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Alzheimer resemblance atrophy index, BrainAGE, and normal
pressure hydrocephalus score in the prediction of subtle cognitive
decline: added value compared to existing MR imaging markers
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Abstract
Objectives Established visual brain MRI markers for dementia include hippocampal atrophy (mesio-temporal atrophy MTA),
white matter lesions (Fazekas score), and number of cerebral microbleeds (CMBs). We assessed whether novel quantitative,
artificial intelligence (AI)–based volumetric scores provide additional value in predicting subsequent cognitive decline in elderly
controls.
Methods A prospective study including 80 individuals (46 females, mean age 73.4 ± 3.5 years). 3TMR imaging was performed
at baseline. Extensive neuropsychological assessment was performed at baseline and at 4.5-year follow-up. AI-based volumetric
scores were derived from 3DT1: Alzheimer Disease Resemblance Atrophy Index (AD-RAI), Brain Age Gap Estimate
(BrainAGE), and normal pressure hydrocephalus (NPH) index. Analyses included regression models between cognitive scores
and imaging markers.
Results AD-RAI score at baseline was associated with Corsi (visuospatial memory) decline (10.6% of cognitive variability in
multiple regression models). After inclusion of MTA, CMB, and Fazekas scores simultaneously, the AD-RAI score remained as
the sole valid predictor of the cognitive outcome explaining 16.7% of its variability. Its percentage reached 21.4% when amyloid
positivity was considered an additional explanatory factor. BrainAGE score was associated with Trail Making B (executive
functions) decrease (8.5% of cognitive variability). Among the conventional MRI markers, only the Fazekas score at baseline
was positively related to the cognitive outcome (8.7% of cognitive variability). The addition of the BrainAGE score as an
independent variable significantly increased the percentage of cognitive variability explained by the regression model (from
8.7 to 14%). The addition of amyloid positivity led to a further increase in this percentage reaching 21.8%.
Conclusions The AI-based AD-RAI index and BrainAGE scores have limited but significant added value in predicting the
subsequent cognitive decline in elderly controls when compared to the established visual MRI markers of brain aging, notably
MTA, Fazekas score, and number of CMBs.

* Sven Haller
Sven.haller@me.com

1 Department of Psychiatry, University of Geneva,
Geneva, Switzerland

2 Medical Direction, University of Geneva Hospitals,
Geneva, Switzerland

3 Department of Rehabilitation and Geriatrics, Geneva University
Hospitals and University of Geneva, Geneva, Switzerland

4 Department of Diagnostic and Interventional Neuroradiology,
Klinikum rechts der Isar, School ofMedicine, Technical University of
Munich, Munich, Germany

5 Departments of Psychiatry and Neurology, Jena University Hospital,
Jena, Germany

6 Medical Physics, Department of Radiology, Medical Physics,
Medical Center – University of Freiburg, Faculty of Medicine,
University of Freiburg, Freiburg, Germany

7 CIMC - Centre d’Imagerie Médicale de Cornavin,
Geneva, Switzerland

8 Department of Surgical Sciences, Radiology, Uppsala University,
Uppsala, Sweden

9 Faculty of Medicine of the University of Geneva,
Geneva, Switzerland

10 Department of Radiology, Beijing Tiantan Hospital, Capital Medical
University, Beijing, China

European Radiology (2022) 32:7833–7842
https://doi.org/10.1007/s00330-022-08798-0

http://crossmark.crossref.org/dialog/?doi=10.1007/s00330-022-08798-0&domain=pdf
http://orcid.org/0000-0001-7433-0203
mailto:Sven.haller@me.com


Key Points
• AD-RAI score at baseline was associated with Corsi score (visuospatial memory) decline.
• BrainAGE score was associated with Trail Making B (executive functions) decrease.
• AD-RAI index and BrainAGE scores have limited but significant added value in predicting the subsequent cognitive decline in
elderly controls when compared to the established visual MRI markers of brain aging, notably MTA, Fazekas score, and
number of CMBs.
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Abbreviations
AD Alzheimer disease
ADRAI Alzheimer Resemblance Atrophy Index
AI Artificial intelligence
BrainAGE Brain Age Gap Estimate
CSF Cerebrospinal fluid
FLAIR Fluid attenuated inversion recovery
MR Magnetic resonance
MTA Mesio-temporal atrophy
NPH Normal pressure hydrocephalus
WML White matter lesions

Introduction

Using magnetic resonance (MR) neuroimaging to predict sub-
sequent cognitive decline is a main issue in Alzheimer’s dis-
ease (AD) research. Several neuroimaging markers have been
proposed in clinical routine, including hippocampal atrophy
assessed using the semiquantitative visual reading mesio-
temporal atrophy (MTA) score [1], T2w hyperintense white
matter lesions (WML) using the Fazekas score [2], and num-
ber of cortical microbleeds (CMB) in community- and
hospital-based cohorts. MTL atrophy allowed for identifying
patients at high risk for Alzheimer type dementia among those
with minor cognitive impairment (for review, see [3]). In the
same line, longitudinal studies suggested a negative effect of
WMH presence and progression on general intelligence, at-
tention, and executive functions in non-demented elders
[4–6]. Three population-based studies (Rotterdam [7],
Framingham Heart [8], and AGES-Reyjkavik [9]) also sup-
ported the deleterious effect of CMB on cognition in non-
demented elders.

While the diagnostic performance of these classic MR
markers is well-established in patients with already pres-
ent cognitive decline, their value in predicting subtle
cognitive decline in healthy elderly individuals remains
a matter of debate [10]. MTA, cortical microbleeds, and
WML have all been thought to impact cognitive perfor-
mance at the pre-mild cognitive impairment (MCI) state
[11–16]. However, negative or ambiguous data were also
frequently reported [17–19]. This raises the question of
whether more recently proposed artificial intelligence

(AI) MR imaging markers might have an added value
in predicting subsequent cognitive decline in healthy el-
derly controls. The Alzheimer Disease Resemblance
Atrophy Index (AD-RAI) is an AI-based metric derived
from 3DT1 volumetric brain MRI [20–23]. In the mean-
time, the concept has also been adopted by commercial
vendors. This operator-independent AD-RAI encapsu-
lates hippocampal atrophy as well as atrophy of the es-
tablished AD signature regions [24]. In a totally different
perspective, the Brain Age Gap Estimate (BrainAGE)
score is based on a machine learning regression task
and has been proposed to capture global deviations from
normal brain aging [25–27]. In a first step, associations
between brain MRI and patient age are learned by an
algorithm and then applied to new individuals in order
to predict their age based on his or her brain MRI (usu-
ally 3D T1-weighted scans serve as input). Contrasting
predicted and chronological brain age can either result in
expected (predicted age ~ chronological age), advanced
(predicted age > chronological age), or delayed (predict-
ed age < chronological age) brain aging [25]. Both pa-
rameters are defined based on structural brain MRI atro-
phy patterns. The normal pressure hydrocephalus NPH
index is another AI calculated marker derived from vol-
umetric 3D T1 images, which indicates the degree of an
NPH configuration in elderly cohorts [28]. Definite full
(NPH) fulfilling diagnostic and clinical criteria remains
rare in cognitively preserved elderly individuals. In the
context of healthy elderly individuals, we consider NPH
configuration as a spectrum, rather than a binary vari-
able. Some participants may display beginning imaging
features of NPH configuration, without fulfilling the clin-
ical diagnosis of NPH. Considering currently emerging
theories, impairment of CSF flow (resulting in dimin-
ished clearance) may be another factor contributing to
cognitive decline, which might confound clinical and
biomarker interpretation in AD [29, 30].

The main purpose of the present study is to assess the
added value of the AI-based parameters AD-RAI,
BrainAGE, and NPH index, as compared to the established
visual imaging markers (MTA, Fazekas, and number of
CMB), in the prediction of early cognitive decline in
healthy elderly individuals. We had the opportunity to
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investigate these imaging parameters at baseline in a
community-dwelling sample of 80 cognitively intact elder-
ly individuals who were followed up longitudinally during
a 4.5-year period.

Materials and methods

Participants

The study was approved by the local ethics committee
and all participants gave written informed consent prior
to inclusion. The selection of cases among participants
of a still ongoing cohort study aiming to identify pre-
dictive biomarkers of subtle cognitive decline among
healthy elders was described in detail elsewhere [31].
Briefly, the present cohort included only healthy con-
trols with preserved cognition; no history of psychiatric,
neurological, and major medical conditions; and no reg-
ular use of psychotropic medication [16, 31–33]. All
cases were recruited via advertisements in local news-
papers and media. The cohort included elderly
Caucasian white individuals living in Geneva and
Lausanne catchment area. Due to the need for excellent
French knowledge (to participate in detailed neuropsy-
chological testing), most of the participants were Swiss
(or born in French-speaking European countries, 92%).
Substantial vascular burden as evidenced by subtle car-
diovascular symptoms, hypertension (non-treated), and a
history of stroke or transient ischemic episodes was an
additional exclusion criterion. All cases included in this
study had three neuropsychological evaluations (base-
line, 18 months, and 54 months), structural brain MRI
at baseline, APOE genotyping, and amyloid and FDG
PET at last follow-up. Our sample included 80 individ-
uals (46 females, age range 73.4 ± 3.5 years).

Neuropsychological assessment

At baseline, all individuals were evaluated with a neu-
ropsychological battery including the MMSE score as
well as one neurocognitive test for the main cognitive
functions as follows: Trail-Making test A (attention),
Trail-Making test B (executive functions), Digit Span
(working memory), Corsi (visuospatial memory), and
Shapes test (episodic memory) described in details pre-
viously [16, 31–34]. For each neuropsychological test-
ing, the final score of change between inclusion and last
follow-up was defined as the sum of the changes ob-
served at the two follow-ups as previously described.
The 0 cut-off was subsequently used to identify de-
cliners (< 0) from non-decliners (≥ 0) for the binary
classification used in the subsequent statistical analysis.

MR imaging

At baseline, imaging data were acquired on a 3-T MRI scan-
ner (TRIO SIEMENS Medical Systems). The structural high-
resolution T1-weighted anatomical scan was performed with
the following fundamental parameters: 256 × 256 matrix, 176
slices, 1 mm isotropic, TR = 2300 ms, TE 2.27 ms; axial T2w
sequences: 512 × 310 matrix, 30 slices, 4 mm thickness, TR
4000 ms, TE 105 ms; susceptibility-weighted imaging (SWI):
256 × 208 matrix, 128 slices, TR 28 ms, TE 20 ms); pulsed
ASL: 64 × 64 matrix, 20 slices, 6 mm thickness, TR 4000 ms,
TE 12 ms, inversion time 1800 ms.

Visual MR analysis

The visual analysis of brain MR images was described
in detail previously [16, 31] and was assessed by an
experienced neuroradiologist (20 years of experience).
Briefly, MTA was assessed at baseline according to
the established score [35], ranging from 0 (no atrophy)
to 4 (significant atrophy). The MTA score is a simple
and clinically established semi-quantitative scale and
was analyzed on the 3DT1 scan.

WMH load at baseline was assessed according to the es-
tablished Fazekas score [2] ranging from 0 (no white matter
lesions) to 3 (confluent white matter lesions) based on the
axial T2w scan. Like the MTA score described above, the
Fazekas score is a simple and widely used tool to assess the
severity of white matter damage in brain aging.

The number of CMB was assessed based on the SWI se-
quences. Only lesions were considered which are probable
CMB, and the corresponding phase images were also ana-
lyzed to discriminate probable CMB versus micro-
calcifications [36, 37]. At baseline, the total number of CMB
and number of CMB per location (supratentorial superficial,
supratentorial deep, and infratentorial) were evaluated.

Image pre-processing

The structural T1-images were segmented into gray matter,
white matter, and cerebrospinal fluid (CSF) using SPM12
(Welcome Trust Center for Neuroimaging, warped into the
MNI (Montreal Neurological Institute) space (using modula-
tion of gray value by the Jacobian of the warp) and smoothed
by full width-half-max 3mm filter, like what is done for usual
voxel-based morphometry analyses. The segmentation results
have been inspected visually prior to further processing, none
of the cases had to be excluded because of obvious failures.

Automatic assessment of AD-RAI

Automated assessment of the AD-RAI was performed using a
voxel-based support-vector-machine-learning approach

European Radiology (2022) 32:7833–7842 7835



(SVM). The basic principle is described in [20]. The smoothed
segmentations of gray matter and CSF are used as direct in-
puts to an SVM. In the context of this work, a customized
research version of the “VEOmorph” Software (www.
veobrain.com) was trained with data from another study (in
total 741 subjects, 445 Healthy Controls, 234 AD, 39 FTLD,
23 LB). The age distribution in the training (range 45–90
years, median value 73 +/− 8.2 years) covers the range of
the population in the present study Ground truth labelling
was based on clinical diagnoses. Fivefold cross-validation
was performed. The AD-RAI was determined as the probabil-
ity score of the SVM output as a value between 0 and 1. The
trained algorithm was applied to the current dataset without
any further adjustments.

Automatic assessment of BrainAGE

We used a modified approach to our pre-processing as de-
scribed previously [25]. T1-weighted images were pre-
processed using the CAT12 toolbox (http://www.neuro.uni-
jena.de/cat) and the SPM12 software (http://www.fil.ion.ucl.
ac.uk/spm/software/spm12), running under MATLAB (www.
mathworks.com). To train the age estimation framework, we
used MRI data of 547 healthy subjects (242 male) from the
publicly accessible IXI cohort (http://brain-development.org/
ixi-dataset/), aged 19–86 years (mean (SD) = 48.1 (16.6)
years). In brief, the BrainAGE framework utilizes relevance
vector regression (RVR) using a linear kernel and a linear
combination of pre-processed GM and WM images [38, 39].
The difference between estimated and chronological age
yields the individual brain age gap estimation (BrainAGE)
score, with positive values indicating accelerated and negative
values indicating decelerated structural brain aging. Recent
work has demonstrated that this method provides reliable
and stable estimates of BrainAGE at a mean absolute error
of 3.322 years, rendering this framework at least equal to
several recently introduced deep learning algorithms [40].

Automatic assessment of NPH score

The NPH score was calculated as described in [28]. A support
vector machine (SVM) was trained in 30 NPH patients treated
with ventriculoperitoneal shunts and 30 healthy controls, with
the smoothed segmentations of gray matter and CSF as inputs.
The output is a NPH probability score between 0 and 100%.

Amyloid PET imaging

18F-Florbetapir (Amyvid- and 18F-Flutemetamol-PET
(Vizamyl) data were acquired on 2 different tomographs
(Siemens BiographTM mCT and GE Healthcare Discovery
PET/CT 710 scanners) of varying resolution and following
different platform-specific acquisition protocols. The 18F-

Florbetapir images were acquired 50 to 70 min after injection
and the 18F-Flutemetamol images 90 to 120min after injection.
PET images were reconstructed using the parameters recom-
mended by the ADNI protocol aimed at increasing data unifor-
mity across the multicentre acquisitions. More information on
the different imaging protocols for PET acquisition can be
found on the ADNI website (http://adni.loni.usc.edu/methods/).

Visual amyloid PET analysis

The visual analysis of amyloid PET images was conducted by
an independent, board-certified specialist in nuclear medicine
(V.G.) blind to the neuropsychological data, following the
tracer-specific standardized operating procedures approved
by the European Medicinal Agency. Specifically, regional
positivity was assessed for each scan, specifying if uptake
was identified in the lateral frontal, parietal, posterior cingu-
late and precuneus, anterior cingulate, temporal lateral, and
striatal regions in either of the two hemispheres [41].

FDG PET imaging

PET/CT data acquisition was performed on a Siemens
BiographTM mCT or Vision scanner according to the guide-
lines of the European Association of Nuclear Medicine
(EANM) [64]. The PET acquisition was started approximately
30 min after injection of 200 MBq of 18F-FDG. The PET
emission study (20 min, one-bed position) was conducted
followed immediately by the CT study used for attenuation
correction. Ultra-law dose brain CT imaging was performed
under standard conditions (120 kVp, 20 mAs, 128 Å ~ 0.6
collimation, a pitch of 1 and 1 s per rotation).

Visual FDG PET analysis

FDG PET reading was performed by visual analysis of the
output of an automated voxel-wise comparison with a refer-
ence database, as recommended in guidelines [42] and previ-
ously described in detail [43]. Images were classified as nor-
mal when no significant deviations from the normal distribu-
tion were observed and pathological when significant regional
reductions in glucose metabolism were documented.

Statistical analysis

Gender-related differences in demographic, neuropsycholog-
ical, and imaging data were assessed with chi2, Mann-
Whitney u test, and unpaired t-test depending on the variable
distribution. Multiple logistic regression models (adjusted for
age, gender, and APOE4 genotype) were used to explore the
association between binary change in cognitive scores for
each neuropsychological testing (dependent variable) and
AD-RAI, BrainAGE, and NPH score respectively. To explore
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the added value of these AI MRI markers compared to a set of
already established AD imaging markers in brain aging, we
also built logistic regression models including each AI marker
and amyloid and FDG PET positivity, MTA, CMB, Fazekas
score at baseline. The added value of AI markers as compared
to conventional AD imaging markers was assessed using the
likelihood-ratio (LR) test and receiver operating characteristic
(ROC) curves, along with the Delong tests of equality of ROC
areas as implemented in Stata’s “roccomp” command. The
significance level was set at p < 0.05. All analyses were per-
formed with Stata release 17.0.

Results

Clinical and imaging MRI descriptive data

There were no significant gender-related differences in clini-
cal and imaging parameters at baseline. At follow-up, 38% of
cases remained cognitively stable or improved their perfor-
mances. Of importance, none of our cases evolved to MCI
during the follow-up period. As expected in this cohort of
healthy controls, only 26.5% of cases showed abnormal
FDG-PET patterns. Amyloid positivity was present in
23.8% of cases. In the same line, the median NPH probability
was very low at the 3.6% interquartile range (1.3–11.0%)
(Table 1).

Imaging-based prediction of neuropsychological
parameters

Corsi score

Among the neuropsychological tests used, the Corsi
score (visuospatial memory) decline was associated with
the AD-RAI score at baseline (OR: 1.07 [CI: 1.02,
1.12], p = 0.002) (Fig. 1). This single AI marker ex-
plained 14.7% of the cognitive variability in univariate
regression models. After adjustment for age, gender, and
APOE4 genotype, the percentage of cognitive variability
explained by the model reaches 21.8%, but none of the
adjusting variables are significant (supplement Table 1).
This AD-RAI score was not related to the Corsi score
change over time. Importantly, when amyloid positivity,
FDG-PET positivity, MTA, CMB, and Fazekas score
were included in the regression models, the AD-RAI
score remained the sole valid predictor of the cognitive
outcome. The addition of the AD-RAI score led to a
significant increase in the percentage of cognitive vari-
ability explained by the regression model (from 3.4 to
16.7%, likelihood ratio, p = 0.0003) (Table 2). Of im-
portance, amyloid positivity was marginally significant
(p = 0.060) but its addition improved significantly the
percentage of cognitive variability explained by the
model reaching 21.4% (likelihood ratio, p = 0.0335).

Table 1 Gender-related
distribution of clinical and
imaging variables at baseline

Female Male Total p value

N 46 34 80

Age at baseline 73.6 ± 3.8 73.1 ± 3.2 73.4 ± 3.5 0.655

MMSE at baseline 28.6 ± 1.1 28.8 ± 1.0 28.7 ± 1.1 0.205

ApoE4 9 (19.6%) 6 (17.7%) 15 (18.8%) 0.828

Digit Span (lower = worse) 36 (75.0%) 24 (75.0%) 60 (75.0%) 1.000

Shapes test (lower = worse) 31 (85.4%) 41 (96.9%) 72 (90.0%) 0.135

Corsi score (lower = worse) 14 (30.4%) 10 (29.4%) 24 (30.0%) 0.668

Trail A time (higher = worse) 12 (25.0%) 10 (31.3%) 22 (27.5%) 0.613

Trail B time (higher = worse) 13 (28.3%) 6 (17.6%) 19 (23.8%) 0.821

FDG PET abnormal 13 (28.3%) 8 (23.5%) 21 (26.3%) 1.000

Amyloid positivity 12 (26.1%) 7 (20.6%) 19 (23.8%) 0.607

Right mesial temporal lobe atrophy 35 (76.1%) 24 (70.6%) 59 (73.8%) 0.806

Fazekas score 0.787

0 18 (39.1%) 16 (47.1%) 34 (42.5%)

1 20 (43.5%) 12 (35.3%) 32 (40.0%)

2/3 8 (17.4%) 6 (17.6%) 14 (17.5%)

Number of CMBs 0.176

0 23 (50.0%) 24 (70.6%) 47 (58.8%)

1 10 (21.7%) 6 (17.6%) 16 (20.0%)

2–3 11 (23.9%) 3 (8.8%) 14 (17.5%)

4–6 2 (4.3%) 1 (2.9%) 3 (3.8%)
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Trail Making B score

BrainAGE score at baseline was associated with Trail Making
B (executive functions) score worsening upon follow-up (OR:
1.28 [CI: 1.06, 1.56], p = 0.013) (Fig. 2). This single AI mark-
er explained 8.3% of the cognitive variability in univariate
regression models. After adjustment for age, gender, and
APOE4 genotype, the percentage of cognitive variability ex-
plained by the model reaches 13.8%, but none of the adjusting
variables is significant (supplement Table 2).

As for the Corsi score, the APOE4 genotype was not
related to the cognitive outcome. Among the conventional
MRI markers, only the Fazekas score at baseline was pos-
itively related to the cognitive outcome (OR: 2.38 [CI:

1.14, 4.97, p < 0.05]) explaining 8.7% of the cognitive
variability. The addition of the BrainAGE score led to a
significant increase in the percentage of cognitive variabil-
ity explained by the regression model (from 8.7 to 14.0%,
likelihood ratio p = 0.0311; Table 3). When amyloid and
FDG positivity were added to the regression model, only
the first was strongly associated with Trail Making B wors-
ening. The addition of amyloid positivity improved signif-
icantly the percentage of cognitive variability explained by
the model reaching 21.8% (likelihood ratio, p = 0.0089). In
this global model, the Fazekas score becomes marginally
significant (p = 0.058).

There were no other statistically significant associations
between these AI markers at baseline and cognitive parame-
ters in the present study. In particular, neither AD-index nor
BrainAGE scores were related to MMSE score decrement
(global cognition). In addition, the NPH score at baseline
was not associated with cognitive changes upon follow-up
in this cohort of elderly controls.

ROC curve analyses

For Corsi score, the areas under the ROC were of 0.604 (95%
CI: 0.467–0.741) (conventional MRI variables), 0.660 (95%
CI: 0.514–0.806) (AD-RAI score), and 0.735 (95% CI:
0.613–0.858) (conventional MRI variables and AD-RAI

Fig. 1 Area under the ROC
curves for Corsi score. Model 1
(open square): AD-RAI [0.660
(95% CI: 0.514–0.806)]; Model 2
(open circle): conventional MRI
variables [0.604 (95% CI: 0.467–
0.741)]; Model 3 (open triangle):
All MRI variables without amy-
loid positivity [0.735 (95% CI:
0.613–0.858)]; Model 4 (filled
circle): All MRI variables and
amyloid positivity [0.793 (95%
CI: 0.688–0.898)]. See text for
details

Table 2 Multiple logistic regression analysis with Corsi score as the
dependent variable and imaging parameters as independent predictors.
Note that only AD-RAI is significantly related to the cognitive outcome

OR adjusted 95% CI p value

Amyloid positivity 0.20 [0.04, 1.07] 0.060

AD-RAI [%] 1.08 [1.03, 1.13] 0.002

Fazekas 1.40 [0.68, 2.89] 0.358

MTA 2.44 [0.59, 10.13] 0.220

Number of CMBs 0.98 [0.58, 1.66] 0.943
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score). When adding amyloid positivity in the last model, the
area under the ROC was 0.793 (95% CI: 0.688–0.898). There
was a statistically significant difference between the areas un-
der the ROC curves (p < 0.0001). The combination of all MRI
markers plus amyloid positivity performed significantly
higher compared to conventional MRI variables according to
both the LR test (LR p = 0.0002) and the ROC curve compar-
ison (p = 0.0053). The same combination performed signifi-
cantly higher compared to the AD-RAI score alone according
to the ROC curve comparison (p = 0.0279)., but not with the
LR test (LR p = 0.1625).

For Trail Making B score, the areas under the ROCwere of
0.609 (95% CI: 0.468–0.749) (for conventional MRI

variables), 0.666 (BrainAge alone) (95% CI: 0.544–0.788),
and 0.664 (95% CI: 0.534–0.793) (conventional MRI vari-
ables and BrainAge). When adding amyloid positivity in the
last model, the area under the ROC was 0.574 (95% CI:
0.444–0.704). There was a statistically significant difference
among the areas under the ROC curves (p = 0.0317).

BrainAge alone and the combination of conventional MRI
variables and BrainAge performed better than chance with an
area under the ROC that differed significantly from the non-
discriminant area of 0.5.

Adding the combination of conventional MRI variables to
BrainAge alone did not improve the discriminating power of
the latter according to both the LR test (LR p = 0.1675) and the
ROC curve comparison (p = 0.9652).

Discussion

The present data reveal that two among the newly proposed
AI MRI markers have a limited but still significant added
value in predicting the cognitive trajectory in elderly controls.
Although they are not related to global measures of cognition
such as the MMSE score, AD-RAI index, and BrainAGE
score are associated with the decrement of visuospatial and
executive function measures in cognitively preserved elders.
Of importance, both markers have a significant added value

Table 3 Multiple logistic regression analysis with Trail Making B score
as a dependent variable and imaging parameters as independent
predictors. Note that amyloid positivity, BrainAge, and Fazekas scores
were significantly related to the cognitive outcome

OR adjusted 95% CI p value

Amyloid positivity 5.23 [1.47, 18.59] 0.011

BrainAGE 1.30 [1.03, 1.63] 0.027

Fazekas 2.24 [0.97, 5.15] 0.058

MTA 1.60 [0.34, 7.46] 0.548

Number of CMBs 0.80 [0.41, 1.54] 0.498

Fig. 2 Areas under the ROC
curves for Trail Making B score.
Model 1 (open square):
BrainAGE alone; Model 2 (open
circle): MRI variables without
BrainAGE and Amyloid
positivity; Model 3 (open
triangle): MRI variables without
amyloid positivity; Model 4
(filled circle): All variables.
Model 3 has an AUC which is
significantly different from 0.5
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when compared to widely used MRI markers of brain aging
such as the Fazekas score,MTA, and number of CMB. For the
NPH-score, no significant association with neuropsychologi-
cal performances in old age was found.

Three recent studies explored the relevance of AD-RAI as a
diagnostic marker for AD [23], for predicting the MCI con-
version to AD [44], and for the detection of preclinical and
prodromal AD [45]. In a series of 50 AD patients and 50
controls, the AD-RAI use led to a diagnostic accuracy of
0.91 outperforming the volume of any single brain structure
measured [23]. An AD-RAI cut-off of 0.5 had a better perfor-
mance to differentiate MCI converters from non-converters
[44]. Moreover, this parameter achieved the best metrics
(compared to conventional MRI markers) in detecting elderly
controls positive for amyloid and tau (A+T+) [45]. Our results
go beyond these observations by showing that AD-RAI is an
independent predictor of visuospatial memory decline in the
present cohort. MTA, Fazekas score, and CMB were all un-
able to predict such subtle changes in cognitive performances
in these elderly controls. Both likelihood-ratio test and receiv-
er operating characteristic (ROC) curves demonstrated that the
addition of AD-RAI significantly increases the ability to pre-
dict the decline of visuospatial memory. Of importance, even
in these cases with low amyloid burden, the combination of
amyloid positivity and MRI markers including AD-RAI pro-
vides the best performance in predicting the cognitive
outcome.

In the last decade, BrainAGE was established as an image-
based biomarker to capture the general aging processes of the
brain [40]. It was shown to be altered in various neuropsychi-
atric conditions, most prominently in age-associated disorders
such as Alzheimer’s disease (AD) [27]. Moreover, BrainAGE
was able to predict the risk of incident dementia in a cohort
with mild cognitive impairment [46] and in the general popu-
lation [47]. In this latter study, the incidence of dementia was
related to the prediction of brain age based on MRI-derived
gray matter in 3688 dementia-free cases from the Rotterdam
study. This association persisted in logistic regression models
adjusted for white matter hyperintensities and hippocampal
volume. Our data are less impressive since the BrainAGE
score was not related to the evolution of global cognition upon
4.5-year follow-up. However, and unlike conventional MRI
markers, BrainAGE was an independent predictor of declin-
ing performance in executive functions (Trail Making Test B).
This imaging parameter was an independent predictor of ex-
ecutive function performance decrease after adjusting for
Fazekas score, CMB, andMTA at baseline. In particular, like-
lihood ratio test revealed that the addition of Brain Age scores
significantly improves the percentage of cognitive variability
explained by the regression models. This was also the case for
amyloid positivity. However, only the model that included all
conventional MRI markers and Brain Age was statistically
significant in terms of area under the ROC indicating that

the contribution of BrainAge as a single imaging marker in
the prediction of executive function decline in our cohort re-
mains modest.

Several reasons may explain the discrepancy between the
present data and the recent observations by Wang et al [47].
First, none of our cases evolved to MCI during the follow-up
period pointing to the presence of cognitive resilience in our
sample without significant vascular burden. The cognitive out-
come was defined as the binary change (decrement versus im-
provement or stability) in neuropsychological scores without
reference to incident dementia. Furthermore, since the
BrainAGE score used in our study—like most other
approaches—is based on T1-weighted imaging data only, it
can be assumed that age-related changes are predominantly
found in other sequences (such as white matter lesions as
assessed on FLAIR imaging) might be neglected. In addition,
BrainAGE is also influenced substantially by parameters such
as lifestyle factors (e.g. smoking [48]), genotypic variations
(e.g. APOE status) [46], or early neurodevelopmental influ-
ences such as preterm birth [49] that cannot be taken into ac-
count given the limited sample of this study. Despite these
differences, the present findings imply that the BrainAGE score
remains a useful predictor of longitudinal changes in executive
functions during the very early stages of the aging process.

Recent studies suggest that imaging markers of NPH,
which imply cerebrospinal fluid disorders, might be an inde-
pendent imaging markers of non-AD pathophysiology [29].
The NPH index is an operator-independent imaging marker of
possible cerebrospinal fluid disorder that has been proposed as
a possible candidate for the prediction of cognitively asymp-
tomatic cases at risk for AD [28]. In our cohort, we could not
demonstrate significant associations between NPH index at
baseline and both global cognition and neuropsychological
test changes—taking into account as a limitation that NPH
index values were very low in our cohort. The NPH index
might provide more valuable results in other cohorts with a
higher proportion of cases with elevated NPH index.

Among the strengths of the present study, one should note
the detailed cognitive analysis and use of multivariable models
that allow for defining the added value of the newly proposed
AI imaging parameters compared to traditional imaging
markers of brain aging. Several limitations should be consid-
ered. The small sample size limits the number of imaging pre-
dictors that can be simultaneously included in regression
models, we excluded all of the cases with significant vascular
burden in order to focus on the AD trajectory in brain aging.
Thus, our cases are not representative of the whole spectrum of
brain aging. Despite their recruitment in the community, they
display no or very mild vascular pathology and a relatively high
level of education. The assessment of white matter lesions was
made using T2w sequences and not the traditional FLAIR im-
ages. However, it is quite rare that e.g. Fazekas 1 in FLAIR is
considered Fazekas 2 in T2w (or the inverse) by a well-trained
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radiologist. Most importantly, the low occurrence of amyloid
positivity and brain hypometabolism in this sample indicated
that the number of incipient AD cases may be lower than ex-
pected in a community-based sample of elderly persons. It is
thus likely that the added value of AI measures may increase
when cases with a higher amyloid burden are considered. Based
on our observations, future studies in mixed samples are clearly
warranted to define the relevance of the AI-MRI measures in
the field of brain aging and AD.

The AI-based AD-RAI index and BrainAGE scores have
limited but significant added value in predicting the subse-
quent cognitive decline in elderly controls when compared
to the established visual MRI markers of brain aging, notably
MTA, Fazekas score, and number of CMBs.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00330-022-08798-0.
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