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Abstract
Objective There has been a large amount of research in the field of artificial intelligence (AI) as applied to clinical radiology.
However, these studies vary in design and quality and systematic reviews of the entire field are lacking.This systematic review
aimed to identify all papers that used deep learning in radiology to survey the literature and to evaluate their methods. We aimed
to identify the key questions being addressed in the literature and to identify the most effective methods employed.
Methods We followed the PRISMA guidelines and performed a systematic review of studies of AI in radiology published from
2015 to 2019. Our published protocol was prospectively registered.
Results Our search yielded 11,083 results. Seven hundred sixty-seven full texts were reviewed, and 535 articles were included.
Ninety-eight percent were retrospective cohort studies. The median number of patients included was 460. Most studies involved
MRI (37%). Neuroradiology was the most common subspecialty. Eighty-eight percent used supervised learning. The majority of
studies undertook a segmentation task (39%). Performance comparison was with a state-of-the-art model in 37%. The most used
established architecture was UNet (14%). The median performance for the most utilised evaluation metrics was Dice of 0.89
(range .49–.99), AUC of 0.903 (range 1.00–0.61) and Accuracy of 89.4 (range 70.2–100). Of the 77 studies that externally
validated their results and allowed for direct comparison, performance on average decreased by 6% at external validation (range
increase of 4% to decrease 44%).
Conclusion This systematic review has surveyed the major advances in AI as applied to clinical radiology.
Key Points
•While there are many papers reporting expert-level results by using deep learning in radiology, most apply only a narrow range
of techniques to a narrow selection of use cases.

• The literature is dominated by retrospective cohort studies with limited external validation with high potential for bias.
• The recent advent of AI extensions to systematic reporting guidelines and prospective trial registration along with a focus on
external validation and explanations show potential for translation of the hype surrounding AI from code to clinic.
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Abbreviations
AI Artificial Intelligence
ANN Artificial Neural Network
CONSORT Consolidated Standards of Reporting Trials

CT Computed tomography
CV Computer vision
DL Deep Learning
MRI Magnetic resonance imaging
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PRISMA Preferred Reporting Items for Systematic
Reviews and Meta-Analyses

PROSPERO Prospective Register of Systematic Reviews
RAISE Radiology Artificial Intelligence Systematic

Evaluation of methods
RSNA Radiological Society of North America
US Ultrasound

Introduction

Artificial intelligence (AI) applications in radiology are
gaining more and more attention. Recently, the performance
of deep learning (DL) on computer vision (CV) tasks has
revolutionised the field. Specifically, since the increase in per-
formance in the ImageNet challenge byHinton and colleagues
with AlexNet [1], a convolutional neural network (CNN),
there has been interest in potential applications in the medical
field. Radiology as a digital image-based speciality was touted
as an early potential testing ground for medical applications of
CV [2]. This, coupled with an increasing demand for clinical
imaging and an international shortage of radiologists [3],
drove interest. Radiology conferences and journals have seen
a large increase in AI-based submissions [4], and new journals
[5] have even been established to keep pace with the increase
in the literature.

However, the initial hype may be beginning to come to an
end. Dos Santos and colleagues have warned about the possi-
bility of a reproducibility crisis and translation gap in
radiomics [6] and many of these issues also exist in DL.
While radiology does lead the way in medical AI device ap-
proval [7], the gap between the promise in the literature and
the clinical application of these models has been termed the
“AI Chasm” by Topol and Keane [8]. The gap is due in part to
the models being tested in “ideal” in silico conditions and
therefore not having robust performance in the clinic [9].
Furthermore, the generalizability of models from the home
institution to others has proved an issue [10]. As models be-
comemore complex to account for the above difficulties, their
outputs become less interpretable and a lack of explicability
has led to worries of potential bias. Furthermore, as the nature
of the field is multidisciplinary, the difficulty in forming re-
search teams with combined clinical, radiological, engineer-
ing and computer science expertise may prove a challenge
[11]. This is compounded by the need for new expertise in
the peer review process [4]. As such, while the volume of
literature has increased, the quality is varied.

There have been calls for high-level evidence especially
prospective studies and outcomes data [6]. To this end, this
systematic review aims to survey the literature to identify the
clinical questions being asked and the methods used to answer
them, with a focus on the scientific methodology underpin-
ning these studies. We will report the state of radiology AI

both to assess the quality of the existing data and identify
potential opportunities for further research.

Methods

We followed the Preferred Reporting Items for Systematic
Review and Meta-Analysis guidelines (PRISMA) and the
Cochrane Collaboration Handbook and performed a system-
atic review of all radiology AI studies published from 2015 to
2019 following a published protocol of a prospectively regis-
tered review (PROSPERO: CRD42020154790).

Full details are available in the published protocol [12].

Inclusion criteria

This comprehensive review includes all clinical radiological
papers that aim to complete a task using DL. Human hospital-
based studies that use these techniques to aid in the care of
patients’ radiological diagnosis or intervention are included.
Studies based on radiographic, computed tomography (CT),
magnetic resonance (MR), ultrasound (US) or nuclear
medicine/molecular or hybrid imaging techniques are
included.

Exclusion criteria

Studies that use classical machine learning techniques are ex-
cluded. Functional MRI (fMRI) papers are not included as the
techniques used in the computer analysis of fMRI data are
quite separate from the computer vision–based tasks that are
the subject of this review. Papers solely for use in radiation
therapy are also excluded. Non-human or phantom studies are
excluded.

Electronic search

We performed electronic searches on MEDLINE (Pubmed)
and EMBASE from 1 January 2015 until 31 December
2019. Zotero was our reference manager and the Revtools
package in R was used to eliminate duplicate records. The
search was conducted in English. The search terms used are
reported in the Supplementary Appendix. The Artificial
Intelligence and Radiology terms were combined with the
‘AND’ operator.

Selection and analysis of trials

The titles and abstracts of studies were reviewed to identify
clinical radiological artificial intelligence studies for inclusion
or exclusion. Studies with insufficient information to deter-
mine the use of AI computer vision methods were also includ-
ed for full-text review. A full-text review was then performed,
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to confirm eligibility for inclusion in the final systematic re-
view. This process is summarised in a PRISMA flowchart
(Fig. 1).

Data analysis

Data were analysed primarily using pivot tables and in-built
exploratory analysis tools inMicrosoft Excel. A narrative syn-
thesis was undertaken due to the heterogeneity of methodolo-
gies employed.

Results

Included papers

Our search yielded 11,083 results. Titles and abstracts were
screened by two reviewers and 767 full texts were reviewed.
Five hundred thirty-five articles were included for analysis.
Details can be found in Fig. 1.

There was an increase in the number of included studies
year on year with 14, 31, 84, 170 and 237 respectively from
2015 to 2019 (Figs. 2 and 3).

Clinical use cases

Cancer imaging was the most common use case, seen in 156
(29%) studies with a further 45 (8%) studies specifically ex-
amining pulmonary nodules. The next most common was
segmentation of normal anatomy or other investigation of pa-
tients with no specific disease (Table 1).

Trauma, Alzheimer’s and neurodegenerative disease,
stroke, coronary artery disease, pneumonia and haemorrhage
combined made up 70 (13%) studies with the remainder com-
ing from a variety of use cases (Table 1).

The most common subspecialty was neuroradiology (127,
24%) followed by chest (92, 17%) (Fig. 2). Cross-sectional
imaging was dominant with MR (200, 37%) and CT (155,
29%) used as the modality of investigation (Fig. 3).

Fig. 1 The PRISMA flow
diagram of papers included in our
review
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Artificial intelligence task

The most common primary task undertaken was segmentation
(211, 39%), followed by classification (171, 31%) and identi-
fication (74) (Table 1). A further 36 were a combination of
those use cases. Twenty-seven studies were primarily aimed at
prediction with a further 3 studies having a prediction element
to the research question. The remaining studies examined
change detection, time series and regression problems.

Clinical Research Design

Five hundred twenty-five (98%) studies were retrospective
with only 13 prospective studies. Five hundred twenty
(97%) were designed as cohort studies with 9 case-control
studies, 6 designed to measure AI augmentation of perfor-
mance and 1 with prospective real-world evaluation. A power
analysis was referenced in 29 (5%) cases. Inclusion and ex-
clusion criteria were provided in 468 (87%) cases.

Ground truth was determined from the radiologic report in
355 (66%) cases and by a panel of experts or other speciality

reports in 100 (19%) cases. A pathologic report determined
ground truth in 46 cases (9%). An alternative modality report-
ed by a radiologist was used in 4 cases. Truth determination
was unclear in 3 cases.

The performance comparison was a state-of-the-art model
in 197 (37%) cases, radiologist(s) in 169 (31%), other medical
experts in 28 and a combination of radiologists and other
medical experts in 16. There was no comparison in 92
(17%) cases. Comparisons with non-experts including resi-
dents, radiographers, sonographers and medically naïve
humans made up the remainder.

Artificial intelligence methodology

One hundred fifty-six (29%) studies used a custom deep learn-
ing architecture. UNet was the most popular established archi-
tecture used in 76 (14%), followed by ResNet. Ensemble
methods were described in 19 (4%) cases. Where the model
was previously described (313), it was modified in 275 (88%)
cases and used “off the shelf” in the remainder.

Table 1 Legend search terms
combined with the AND operator Artificial intelligence Radiology

(Artificial intelligence[Title/Abstract])OR

(Machine learning[Title/Abstract])OR

(Support vector machine[Title/Abstract])OR

(SVM[Title/Abstract])OR

(CNN[Title/Abstract])OR

(RNN[Title/Abstract])OR

(LSTM[Title/Abstract])OR

(ResNet[Title/Abstract])OR

(DenseNet[Title/Abstract])OR

(Unet[Title/Abstract])OR

(U-net[Title/Abstract])OR

(DNN[Title/Abstract])OR

(Neural network*[Title/Abstract])OR

(Convolutional network*[Title/Abstract])OR

(Deep learn*[Title/Abstract])OR

(Semantic segmentation[Title/Abstract])OR

(Ensemble[Title/Abstract])OR

(Classification tree[Title/Abstract])OR

(regression tree[Title/Abstract])OR

(probability tree[Title/Abstract])OR

(nearest neighbo*[Title/Abstract])OR

(fuzzy logi*[Title/Abstract])OR

(random forest[Title/Abstract])OR

(kernel[Title/Abstract])OR

(k-means[Title/Abstract])OR

(naive bayes[Title/Abstract])

(X-ray*[Title/Abstract])OR

(X-ray*[Title/Abstract])OR

(Radiography[Title/Abstract])OR

(Radiograph*[Title/Abstract])OR

(Computed tomography[Title/Abstract])OR

(CT[Title/Abstract])OR

(CAT[Title/Abstract])OR

(CTA[Title/Abstract])OR

(Computerized axial tomography[Title/Abstract])OR

(Magnetic resonance imag*[Title/Abstract])OR

(MRI[Title/Abstract])OR

(MR[Title/Abstract])OR

(Magnetic resonance angio*[Title/Abstract])OR

(MRA[Title/Abstract])OR

(Scintigraphy[Title/Abstract])OR

(DMSA[Title/Abstract])OR

(Ultrasound*[Title/Abstract])OR

(Sonograph*[Title/Abstract])OR

(PET[Title/Abstract])OR

(Positron Emission Tomography[Title/Abstract])OR

(SPECT[Title/Abstract])OR

(Single-photon emission[Title/Abstract])OR

(Single photon emission[Title/Abstract])OR

(mammogra*[Title/Abstract])
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Supervised learning was employed in 473 (88%) studies,
unsupervised learning in 13, a combination of both in 8 and
semisupervised learning in 6. Methods were unclear in 38
(7%) cases. Transfer learning was not used in 284 (53%),
was used in 247 (46%) and was unclear in the remainder.

The primary evaluation metric was Dice in 187 (35%)
cases (segmentation), area under curve (AUC) in 154 (29%),
accuracy in 82 (15%), sensitivity and specificity in 40 (diag-
nostic accuracy), correlation in 18, mean absolute error in 10
(regression) and precision/recall in 8 (diagnostic accuracy).

Data augmentation was not undertaken in 124 (23%) stud-
ies. Most studies used simple operations such as symmetry
operations zooms and flips (n = 325) with more complex
augmentation, e.g. with Generative Adversarial Networks
used less frequently (n = 31).

In 400 (75%) papers, it was clear that the authors had em-
ployed hyperparameter optimisation. It was not undertaken in
65 (12%) and unclear in the remainder.

Data

The median number of patients included was 460 (range 3–
313,318). The median number of images (where reported)
was 1993 (range 43–1,351,090). There were on average just
over 4 images per patient. The median number of cases (points
in time) was 488, giving an average of just over 1 case per
patient. Data were sourced from one hospital in 234 (44%)
cases, a public dataset in 170 cases (32%), more than one
hospital in 67(12%) and public and local data combined in
49 cases (22%). It was unclear in the remaining cases.
Results were validated in 352 cases. External validation was
used in 169 (31%) with 60 of these using public data for
external validation. Of the 109 studies validated at external
institutions, 84 were in 2018 and 2019 (78%).

Performance

The median performance for the most common evaluation
metrics was Dice of 0.89 (range .49–.99), AUC of 0.903
(range 1.00–0.61) and accuracy of 89.4 (range 70.2–100).

Comparison of the most commonly used previously de-
scribed model (U-Net) with custom-made architectures by
the Dice metric (n = 106.57 U-Net and 49 custom) showed
very similar performance (0.877 and 0.895).

Of the 109 studies that externally validated their results, a
direct comparison between internal and external performance
was possible in 77 cases. The performance on average de-
creased by 6% at external validation (range 4% improvement
to 44% reduction). Sixty of 77 (78%) studies reported a drop
of performance of 10% or less.

Open access data and code

The source code or model was made freely available in 76
cases (14%). The data used is available freely in 207 (38%)
studies and a subset of the data is available in 25 (5%).

Explainability

The most commonmethod of explainability was the provision
of cases/examples seen in 263 (49%) studies. No
expla inabi l i ty was offered in 152 (28%) cases .
Visualisations and saliencymaps were offered as explanations
in 97 (18%) and there were analytic/didactic discussions in 26
(5%). Counterfactual examples were not employed in any
case.

Discussion

Overview

This systematic review aimed to survey the literature in radi-
ology artificial intelligence. In doing so, we hoped to identify
the clinical questions being asked and the methods used to
answer them.We chose to focus on the scientificmethodology
underpinning included studies. We identified over 500 rele-
vant studies, the number of which is exponentially increasing
year on year. We identified that most studies are focused on a
narrow range of research questions dominated by segmenta-
tion of normal anatomy and classification of tumours and
nodules, with a focus on Neuroradiology and MR imaging.
The majority of studies applied supervised learning to retro-
spective data.

The potential for the use of AI to meet the supply-demand
issue caused by the increasing utilisation of medical imaging
and the international shortage of expert radiologists is well
established. We have demonstrated through our review, how-
ever, that the majority of the literature uses a narrow range of
techniques and focuses on only a few clinical questions. As
such, if the “AI chasm” is to be bridged, shortcomings in the
implementation of AI clinically will need to be overcome.
This also points to opportunities for future research in more
diverse methodologies and application to novel use cases.

Narrow focus

Themost common use cases identified were segmentation and
classification of tumours and nodules. The focus on tumour
imaging was stark with almost 10% of papers specifically
examining pulmonary nodules. While papers may have fo-
cused on different types of tumours, the basic methodology
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of identification, segmentation and classification of a lesion in
an image dominate the literature. Very few studies considered
change between studies or attempted to predict the clinical
course of the patient. There were no studies with outcomes
data.

As literature is also dominated by segmentation, the “U-
Net” [13] architecture is the most commonly employedmodel.
Interestingly, only a modest improvement was seen between
using U-Net compared to a custom architecture. The emphasis
on segmentation, identification and classification has meant
that alternative deep learning techniques (for example predic-
tion and times series methods) are underdeveloped.
Furthermore, since most studies used supervised learning,
the emerging techniques of reinforcement semi-supervised
learning are lacking. Supervised learning methods are more
likely to require laborious data labelling and cleaning which
can affect data quality, quantity and sample size.

Research design and potential for bias

The vast majority of included papers are retrospective cohort
studies. Only 13 prospective studies were identified. There
was some diversity in design with a small number of AI aug-
mentation studies that examine the potential for AI augmen-
tation rather than automation. The one paper that used a pro-
spective real-world evaluation stands out for its unique meth-
od of prospective evaluation [14].

Only 5% of studies explicitly mentioned a power analysis.
While it is not unusual for machine learning studies to take a
“more is better” approach to sample size, this is not usually the
case in the clinical radiology literature and a more robust
method of sample size calculation will be needed for these
methods to gain the trust necessary for clinical implementa-
tion. Hopefully, this review can serve as a reference of pilot
data to estimate sample size in the future.

Ground truth is an issue that needs to be considered for all
radiology research [15]. It is a challenge due to both the un-
certain nature of the speciality and errors in observer perfor-
mance. Only a minority of studies used pathology as the
ground truth which is generally accepted as the gold standard
in most clinical imaging research. In the majority of cases, the
radiologic report was used as ground truth which is often a
reasonable surrogate depending on the research question. A
specialist report other than that of radiology and pathology
was used in many cases. This has the potential to lead to errors
as the inclusion of radiologists increases the quality of image
interpretation [16].

Performance comparison in the machine learning literature
typically involves comparing the new model to the previous
state-of-the-art [17]. In clinical radiology, the standard is com-
paring to radiologist performance under a given set of circum-
stances determined by the research design [18]. It is not sur-
prising a mix of these two methods, comparison with both

human and machine performance, as seen in this review. It
is significant, however, that no performance comparison was
offered in 17% of cases. This design can lead to incorrect or
exaggerated claims; results of such studies should be
interpreted with caution. Those that compare with non-
expert performance should also be interpreted cautiously as
an inflated comparison could give falsely high expectations.

There is also the risk of publication bias. This is seen in the
average performance metrics which are at roughly 90% of
maximum performance or higher. Indeed 78% of studies that
were externally validated have a performance drop of 10% or
less. This high rate of high-performing studies both at internal
and external validation raises the possibility that a publication
bias exists [19]. Prospective registration of trials and pub-
lished protocols are potential avenues for addressing this in
the future.

Data quantity and quality

There was a wide range in the quantity of data observed with
papers including a range of patients in the single digits to
hundreds of thousands. This serves as proof of the wide het-
erogeneity in the field and how each study should be
interpreted on its own merits. There was a median number
of 4 images per patient and of 1 case (instance in time) per
patient. This is in contrast with normal clinical practice where
radiologists often review upwards of a thousand images per
patient across multiple points in time. Data were collected
from a single existing dataset or a single hospital in the ma-
jority of cases (75%).While there was an increase in the use of
multi-institutional data year-on-year, the reliance on single-
centre or single repository studies limits the generalisability
of reported results.

Data augmentation is commonly employed in machine
learning research; however, there has been a move more re-
cently to the use of Deep Learning to augment data in com-
puter vision rather than simple symmetry operations [20].
While this is an interesting avenue, there have not yet been
studies proving the reliability of these methods. Potential
biases or errors in the data have the potential to be propagated
further by these techniques. Furthermore, studies that do not
use appropriate experts to label data have the potential to
introduce errors [16] and reduce data quality [21].

Explainability and Open Access

Under EU law, the GDPR gives European patients the right to
explanation for all decisions made by an algorithm [22]. As
such, it is a matter of concern that more than 1 in 4 studies
offered no level of explanation for their outputs. We reviewed
included papers for a variety of established methods of expla-
nation [23] including examples, visualisations, natural lan-
guage and counterfactuals. While cases/examples were
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offered as explanations in most studies, more advanced expla-
nations such as saliency analysis and heatmaps were only seen
in a minority of cases. This means that a detailed analysis of
why a case was labelled as a false positive/false negative etc.
would only be possible for a minority of the models provided.
Modern theory points to the potential use of counterfactual
examples for explanations [24] and these were not utilised
by any included study.

Open data and models are one way of ensuring trust in AI
models as they facilitate reproducibility [25]. It is heartening
that almost half of the included studies have at least some of
their data open access. The previously mentioned GDPR
poses a challenge for open access data in the EU and prospec-
tive informed consent is needed to release data in many cases.
The source code was only published in 14% which leaves
much to be desired. While some authors may be willing to
share their code on an ad hoc basis, including it with the
published paper would increase accessibility and encourage
more validation of results.

From code to clinic

While it is certain that there is a delay in the implementation of
AI models into clinical practise, it is also certain that radiology
is leading the way. Indeed radiology accounts for 58% of
medical AI devices brought to market in the USA and 53 in
Europe [7]. The reasons for this include the supply demand
issues outlined above. Due to the time lag between the discov-
ery of new methods and the regulation of devices, the tech-
niques implemented in this review may be coming to market
in the near future. Indeed it is since 2015 that the rate of
approval has increased, and is predicted to continue to do so
[7]. There are also concerns that some devices may be used
“in-house” without CE marking or FDA approval [7]. For
these reasons, it is important that general radiologists are
aware of the benefits and limitations of such devices as well
as the scientific merit on which their claims are based.
Knowledge of the literature underpinning these technical in-
novations is a key step in that process. Furthermore, more
higher level studies with clear outcomes data are needed to
show that the claims in the literature actually translate into
benefits for patients. As stated in a recent review of the
radiomics literature:

Carefully designed prospective, multicenter, random-
ized controlled trials and data sharing will be needed
in the future to prove the clinical usefulness of radiomics
and subsequently improved patient outcomes in a set-
ting as close to clinical routine as possible [6]

This review has demonstrated the similar need for such
higher level evidence in the in the deep learning field.

Opportunities

The literature surrounding artificial intelligence applications
radiology has exploded since 2015. However, due to a limited
focus and varying quality, it is clear that opportunities remain.
The focus currently is on segmentation and tumour classifica-
tion. While these are important tasks that contribute signifi-
cantly to radiologist workflow, interest in other areas lags. The
emphasis on MRI and neuroradiology, and especially cancer
imaging, means that there are opportunities in other areas.
Furthermore, we have seen that “off the shelf” models, with
limited or no fine-tuning, can achieve reasonable performance
in these tasks in a controlled environment. As such, investiga-
tion of other tasks or implementation of these models in more
general environments should be considered.

There are also opportunities for improvement in research
design. Prospective registration of trials and studies that enu-
merate aspects of the study including sample size, ground
truth, data preparation and explainability will improve the
overall quality. Overall, the detail on data preparation and
model optimisation was poorly reported and again the plan
for these methods should be prospectively outlined (20). The
quality of research design and reporting varies, and guidelines
such as those issued by CONSORT [26] and the RSNA [27]
should be followed to improve the quality of research overall.
Furthermore, to ensure greater generalisability, the use of ex-
ternal validation is to be encouraged.

Within the EU, GDPR continues to pose challenges to
researchers looking to maximise their quantity of data. Two
clear potential avenues that could be explored further to alle-
viate this are the use of deep learning to create synthetic data
for augmentation [28] and the process of obtaining prospec-
tive informed consent from patients for the use of their med-
ical imaging data [29].

Limitations

This systematic review has limitations, including publication
and reporting bias. We have not included studies with unpub-
lished data or preprint studies. We have only included papers
using DL and as such papers using traditional machine learning
and radiomics were excluded. Studies that do not have a clear
methodology may have been misclassified. Furthermore, the
heterogeneity of the included studies did not allow for mean-
ingful meta-analysis of results. The high number of included
articles only allows for a high-level overview of major themes.

Conclusions

This review has demonstrated some of the major advances in
artificial intelligence as applied to clinical radiology. It is un-
deniable that disruptive technologies hold promise to address
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the current supply/demand crisis in radiology. The consisten-
cy of performance and continued interest mean that the field
continues to hold much promise. However, many published
papers have varying methodological quality and a narrow fo-
cus. Furthermore, even the most promising papers often have
limited potential for generalisability and clinical implementa-
tion. Many papers are at a high risk of bias, particularly due to
a lack of external validation and systematic guidelines for
study design are needed. A clear explanation is also lacking
in the majority. Herein we have also identified many potential
avenues for future research which have the potential to begin
bridging the AI chasm from code to clinic.
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