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Abstract
Objectives Coronary artery calcium (CAC) scores derived from computed tomography (CT) scans are used for cardiovascular
risk stratification. Artificial intelligence (AI) can assist in CAC quantification and potentially reduce the time required for human
analysis. This study aimed to develop and evaluate a fully automated model that identifies and quantifies CAC.
Methods Fully convolutional neural networks for automated CAC scoring were developed and trained on 2439 cardiac CT scans
and validated using 771 scans. Themodel was tested on an independent set of 1849 cardiac CT scans. Agatston CAC scores were
further categorised into five risk categories (0, 1–10, 11–100, 101–400, and > 400). Automated scores were compared to the
manual reference standard (level 3 expert readers).
Results Of 1849 scans used for model testing (mean age 55.7 ± 10.5 years, 49%males), the automated model detected the presence
of CAC in 867 (47%) scans compared with 815 (44%) by human readers (p = 0.09). CAC scores from the model correlated very
strongly with the manual score (Spearman’s r = 0.90, 95% confidence interval [CI] 0.89–0.91, p < 0.001 and intraclass correlation
coefficient = 0.98, 95%CI 0.98–0.99, p < 0.001). The model classified 1646 (89%) into the same risk category as human observers.
The Bland–Altman analysis demonstrated little difference (1.69, 95% limits of agreement: −41.22, 44.60) and there was almost
excellent agreement (Cohen’s κ = 0.90, 95% CI 0.88–0.91, p < 0.001). Model analysis time was 13.1 ± 3.2 s/scan.
Conclusions This artificial intelligence–based fully automated CAC scoring model shows high accuracy and low analysis times.
Its potential to optimise clinical workflow efficiency and patient outcomes requires evaluation.
Key Points
• Coronary artery calcium (CAC) scores are traditionally assessed using cardiac computed tomography and require manual
input by human operators to identify calcified lesions.

• A novel artificial intelligence (AI)–based model for fully automated CAC scoring was developed and tested on an independent
dataset of computed tomography scans, showing very high levels of correlation and agreement with manual measurements as a
reference standard.

• AI has the potential to assist in the identification and quantification of CAC, thereby reducing the time required for human
analysis.
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Abbreviations
AI Artificial intelligence
CAC Coronary artery calcium
CAD Coronary artery disease
CCTA Co rona r y compu t ed t omog r aphy

angiography
CNN Convolutional neural network
CT Computed tomography
HU Hounsfield units
ICC Intraclass correlation coefficient

Introduction

Coronary artery disease (CAD) is a leading cause of death and
disability worldwide, which imposes a substantial burden on
healthcare expenditure [1]. Early identification of asymp-
tomatic individuals at high cardiovascular risk is important
for optimising the use of preventive pharmacotherapies,
such as statins. The coronary artery calcium (CAC) score
is a surrogate measure of atherosclerotic plaque burden
within the coronary arteries that has been shown to predict
CAD events [2, 3]. CAC is traditionally assessed non-
invasively using electrocardiogram-gated computed to-
mography (CT) imaging of the heart, without the need for
intravenous contrast [3]. Uptake in clinical practice is likely
to increase, as guidelines now recommend CAC scoring for
reclassifying cardiovascular risk in intermediate or border-
line risk individuals, which thereby assists in decision-
making around preventive therapies [4–6].

CAC is currently assessed manually by radiographers using
CT image axial slices and then quantified using commercially
available semi-automatic software. The radiographer must se-
lect high-density voxels, defined as > 130 Hounsfield units
(HU), which are identified semi-automatically and then seg-
mented according to their location in the coronary arteries.[3]
Importantly, the radiographer must inspect the location of
high-density voxels to exclude non-coronary calcification.
CAC is usually quantified using the Agatston method, which
considers calcified plaque area and maximal density of indi-
vidual calcified lesions, but not location and distributional
pattern [7, 8]. The Agatston score can be categorised into
cardiovascular risk categories based on the score: 0 (no
CAC), 1–10 (minimal CAC), 11–100 (mild CAC), 101–400
(moderate CAC), and > 400 (severe CAC) [3, 9]. CAC scor-
ing, albeit straightforward, adds to costs and can be time-
consuming and impractical for large-scale studies.

Automated models for CAC assessment using cardiac CT
have been reported, including rule-based, machine learning,

and deep learning approaches [10–20]. A challenge for fully
automated scoring methods is the ability to discriminate be-
tween true CAC and calcification in surrounding structures,
such as that of the mitral annulus, heart valves, and the aorta.
Despite promising results, these automated methods have not
yet been adopted into routine clinical practice as more evi-
dence is necessary and generalisability needs to be demon-
strated. Fully automated identification and quantification of
CAC that requires very little or no human analysis can poten-
tially decrease the workload of human operators, be more
time-efficient, reduce costs, and play a role in large-scale
screening strategies or epidemiological studies [21–23]. This
study aims to develop and evaluate a novel artificial intelli-
gence (AI)–based fully automated model that identifies and
quantifies CAC using cardiac CT.

Material and methods

All CT scans used for training, validation, and testing of the
automated CAC scoring model (DeepC Architecture, Salix,
Artrya Ltd.) were retrospectively obtained. This study was
approved by the local research ethics committee (Bellberry
Human Research Ethics Committee: 2020-06-533) and was
conducted in accordance with the Declaration of Helsinki.

Model development

A three-dimensional (3D) fully convolutional neural network
(CNN) was developed to classify high-density voxels (defined
as >130 HU) in the non-contrast CT volume as shown in Fig.
1. This custom CNN is a 13-layer model consisting of 3D
convolution layers. The CNN field of view comprises an area
of 33 mm in the z direction and 60.5 mm in the axial plane,
which provides the spatial context the CNN uses to predict the
classification of lesions identified. A separate U-NET-based
CNNwas developed to identify the ascending and descending
aorta from the CT axial slices. The output of the aortic seg-
mentation was used as an additional input channel to the CAC
scoring CNN. A second two-dimensional CNN, with a similar
design to the aortic segmentation model, was used to segment
the cardiac area of interest from the scan. The use of these
segmentation models was incorporated to reduce false posi-
tives by eliminating areas of the scan with non-coronary
calcifications.

A unique aspect of the model is the use of additional input
channels to the CNN to provide spatial location information
relative to a spatial reference point in the scan. As the CNN
only has access to a subset of the CT volume when
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inferencing (i.e., the field of view as described previously),
the additional spatial location data can be used to distin-
guish between similar spatial patterns occurring in different
locations of the volume. This further assists in reducing
false positives by differentiating coronary from non-
coronary calcifications. For example, calcifications of the
left anterior descending artery only occur near the anterior
interventricular groove and the CNN leverages the informa-
tion embedded in the spatial channels to incorporate this
into the analysis. An ADAMAX optimiser was used along
with a cross-entropy loss function against the categorical
vessel classes.

Validation and testing

Non-contrast prospective electrocardiogram-gated CT scan
data from individuals aged ≥ 18 years who underwent assess-
ment of CAC for investigation of CAD, where an Agatston
CAC score was reported by level 3 expert readers, was includ-
ed. Manual CAC scores were considered as ground truth.
Scans were assessed for exclusion criteria a priori by the study
investigators, and excluded scans were not included in the
analyses. Exclusion criteria included high levels of noise,
presence of multiple non-contrast series, missing data, and
scans in individuals with coronary artery stents, coronary ar-
tery bypass grafts, prosthetic heart valves, permanent cardiac
pacemakers, or other metal artefacts. In the dataset, multiple

non-contrast CT series in an individual may have been present
in cases where there was noise or acquisition issues. As such,
these scans were excluded to reduce the potential for bias. The
level of noise was determined by the signal-to-noise ratio in
the descending aorta and the number of lesions (> 130 HU).
The cut-off for excluding a scan due to noise was defined a
priori through internal analyses as a signal-to-noise ratio of 1.7
with a maximum lesion number of 9000, such that no more
than 5% of scans would be excluded.

For training and validation of the automated model, con-
secutive non-contrast-enhanced cardiac CT scans that were
performed routinely for clinical purposes were retrospectively
obtained from two separate institutions. The 3D CNN was
trained on (1) 2251 Siemens Healthcare SOMATOM Force
scans acquired from Envision Medical Imaging (Perth,
Australia), with a validation set consisting of 735 scans that
were randomly selected; and (2) 143 Philips Healthcare
Brilliance 64 and 45 Toshiba Medical Systems Aquilion
ONE scans acquired from University of Edinburgh
(Edinburgh, Scotland), with a validation set consisting of 20
Philips Healthcare and 16 Toshiba Medical Systems scans.

The aorta model was trained using data from three separate
CT scanners: Siemens Healthcare SOMATOM Force,
Toshiba Medical Systems Aquilion ONE, and Philips
Healthcare Brilliance 64. In total, 54 studies were used in
the training set with seven studies in the validation set and
12 studies in the test set, all of which were randomly selected.

Fig. 1 Architecture diagram for the automated CAC scoring algorithm.
Abbreviations: CAC coronary artery calcium, CNN convolutional neural
networks, CT computed tomography. Figure legend: As a pre-processing
step, two-dimensional (2D) convolutional neural networks (CNN) are
used to segment the ascending and descending aorta, and heart area.
The 2DCNNs process the computed tomography (CT) scan slice by slice
in the axial direction to generate a three-dimensional (3D) segmentation.
The DeepC 3D CNN combines six input channels, each representing a

3D sub-volume. Of these six input channels, two are used for the aorta
and heart segmentation, and a further three to provide spatial context
relative to the centre of the scan in the x, y, and z directions. The final
channel represents the Hounsfield unit (HU) subvolume. The extended
input channels enable the CNN to classify specific HU patterns based on
where they occur spatially in the scan. The 3D CNN then labels each
coronary artery and an Agatston CAC score is calculated
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A Dice score of 0.94 was achieved on the test set. A larger
training set was used to develop the heart model with 94
studies in the training set across the three scanners, seven
studies in the validation set, and 10 studies in the test set.
The Dice score for the heart model was 0.86.

Following this, 2000 cardiac CT scans performed for clin-
ical indications between December 2014 and May 2021 at the
University of Ottawa Heart Institute (Ottawa, Canada) were
retrospectively obtained. These CT images were acquiredwith
standardised vendor-specific sequential scanning protocols, a
tube voltage of 120 kVp and slice thickness of 2.5 mm (GE
Healthcare) or 3 mm (Siemens Healthcare). After applying
exclusion criteria, the automated CAC scoring model was
tested on this independent dataset using images from the
non-contrast series and CAC scores were computed for each
scan. The graphic processing unit used was EVGA GeForce
RTX3090 FTW3 ULTRA 24G (NVIDIA).

Statistical analysis

Statistical analyses were performed using Python (Python
Software Foundation). Data are presented as mean and stan-
dard deviation or count and percent. The total CAC score per
individual was computed using the Agatston method and was
further categorised according to the following five cardiovas-
cular risk categories based on the score: 0, 1–10, 11–100,
101–400, and > 400.[3, 9] Automated CAC scores were com-
pared to the manual and prospectively derived Agatston CAC
scores as per the scan report (manual reference standard).
Differences between proportions were compared using
Pearson’s chi-square test. Correlation and agreement between
methods were assessed using Spearman’s rank correlation co-
efficient (⍴), two-way intraclass correlation coefficient (ICC),
Bland-Altman plots with mean difference and 95% limits of
agreement, and Cohen’s linearly weighted kappa coefficient
(κ). A two-tailed p value of < 0.05 was used to define statis-
tical significance.

Results

Of the 2000 independent cardiac CT scans obtained, 151 were
excluded and the remaining 1849 (92.5%) were used for test-
ing the model as shown in Fig. 2. Of these 1849 scans, 965
(52.2%) were Siemens Healthcare Definition Flash and 884
(47.8%) were GE Healthcare Lightspeed VCT 64 slice scans.
The mean age was 55.7 ± 10.5 years and 915 (49.5%) were
males. The mean total analysis time per scan was 13.1 ± 3.2 s
for the model, with variations in time due to the number of
slices per CT scan required to analyse.

Coronary artery calcifications were reported in 815
(44.1%) individuals with the reference standard and in 867
(46.9%, p = 0.09) individuals using the automated model.

Examples of calcifications detected are shown in Fig. 3. Of
the 1034 (55.9%) individuals with a zero CAC score with
the reference standard, 92 (8.9%) had a positive score using
the automated model (Table 1) and the reasons for this are
detailed in Supplemental Table 1. Of the 815 (44.1%) indi-
viduals with a positive CAC score with the reference stan-
dard, 40 (4.9%) had a score of zero using the automated
model (reasons detailed in Supplemental Table 1). A CAC
score of > 100 Agatston units was reported in 274 (14.8%)
individuals with the reference standard, of which 256
(93.4%) had a score of > 100 using the automated model.
For CAC score > 100, the positive predictive value was
95.2% and negative predictive value was 98.9%. Of the
1575 (85.2%) individuals with a CAC score ≤ 100
Agatston units, 13 (0.8%) had a score > 100 using the au-
tomated model.

The CAC score results from the automated model corre-
lated very strongly (Spearman’s r = 0.90, 95% confidence
interval [CI] 0.89–0.91, p < 0.001; and ICC = 0.98, 95% CI
0.98–0.99, p < 0.001) with the reference standard (Fig. 4).
Bland–Altman analysis showed little difference in CAC
scores between the reference standard and those predicted
by the automated model, with a mean difference of 1.69
(95% limits of agreement: −41.22, 44.60) (Fig. 5).
Overall, the fully automated model classified 1646 individ-
uals (89.0%) into the same CAC score risk category as a
reference standard. Of the 203 individuals that were
reclassified, 171 (84.2%) were reclassified to the next risk
category. When CAC score risk categories between the two
methods were compared using Cohen’s kappa statistic
(Table 1), there was almost excellent agreement (κ = 0.90,
95% CI 0.88–0.91, p < 0.001).

Discussion

This paper presents a novel AI-based fully automated model
that was developed to identify and quantify total per-patient
CAC using non-contrast electrocardiogram-gated cardiac CT.
The model demonstrated very high levels of correlation and
agreement when compared with CAC scores obtained with
the manual reference standard. Notably, the high accuracy of
the model was maintained across the spectrum of cardiovas-
cular risk categorisation and across different scanners. In ad-
dition, the model was able to compute the CAC score quickly,
with a low analysis time per CT scan. These results lay the
foundation for the translation of AI-based CAC scoring tech-
niques in clinical practice.

The number of studies evaluating automated CAC scoring
models is limited and comparison of studies is difficult due to
differences in study design, methods, and CT datasets used.
The present study is an extension of other similar studies with
results that are in line with that of other cardiac CT studies
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evaluating automated methods, with high correlation and kap-
pa coefficients of approximately 0.90 when compared to a
human reference standard [12, 15, 16, 18–20]. Automated
CAC scoring has also been the subject of notable publications
over the past two years, including another multi-centre and
multi-vendor study by Eng et al which included non-
electrocardiogram gated CT scans [21, 23, 24]. AI models
can also have a role in identifying and quantifying CAC in
low-dose non-electrocardiogram-gated CT scans that include
the heart, but which are performed for non-cardiac reasons
such as lung cancer screening, thereby allowing opportunistic
cardiovascular risk assessment [15, 16, 23–25]. However, giv-
en the reduced fidelity of non-gated chest CT, automated CAC
score accuracies remain low (kappa coefficient in the range of
0.6 to 0.7) [20, 25].

A major challenge for automated CAC scoring methods is
the ability to discriminate between true CAC and non-
coronary calcification or noise without the need for human

input. Some automated algorithms reported in the literature
have relied on information from coronary computed tomogra-
phy angiography (CCTA) slices to better define coronary ar-
tery anatomy, and therefore improve this discrimination [13,
26, 27]. However, CT images for quantifying CAC are not
always acquired in conjunction with CCTA, which requires
intravenous contrast. The focus of the present study is to
achieve fast and accurate results exclusively on non-contrast
electrocardiogram-gated cardiac CT scans. With this in mind,
the present study developed anAI-basedmodel using multiple
CNNs designed to integrate 3D spatial location information,
such that the position of the coronary arteries and aorta can be
estimated, and lesions can be segmented without the need for
contrast. The incorporation of a separate aortic segmentation
model and a cardiac segmentation model may also help to
reduce false positives by differentiating coronary from non-
coronary calcifications. The model was also able to compute a
CAC score in the order of seconds, which is substantially

Fig. 2 Study cohort of patients
included for testing of automated
CAC scoring algorithm.
Abbreviation: CAC coronary
artery calcium, CT computed
tomography

Table 1 Confusion matrix showing agreement between CAC scores derived by the manual reference standard and the automated model, based on
Agatston score risk categories

Coronary artery calcium score Predicted score using automated model Total

0 1–10 11–100 101–400 > 400

Reference standard 0 942 71 18 3 0 1034

1–10 30 114 7 0 0 151

11–100 10 34 336 9 1 390

101–400 0 0 18 217 0 235

> 400 0 0 0 2 37 39

Total 982 219 379 231 38 1849

Bolded entries represent agreement in classification

Cohen’s kappa coefficient (κ) = 0.90, 95% CI 0.88–0.91, p < 0.001

Abbreviation: CAC coronary artery calcium, CI confidence interval
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faster than manual methods and is an important prerequisite
for implementing AI software [15, 17, 18, 20].

Another difference in the present study design is the use of
five categories for the CAC score [3, 9]. Some studies using
cardiac CT have assessed the ability of automated models to
differentiate individuals into three or four CAC score risk
categories [10, 19, 21, 26]. The inclusion of categories for

CAC scores of 1–10 and 11–100 rather than one category
for 1–100 assesses the added ability to identify individuals
with minimal coronary artery plaque. Furthermore, individ-
uals with a CAC score of zero have a very low 10-year car-
diovascular risk and identifying these individuals can reduce
the use of unnecessary preventative pharmacotherapies. [9]
The automated model classified 9% of individuals with a

Fig. 3 Example cases of
calcifications detected.
Figure legend: Successful
detection of coronary artery
calcification is seen in the (A) left
main coronary artery, (B) left
anterior descending coronary
artery, (C) left circumflex
coronary artery, and (D) right
coronary artery. Successful
detection of calcification that
would not contribute to the
calcium score is seen in the (E)
aortic root and
(F) mitral annulus.

Fig. 4 Scatter plot showing the
correlation between CAC scores
derived from the manual
reference standard and the
automated model. Spearman’s
rank correlation coefficient
(r) = 0.90, 95% CI 0.89–0.91,
p < 0.001. Abbreviation: CAC
coronary artery calcium, CI
confidence interval
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reported CAC score of zero as having a positive score, and the
reasons for this included detection of non-coronary calcifica-
tion, noise, ground truth in question, and artefacts. On the
other hand, only 5% of individuals with a reported positive
CAC score were classified as having a score of zero using the
automatedmodel for similar reasons as above. Similar reasons
have also been noted in previous AI studies in CAC scoring,
thus highlighting an ongoing challenge [12, 28]. The majority of
miscategorisation was between the 0 and 1–10 CAC score cate-
gories. From a clinical perspective, there are currently no recom-
mendations for the use of a CAC score between 1 and 10
Agatston units to guide decision-making around preventive phar-
macotherapies and thus the clinical impact of miscategorisation
at this very low range of CAC score is reduced.

Although the CAC score is a continuous variable, guide-
lines recommend a CAC score of ≥ 100 Agatston units as a
threshold for initiating statins [4–6]. The automated model
accurately identified a CAC score >100 Agatston units in
95% of individuals comparedwithmanual human assessment.
On the other hand, < 1% of individuals with a CAC score ≤
100 Agatston units had a score > 100 using the automated
model. Although the model achieved respectable diagnostic

performance, visual feedback can be provided to display re-
gions contributing to the score and allow human operators to
make modifications if required. Although not utilised in the
present study, ambiguity detectors can be embedded to
prompt feedback by human operators in cases of lesion uncer-
tainty, which can resolve false positive or negative results and
thus minimise the misclassification of CAC score categories
[10, 12].

The use of AI in cardiovascular imaging has developed
rapidly over the past decade [22, 23]. Fully automated models
can minimise the physical and repetitive task of performing
CAC identification, quantitation, and segmentation by reduc-
ing the need for human analysis. Re-direction of the human
operator’s role to other tasks instead can further reduce costs
associated with CAC scoring, thus making it more widely
available. This is important as demand for CAC scoring is
likely to increase substantially in the future due to guidelines
now recommending its use as an additional non-invasive tool
for cardiovascular risk-stratification [4–6]. Furthermore, auto-
mated models can be applied to large populations for screen-
ing or research purposes due to their ability to quantify CAC
in seconds and because AI can potentially overcome

Fig. 5 Bland-Altman plot
showing agreement between the
manual reference standard and
automated model for CAC
scoring. Mean difference = 1.69,
95% limits of agreement: −41.22
and 44.60. Abbreviation: CAC
coronary artery calcium
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measurement errors by human observers due to its high re-
peatability [21, 23]. Once fully validated, AI models for CAC
scoring could also be used to train physicians in interpreting
and reporting CAC scores.

The large number of CT scans used for training, validation,
and testing of the automated CAC scoring model is a key
strength of the present study. In addition, CT images in the
dataset were acquired from several different scanners,
reflecting the variability of real-world practice. Although CT
scanners made by different vendors might produce different
CAC scores, testing the automated model on a variety of CT
images from different vendors or scanner types improves its
applicability and generalisability to different practices [29]. A
limitation of this study is that over half of the scans in the
testing dataset had a zero CAC score. Although this is consis-
tent with other studies and reflects the clinical practice and
real-world populations, such a dataset would result in some
cases where the model incorrectly reports a positive CAC
score (particularly in the 1–10 CAC score category) [17].
Thus, the reported results could have been even better if not
for this limitation. The accuracy of the model may therefore be
reduced at very low levels of CAC and future iterations of the
model will seek to refine this aspect. Furthermore, the model
was not developed to quantify CAC per individual coronary
artery, which may improve cardiovascular risk-stratification,
but is not yet routinely performed for this purpose [8]. Scans
with metal artefacts and high levels of noise were excluded as
this can influence the CAC score, thus limiting the applicabil-
ity of the automated model to such cases.

In conclusion, the presented fully automated AI-based
CAC scoring model for cardiac CT is novel and rapid and
shows high accuracy when compared to current manual
CAC scoring methods. Future studies should evaluate its po-
tential impact on clinical practice and workflow for cardiac
CT reporting clinicians, as well as evaluate the association
between automated CAC scores and patient outcomes.
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