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Abstract
Objectives To contribute to a more in-depth assessment of shape, volume, and asymmetry of the lower extremities in patients
with lipedema or lymphedema utilizing volume information from MR imaging.
Methods A deep learning (DL) pipeline was developed including (i) localization of anatomical landmarks (femoral heads,
symphysis, knees, ankles) and (ii) quality-assured tissue segmentation to enable standardized quantification of subcutaneous
(SCT) and subfascial tissue (SFT) volumes. The retrospectively derived dataset for method development consisted of 45 patients
(42 female, 44.2 ± 14.8 years) who underwent clinical 3D DIXON MR-lymphangiography examinations of the lower extrem-
ities. Five-fold cross-validated training was performed on 16,573 axial slices from 40 patients and testing on 2187 axial slices
from 5 patients. For landmark detection, two EfficientNet-B1 convolutional neural networks (CNNs) were applied in an ensem-
ble. One determines the relative foot-head position of each axial slice with respect to the landmarks by regression, the other
identifies all landmarks in coronal reconstructed slices using keypoint detection. After landmark detection, segmentation of SCT
and SFT was performed on axial slices employing a U-Net architecture with EfficientNet-B1 as encoder. Finally, the determined
landmarks were used for standardized analysis and visualization of tissue volume, distribution, and symmetry, independent of leg
length, slice thickness, and patient position.
Results Excellent test results were observed for landmark detection (z-deviation = 4.5 ± 3.1 mm) and segmentation (Dice score:
SCT = 0.989 ± 0.004, SFT = 0.994 ± 0.002).
Conclusions The proposed DL pipeline allows for standardized analysis of tissue volume and distribution and may assist in
diagnosis of lipedema and lymphedema or monitoring of conservative and surgical treatments.
Key Points
• Efficient use of volume information that MRI inherently provides can be extracted automatically by deep learning and enables
in-depth assessment of tissue volumes in lipedema and lymphedema.

• The deep learning pipeline consisting of body part regression, keypoint detection, and quality-assured tissue segmentation
provides detailed information about the volume, distribution, and asymmetry of lower extremity tissues, independent of leg
length, slice thickness, and patient position.
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Introduction

A chronic increase in leg circumference—either uni- or
bilateral—can be caused by a range of pathological condi-
tions: apart from venous disease and obesity, lymphedema
and lipedema are recognized as major causes of increased
extremity circumference [1, 2]. Lymphedema is characterized
by soft tissue swelling caused by impaired lymphatic drainage
leading to an accumulation of interstitial fluid. Through in-
flammatory reactions, a progressing deposition of subcutane-
ous fat, tissue fibrosis, and ultimately skin changes can be
observed [2]. Lipedema is a disorder characterized by adipose
tissue accumulation in the extremities and predominantly af-
fects females. Patients typically present with a disproportion-
ate distribution of body fat on the extremities despite a slender
upper body and further symptoms such as fatigue and hyper-
algesia. Additionally, lymphedema may develop in the affect-
ed patients [3, 4]. The pathophysiology of lipedema is so far
poorly understood [1, 4, 5]. In patients suffering from either
lipedema or lymphedema, both mechanic impairments—that
can cause secondary arthritis or interfere with normal
walking—and emotional disorders—resulting from an ap-
pearance that does not conform to today’s ideal of beauty—
can result in impaired quality of life [1].

Traditionally, the diagnosis of lipedema and lymphedema
is made by clinical examination with evaluation of leg circum-
ference, pitting edema, pain, typical clinical signs (e.g.,
Stemmer’s sign), standardized anthropometric measurements
(e.g., body weight, body mass index, waist-to-hip ratio, waist-
to-height ratio), and patient history [1, 2, 4]. Especially since
the introduction of microsurgical treatment options for lymph-
edema, a more in-depth evaluation of the affected legs by
clinical MRI—e.g., as MR-lymphangiography (MRL)—has
been introduced at specialized centers for treatment planning
and therapy monitoring [6, 7]. In this respect, MRI is increas-
ingly employed in the diagnosis, staging assessment, and
follow-up of both lipedema and lymphedema and especially
multi-echo T1-weighted images (e.g., using the DIXON tech-
nique) have been demonstrated to be useful for anatomical
evaluation [8–11]. As simple anthropometric measures do
not allow for separate assessment of subfascial and subcuta-
neous tissue and do not provide information on the volume
distribution of these tissues along the entire extremities, it is
therefore a logical step to leverage available imaging for pre-
cise volume assessment of these different compartments.

In recent years, DL methods have shown their potential to
automate the quantification of tissue volumes in medical im-
age analysis [12–15]. Therefore, DL could also provide a use-
ful tool for automated imaging-based assessment of tissue
volume in patients with suspected lipedema or lymphedema.

For a clinical application of artificial intelligence–based
systems, it is important that the autonomous procedure has
quality control mechanisms that are able to warn the treating

physician in case of potentially limited validity of the mea-
surement [14]. Quality control is not only important for eval-
uating individual examinations, but it can also be used to
monitor the performance of the system over the time of de-
ployment. The hardware requirements and the time required
for inference are other aspects that affect the economics and
accessibility of the automated systems, making a comparison
of performance and efficiency of different DL models of
interest.

Therefore, it was the aim of this study to develop a DL
pipeline that allows to automatically extract precise normal-
ized information of tissue volume, distribution, and symmetry
from available MRI of the legs of patients with lipedema or
lymphedema for standardized quantification of subcutaneous
tissue (SCT) and subfascial tissue (SFT), while investigating
the performance and efficiency of different architectures.

Material and methods

Dataset

This retrospective study was approved by the institutional
review board with a waiver for written informed consent for
data analysis. Consecutive patients who underwent clinical
MRL examinations of the lower extremities between April
2016 and May 2017 were included into the study when they
had either clinically diagnosed lymphedema (primary or sec-
ondary) or lipedema of the lower extremities. The indication
for imaging was treatment planning (e.g., of lympho-venous
anastomoses) in all patients. 3DDIXONMRL (slice thickness
5 mm, spacing between overlapping reconstructed slices 2.5
mm, in-plane resolution 1 mm) was performed as part of the
pre-therapeutic diagnostic work-up on a 1.5-T MR system
(Ingenia; Philips Healthcare) to assess gross and lymphatic
anatomy as well as presence and extent of lymphatic run-off
impairment. Clinical diagnosis was made by the referring ex-
perienced lymphologists based on the national guidelines for
lymphedema and lipedema [4, 17].

Overall, 45 patients (42 female, mean age 44.2 ± 14.8
years) were examined during the selected time period and
were included into the study. Of 45 patients, 36 (80%) suf-
fered from lymphedema (13 primary, 23 secondary) and 9/45
(20%) from lipedema, with all men having secondary lymph-
edema and receiving MRL for treatment planning of lympho-
venous anastomoses. Exclusively, DIXONwater images were
used for method development. In total, the dataset consisted of
18,760 slices in axial orientation. Data were randomly split
into a training set for five-fold cross-validation of 40 (38 fe-
male, mean age 45.0 ± 15.5 years) cases and a hold-out test of
5 cases (4 female, mean age 37.4 ± 4.5 years) set. Detailed
information on imaging parameters and image pre-processing
prior to training can be found in Supplement S1.
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The ground truth generation for the landmark detection was
performed manually using Slicer 3D [18]. For the tissue seg-
mentation, semi-manual tools and AI-assisted annotation were
applied by a research assistant (S.N. with 3 years of experi-
ence in medical image segmentation). All annotations were
finally approved by a board-certified radiologist (C.C.P. with
10 years of experience in lymphatic imaging). Further infor-
mation on annotation can be found in Supplement S2.

The DL pipeline was finally also applied to four different
use cases of routine clinical practice to demonstrate the clini-
cal utility of the presented method for assessing tissue volume,
distribution, and symmetry of the lower extremities and for
monitoring of conservative or surgical treatment.

Method development for leg normalization

Figure 1 shows an overview of the developed pipeline
consisting of two landmark detection methods and a quality-
controlled tissue segmentation method.

(i) Leg model regression

In the first landmark detection method, a 2.5D CNN encoder
determines the relative foot-head position of each axial slice
within a standardized leg model by regression. To create the
standardized leg model, the mean distances between the

manually defined landmarks were determined for the entire
dataset (ankle-knee: 95.0 ± 6.7 cm, knee-symphysis: 99.1 ±
6.1 cm, symphysis-femoral head: 16.7 ± 1.8 cm). The dis-
tances between the landmarks were normalized to the mean
distance between ankles and knees, resulting in the relative
positions −1, 0, 1.045, and 1.220 for ankles, knees, symphy-
sis, and femoral heads within the leg model. The position
values of the slices between the landmarks were linearly in-
terpolated. Two numbers were then assigned to each axial
slice, which corresponded to the relative position of that slice
in the leg model for the left and for the right leg. Subsequently,
image areas superior to the femoral heads were excluded from
further analyses.

(ii) Keypoint detection

In the second landmark detection method, an additional 2.5D
CNN encoder detects the image coordinates of the landmarks
in coronal reconstructed slices using keypoint detection. To
create the coronal reconstructed slices, the cropped images are
down-sampled to an isotropic resolution of 2.5 mm. Then,
slice by slice, the center of mass of the body mask was shifted
in the anterior-posterior direction to the center of the image.
Subsequently, the image matrix was cropped at a distance of
25 mm anterior and 25 mm posterior from the center of the
image. This area contained all landmarks.

Fig. 1 Overview of the DL pipeline. (a) First, the 3D MRI scan is
analyzed in axial slices by a 2.5D EfficientNet-B1 to identify the relative
foot-head position of each slice with respect to a leg model consisting of
ankles, knees, symphysis, and femoral heads. Afterwards, the image
dataset is automatically cropped to the legs. (b) To increase the accuracy
of the leg normalization, all landmarks are predicted by another 2.5D
EfficientNet-B1 in coronal slices of a down-sampled cropped image

using keypoint detection, where the lower limbs were centered slice-by-
slice in anterior-posterior direction to the image center. (c) Then, a 2.5D
U-Net with EfficientNet-B1 as backbone is used for segmentation of
subcutaneous adipose tissue and subfascial tissue volume in axial slices.
Finally, the identified landmarks and tissue volumes are combined to
allow standardized quantification of the tissues (see Figs. 3 and 4)
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For processing 3D information, 2.5D CNN encoders with
three axial slices spaced 5 mm apart between each slice were
used as input channels for all CNNs used in the current study.
Also, different versions of a modern implementation of the
established ResNet (ResNet18, ResNet34, ResNet50), as well
as different versions of the recently introduced EfficientNets
(B0, B1, B2, B3, B4), were implemented for both landmark
detection methods [19, 20]. The most appropriate model was
selected based on validation performance and model efficien-
cy in terms of the number of trainable parameters and floating
point operations required. For training the landmark detection
methods, five-fold cross-validation was used and testing was
performed with an ensemble of the cross-validated models.

Method development for tissue segmentation

Model

2.5D models with a U-Net-like architecture were investigated
to segment the subcutaneous adipose tissue in the 3D MRI
scans. Again, different versions of ResNet (ResNet18,
ResNet34) and EfficientNet (B0, B1, B2, B3, B4) encoders
were implemented for the U-Net model [19, 20]. The applica-
tion of ResNet as an encoder of a U-Net has already been
demonstrated to be able to segment the liver with high preci-
sion in MRI [21]. In addition, a CDFNet was trained, which
was recently presented for abdominal adipose tissue segmen-
tation in DIXONMRI images and computed tomography [13,
14]. Again, the most appropriate model was selected based on
validation performance and model efficiency in terms of the
number of trainable parameters and floating point operations
required. Subsequently, the chosen 2.5D network architecture
was also trained to perform segmentation on sagittal and cor-
onal slices to investigate if a multi-view approach is beneficial
for the current segmentation task [13].

As with the landmark detection methods, five-fold cross-
validation was used for training. Testing was performed with
an ensemble of the cross-validated models. Detailed informa-
tion on the network architectures used as well as the
hyperparameters used for training the tissue segmentation
and landmark detection methods can be found in Appendix
S3 and S4.

Quality control

For automatic assessment of segmentation quality, the entropy
of the probability map of the segmentationmodels was used as
a metric to predict the prediction uncertainty as in terms of the
Dice score as proposed in previous studies [14, 16].

In the current study, two linear regression models were
trained. One based on the entropy of the entire probability
map of the 3D segmentation, as proposed in the original work,
and another which considers the entropy slice by slice [16].

By this, it should be investigated whether this allows a local
evaluation of the quality and thus represents a beneficial ex-
tension of the 3D approach. Only slices between the ankles
and femoral heads with segmentations larger than 10% (12.7
cm2) of the image section were considered. The linear regres-
sion models were trained with the predicted segmentations of
all validation cases of the cross-validated tissue segmentation
method and tested on the hold-out test set. Pearson correlation
(r) coefficients were calculated with SciPy 1.6.3 [22].

Results

Leg normalization

EfficientNet-B1 was chosen as the most suitable model
for both landmark detection methods used for leg normal-
ization as it showed excellent performance in the five-fold
cross-validation while having the least number of train-
able parameters and floating point operations, resulting
in a prediction time per patient of 2.7 s for the first meth-
od and 0.1 s for the second method on an NVIDIA Titan
RTX graphics processing unit (GPU). Low mean devia-
tions (Δz) between the predictions of the validation cases
of the cross-validated landmark detection models and the
manually defined ground truth were observed for the leg
model regression (Δz = 6.6 ± 2.7 mm) and for the
keypoint detection (Δz = 6.6 ± 3.2 mm). The mean sex-
specific deviations were Δz-female = 6.4 ± 2.6 mm, Δz-
male = 10.0 ± 4.4 mm for the leg model regression and
Δz-female = 6.6 ± 3.2 mm, Δz-male = 7.9 ± 4.0 mm for
the keypoint detection.

The ensemble of all cross-validated models showed also
low mean deviations on the hold-out test set (leg model re-
gression: Δz = 5.6 ± 5.6 mm; keypoint detection:Δz = 6.9 ±
4.4 mm). Considering an acceptable deviation of up to 10 mm
in the test set, 85.7% of the landmarks detected by leg model
regression and 74.3% of the landmarks detected by keypoint
detection were correct. Using the predictions in an ensemble,
the performance increased toΔz = 4.5 ± 3.1 (100% < 10mm).

Tissue segmentation

EfficientNet-B1 was also chosen as the most suitable
model for tissue segmentation as it showed again excel-
lent segmentation performance on axial slices in the five-
fold cross-validation with mean Dice scores of 0.982 ±
0.007 for segmenting SCT and of 0.989 ± 0.003 for
segmenting SFT. The mean prediction time per patient
was 8 s on an NVIDIA RTX 3090 GPU. Dice scores were
consistently above 0.95 for both genders (Dice score fe-
male: SCT = 0.983 ± 0.007, SFT = 0.989 ± 0.003; Dice
score male: SCT = 0.967 ± 0.005, SFT = 0.984 ± 0.003).
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Combining the predictions of three multi-view models,
each segmenting on either axial, coronal, and sagittal
slices, did not improve the already very high segmenta-
tion performance (Dice SCT: 0.980 ± 0.008; Dice SFT:
0.987 ± 0.004).

An ensemble of the five-fold cross-validated EfficientNet-
B1 models applied to axial slices achieved also excellent Dice
scores on the test set (Dice SCT: 0.989 ± 0.004; Dice SFT:
0.994 ± 0.002).

Detailed information and illustrations on the model selec-
tion for tissue segmentation and landmark detection can be
found in Supplement S5.

Quality control

Both linear regression models (based on 3D volumes and 2D
slices) demonstrated a high correlation between the entropy of
the subcutaneous tissue segmentation probability map and the
segmentation quality represented by the Dice score (3D vol-
umes: SCT r = −0.76 p < 0.001, SFT r = −0.75 p < 0.001; 2D
slices: SCT r = −0.78 p < 0.001, SFT r = −0.76 p < 0.001).
Low mean deviation between predicted and actual Dice score
were observed when applying the models to the hold-out test
set (3D volumes: ΔDice SCT: 0.003 ± 0.002; ΔDice SFT:
0.001 ± 0.001; 2D slices: ΔDice SCT: 0.003 ± 0.002;ΔDice
SFT: 0.002 ± 0.003). Figure 2 shows the two regression
models and also illustrates the application of the models
for automatic identification of cases with lower segmen-
tation quality.

Use cases

The trained DL pipeline was applied to different use cases of
routine clinical practice to create leg normalized visualiza-
tions, which are shown in Figs. 3 and 4.

Discussion

This work presents a DL method for standardized quantifica-
tion of subcutaneous and subfascial tissue of the lower ex-
tremities in patients with lipedema and lymphedema, which
has the potential to provide an in-depth description of shape,
volume, and asymmetry.

Modern imaging techniques have become increasingly im-
portant in the work-up of patients with suspected lipedema
and lymphedema or lymphatic leakages [6, 7, 11, 23, 24].
Especially high-resolution 3D MRL has shown to be useful
for planning of new surgical therapeutic options of lymphatic
diseases [25] and may also be helpful in treatment follow-up.
Usually morphological sequences are part of a MRL protocol
and allow for structural assessment of the affected legs.
Therefore, it is a logical consequence to apply the capabilities

of DL to available morphological 3D imaging to automatical-
ly extract information about the exact tissue volumes that
might be otherwise unused, which could lead to a more ob-
jective assessment of edematous diseases compared to con-
ventional measurements.

Spatial standardization of identified tissues allows compar-
ison between examinations independent of leg length, slice
thickness, and position, ultimately allowing comparison of
tissue volume distributions between initial and follow-up
scans of a patient. To achieve automated standardized ana-
lysis, two tasks were solved by utilizing DL, namely tissue
segmentation and landmark detection. As a further step to-
wards clinical application, the proposed pipeline in the current
study includes a segmentation quality control approach as
proposed in a previous work [16]. As an extension to this
method that based on the entire 3D volume, we additionally
developed a linear regression model trained on each slice of
the 3D scan. This allows to assess local quality of the segmen-
tation process and is therefore more sensitive to local effects,
e.g., caused by imaging artifacts.

For both the landmark detection and tissue segmentation
methods, a 2.5D approach incorporating three slices was cho-
sen. This approach has significantly lower computational
costs compared to 3D CNNs, allowing analysis of the high-
resolution MRI scans without prior down-sampling, while re-
ducing hardware requirements and time needed for inference.
Since excellent results were already observed for the 2.5D
approach, the inclusion of more 3D related information
through a multi-view approach was not found to be beneficial
for the given tasks. Furthermore, the performance and effi-
ciency of different CNN models for landmark detection and
tissue segmentation were investigated in this work. The re-
cently released EfficientNet, which showed state-of-the-art
performance on the ImageNet dataset at the time of its release
while maintaining very efficient computational requirements,
was observed also to be high performant and efficient for
medical landmark detection and tissue segmentation.
Employing efficient models is also of interest for the use of
DL in routine clinical practice, as they can reduce costs by
further lowering hardware requirements and inference time.

A detailed comparison with previous work on the quantifi-
cation of tissue volumes for lymphedema assessment in pa-
tients with breast cancer using manual landmark definition
and non-DL algorithms, as well as previous work on body
part detection in medical imaging, can be found in
Supplement S6 [8, 26–28].

Our study has several limitations. First, MRI images from
routine clinical practice of patients with lipedema and lymph-
edema, but no patients who are solely obese and have no
edematous alterations, were used for the development of the
method. However, we assume, although it was not explicitly
tested in this study, that the deep learning pipeline also works
in purely obese patients without edema, as the high Dice
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values show that the tissue regions of the patients used for
method development, where edema is not present, were also
segmented with high precision. Also, data for method devel-
opment were mainly from female patients. This is due to the
fact that lymphedema as well as lipedema occurs predomi-
nantly in the female population and data from routine clinical
practice was used for this study. However, excellent perfor-
mance values for landmark detection and tissue segmentation
were also observed in male patients of the validation sets.
Furthermore, the deep learning method was developed using
DIXON water images from a single MRI scanner only. Multi-
center trials are warranted to proof the general applicability.
The use of the algorithm will be enabled for collaborative

multi-center studies on reasonable request (https://qilab.de).
Also, at the current stage, there was no further investigation
of the segmented tissues with respect to fluid infiltrations,
which have implications for treatment strategy of lipedema
and lymphedema. In this respect, the presented approach
may be used as a basis for further quantitative analyses of
tissue properties in future studies, e.g., by multi-parametric
imaging. Lastly, the proposed method has not been evaluated
for e.g. treatment response assessment in a clinical trial so far.
However, we demonstrate potential use cases of the method
showing examples for tissue volume assessment, evaluation
of asymmetrical tissue proportions, and the evaluation of vol-
ume changes after surgical treatment. Future studies should

Fig. 2 The two linear regression models developed for quality control of
the tissue segmentation convolutional neural network (CNN) are shown
in the upper section of the figure. These are used for predicting the seg-
mentation quality of the subcutaneous tissue class in terms of the Dice
score. The first regression model was based on the entropy of the entire
probability map of the 3D segmentation (top left). A second regression
model was developed to predict segmentation quality slice by slice (top
right). Gray areas represent 95% confidence intervals. Pearson correlation
coefficient (r) along with the two-tailed p-value is given in the boxes. The
lower section of the figure shows the 3 channel inputs of the 2.5D

segmentation CNN for three patients (a, b, c), respectively, whose entropy
of probability map and Dice scores are highlighted in the plot above. The
digits represent the slice numbers. Excellent overall segmentation quality
with high Dice scores and low entropy was observed for the majority of
the entire 3D volumes and 2D slices (c.f. patient a). The slice-wise pre-
diction of the Dice score allows to additionally capture local effects on
segmentation quality caused, e.g., by water-fat swap (as seen in patient b)
or partial volume artefacts (as seen in patient c). For patients b and c,
adjacent artifact-affected slices, which also had low predicted Dice
scores, are also highlighted in the plot above
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Fig. 3 Use cases for assessment of volume, distribution, and symmetry
utilizing volume information from MRI. On the left (a) is a patient
(female, 45 years old) without swelling of the lower extremities, in the
middle (b) is a patient with lipedema (female, 46 years old), and on the
right (c) is a patient with asymmetric left secondary lymphedema (female,
66 years old). Cumulative axial tissue areas are displayed per slice for
each patient, with the distribution of the subfascial tissue (SFT) shown in
blue and of the subcutaneous tissue (SCT) in yellow separated for the left

and right leg between the femoral heads and the ankles. The detected
landmarks are indicated by dotted lines. In order to highlight the differ-
ences in tissue volume between the two legs, asymmetric tissue portions
are shown in darker blue for SFT and darker yellow for SCT. This is
particularly apparent in the illustration of the patient with asymmetrical
lymphedema (c). Next to the right and left leg, the tissue volumes are
indicated in liters with corresponding colored font, and the total volume
of SFT and SCT is indicated with white font

Fig. 4 Use case for evaluating success of surgical treatment. The figure
illustrates normalized visualizations of a pre-therapeutic and 1-year fol-
low-up scan of a lymphedema patient (female, 55 years old) who received
surgical treatment (lympho-venous anastomoses). Cumulative axial tissue
areas for the follow-up examination are illustrated, with the distribution of
the subfascial tissue (SFT) shown in blue and of the subcutaneous tissue
(SCT) in yellow separated for the left and the right leg between the
femoral heads and the ankles. The differences in tissue volumes between
the initial and the follow-up scan, i.e., tissue portions that have decreased

in the course of the treatment, are indicated in red color. Next to the right
and left leg, the total volume of SFT and SCT measured at the initial
examination is indicated with white font, the total volume of SFT and
SCT measured at the follow-up examination is indicated with blue and
yellow font, and the decrease in volume is indicated with red font. On the
right side of the figure, the alterations in SCT volume between initial and
follow-up scan is presented in yellow and in a different scale to highlight
where predominantly decrease of tissue volume has occurred during the
course of treatment
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evaluate the clinical value of the method for diagnosis, treat-
ment planning, and treatment monitoring of lipedema and
lymphedema against or in compliment of conventional an-
thropometric measurements.

Conclusion

This study presents a DL system for standardized and objec-
tive analysis of tissue volume, distribution, and symmetry
based on MRI in patients with suspected lipedema or
lymphedema.
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