have a high ROB overall.
The reasons for model development and validation studies
with high ROB may be as follows: (1) Most of the included
studies (12/13, 92%) were retrospective studies. (2) The cali-
bration was not evaluated in most studies. (3) Whether predic-
tors were assessed without knowledge of outcome informa-
tion was also not mentioned.

This systematic review has several limitations that should
be noted. First, the number of eligible studies was relatively
small. Second, because high heterogeneity was found in

Fig. 4 The percentage of the
included studies rated by the risk
of bias and applicability using the
Prediction Model Risk of Bias
Assessment Tool (PROBAST)
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radiomics analysis, such as the type of treatment, outcome of
prognosis, and radiomics modeling, a meta-analysis of pooled
outcomes was not conducted. Third, most of the studies were
evaluated as having low RQS and high ROB, so the results
should be interpreted with caution.

In conclusion, growing evidence has shown that
peritumoral CT-based radiomics features in predicting
the prognosis of NSCLC are promising, although they
need standardization in radiomics analysis. Because most
of the studies were performed retrospectively, studies
based on prospective, multiple centers as well as biolog-
ical correlations should be further conducted to promote
their clinical use.
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