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Abstract
Objectives To develop an image-based automatic deep learning method to classify cardiac MR images by sequence type and
imaging plane for improved clinical post-processing efficiency.
Methods Multivendor cardiac MRI studies were retrospectively collected from 4 centres and 3 vendors. A two-head
convolutional neural network (‘CardiSort’) was trained to classify 35 sequences by imaging sequence (n = 17) and plane (n =
10). Single vendor training (SVT) on single-centre images (n = 234 patients) and multivendor training (MVT) with multicentre
images (n = 434 patients, 3 centres) were performed. Model accuracy and F1 scores on a hold-out test set were calculated, with
ground truth labels by an expert radiologist. External validation of MVT (MVTexternal) was performed on data from 3 previously
unseen magnet systems from 2 vendors (n = 80 patients).
Results Model sequence/plane/overall accuracy and F1-scores were 85.2%/93.2%/81.8% and 0.82 for SVT and 96.1%/97.9%/
94.3% and 0.94 MVT on the hold-out test set. MVTexternal yielded sequence/plane/combined accuracy and F1-scores of 92.7%/
93.0%/86.6% and 0.86. There was high accuracy for common sequences and conventional cardiac planes. Poor accuracy was
observed for underrepresented classes and sequences where there was greater variability in acquisition parameters across centres,
such as perfusion imaging.
Conclusions A deep learning network was developed onmultivendor data to classifyMRI studies into component sequences and
planes, with external validation. With refinement, it has potential to improve workflow by enabling automated sequence selec-
tion, an important first step in completely automated post-processing pipelines.
Key Points
• Deep learning can be applied for consistent and efficient classification of cardiac MR image types.
• A multicentre, multivendor study using a deep learning algorithm (CardiSort) showed high classification accuracy on a hold-
out test set with good generalisation to images from previously unseen magnet systems.

• CardiSort has potential to improve clinical workflows, as a vital first step in developing fully automated post-processing
pipelines.

Keywords Magnetic resonance imaging . Deep learning .Workflow . Heart . Humans

* Ruth P. Lim
ruthplim74@gmail.com

1 Austin Health, Melbourne, Australia
2 Departments of Radiology, The University of Melbourne,

Melbourne, Australia
3 Department of Surgery (Austin), The University of Melbourne,

Melbourne, Australia

4 Department of Radiology, Columbia University, New York, USA
5 School of Biomedical Engineering and Imaging Sciences, Kings

College London, London, UK
6 I-MED Radiology, Melbourne, Australia
7 Cardiovascular R & D Unit, University of Porto, Porto, Portugal

European Radiology (2022) 32:5907–5920
https://doi.org/10.1007/s00330-022-08724-4

http://crossmark.crossref.org/dialog/?doi=10.1007/s00330-022-08724-4&domain=pdf
http://orcid.org/0000-0002-2842-5997
mailto:ruthplim74@gmail.com


Abbreviations
2D Two-dimensional
bSSFP Balanced steady-state free precession

imaging
CNN Convolutional neural network
DBLGE Dark blood late gadolinium-enhanced

imaging (blood nulled)
DICOM Digital Imaging and Communications

in Medicine
EGE Early gadolinium-enhanced imaging
FST2 Fat-suppressed T2-weighted imaging
Grad-CAM Gradient-weighted class activation

mapping
HASTE Half-Fourier acquisition single-shot

turbo spin echo imaging
LVOT Left ventricular outflow tract,

perpendicular to 3-chamber plane
MOLLI (+/-) Modified Look Locker inversion recovery

imaging (post contrast/native)
MPA Main pulmonary artery
MVT Multivendor training
MVTexternal Multivendor training with external

test data
PC Phase contrast imaging
ReLU Rectified linear unit
RVOT Right ventricular outflow tract

(oblique sagittal plane)
SCMR Society for Cardiovascular

Magnetic Resonance
SVT Single vendor training
TI scout Inversion time scout imaging

for late gadolinium-enhanced imaging
UID Unique identifier
WBLGE White blood late gadolinium-enhanced

imaging (normal myocardium nulled)

Introduction

Cardiac magnetic resonance studies are commonly performed
for comprehensive anatomic, functional, and quantitative as-
sessment and are relatively complex to perform and interpret.
Recently updated Society for Cardiovascular Magnetic
Resonance (SCMR) guidelines advocate standardised acqui-
sition and postprocessing to ensure study quality and repro-
ducibility [1, 2]. Manual post-processing is time intensive and
can be prone to human error. Therefore, there are active efforts
to automate a range of quantitative tasks including ventricular
segmentation, myocardial tissue characterisation, and perfu-
sion assessment [3–6]. If validated and made available to the
clinical community, automated post-processing pipelines
could aid efficiency and consistency of measurements for di-
agnosis, prognosis, and treatment monitoring.

Accurate identification of individual cardiacMR sequences is
an important first step in directing images to the appropriate post-
processing tool. In the clinic, sequence labelling currently de-
pends upon saved scan protocols and/or real-time annotations
by the scanning MR technologist, and are thus subject to large
variations across centres, making standardisation difficult.
Consistent automated sorting would facilitate fully automated
post-processing, with a proposed clinical workflow provided in
Fig. 1. As well as allowing for prospective automated post-pro-
cessing, sequence identification can be used to automatically
curate large retrospective datasets for training deep learning
models. This curation has traditionally relied upon expert manual
labour that is time-consuming and costly [7, 8], and an automated
means of data curation would facilitate use of larger datasets for
more robust tool development and validation.

Van der Voort et al described a convolutional neural net-
work (CNN) approach for automated sorting of 8 brain MRI
sequences, achieving greater than 98% accuracy in image la-
belling [9]. Cardiac MR image sorting is potentially more
challenging, due to patient-specific cardiac planes, and vari-
ability in sequence design and parameters, and it has not pre-
viously been studied in detail. The primary aim of this study
was to develop a deep learning tool, CardiSort, to automati-
cally classify a range of clinical cardiac MR sequences using
pixel data alone, with real-world cardiac MR data obtained
across three different vendors. The model is also made avail-
able as an open-source tool for use by the community.

Materials and methods

Study design and data

This was a retrospective study to create a model to classify 35
cardiac MRI sequences by sequence type and imaging plane.
Anonymised cardiac MRI data was obtained from 4 centres
and 3 vendors (Vendor 1, Philips; Vendor 2, Siemens; Vendor
3, General Electric) with institutional ethics approval. A total of
334 randomly sampled studies in 334 patients (224M, 110F,
mean ± SD 54.8 ± 15.8 years) were obtained fromCentre 1 from
2011 to 2020, with (a) 147 cases scanned at 1.5T (Ingenia,
Philips Healthcare); (b) 87 cases scanned at 3T (Achieva,
Philips Healthcare); and (c) additional selected sequences obtain-
ed from 100 patients on a different 1.5-T vendor system (Aera,
Siemens Medical), to supplement training images for vendor 2.
Centre 1 common indications for scanning were ischaemic and
non-ischaemic cardiomyopathy. Ninety studies in 52 patients
with aortic stenosis (31M, 21F, 72.2 ± 7.7 years) were obtained
from Centre 2, scanned at 1.5T from 2013 to 2017 (Symphony,
SiemensMedical), with studies performed at more than one time
point in 37 patients. Forty-eight studies in 48 patients (33M, 15F,
60.0 ± 17.3 years) were obtained from centre 3, scanned at 1.5T
from 2017 to 2018 (Optima MR450w, GE Healthcare) with the
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most common indications of non-ischaemic cardiomyopathy or
arrhythmia.

Single vendor training (SVT) was first performed, utilising
only data from Centre 1 (which was the largest single vendor
training set), followed by multivendor training (MVT), which
was retrained from scratch, utilising data from Centres 1 to 3.
The final SVT and MVT models were tested on hold-out test
data from Centres1 to 3.

For MVT external validation (MVTexternal), the model was
trained on all of the internal data from Centres 1 to 3 as pre-
viously described. Testing was performed on 2 external
datasets not previously seen by the model: Centre 2 data
scanned in 2020 from a different vendor (Vendor 1) 3T system
(Achieva, Philips, Healthcare), n = 20 patients, 14M, 6F, 58.9
± 13.5 years; Centre 4 1.5T and 3T Vendor 2 data from 2016
to 2020 (Avanto and Skyra, Siemens Medical), n = 60 pa-
tients, 31M, 29F, 55.2 ± 14.6 years. The most common

clinical indications for external data were non-ischaemic car-
diomyopathy, assessment for arrhythmogenic foci, and myo-
carditis. Experiments performed are summarised in Fig. 2.

Pre-processing

All images were obtained in Digital Imaging and
Communications in Medicine (DICOM) format and
anonymized. Secondary capture images were removed.
Slightly different pre-processing using DICOM attributes
[10] were required due to vendor-specific differences in the
export of sequences with multiple image types, e.g. phase
contrast imaging (PC), or multiple planes, e.g. cine imaging.
For Vendors 1 and 3, all image types for such sequences were
saved combined into a single series; series description, series
instance unique identifier (series instance UID), and instance
number were used for sorting. For Vendor 2, where multiple

Fig. 1 Proposed streamlined clinical workflow for fully automated
postprocessing, beginning with an automated cardiac sorting tool
(‘CardiSort’). CardiSort would receive images directly from the scanner
and classify them, then automatically direct them for further quantitative
post-processing as required. Those image types not requiring advanced
post-processing would be sent directly to the Picture Archiving and
Communication System (PACS). Some examples of multiple automated
pipelines that could follow from the initial sorting step include

quantification of ventricular volume, function, mass, and myocardial
strain from cine imaging; extraction of T1, T2, and T2* values and cal-
culation of extracellular volume (ECV) from T1, T2, and T2* sequences;
measurement of myocardial blood flow and myocardial perfusion reserve
from stress and rest perfusion imaging, and quantification and character-
isation of myocardial scar from late gadolinium-enhanced (LGE) imag-
ing. All images and extracted metrics would then be sent automatically to
PACS for image interpretation by a cardiacMR radiologist or cardiologist
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image types were saved in separate series but shared a proto-
col name, protocol name was also included for sorting. Data
flow is summarised in Supplementary Figure 1, and sequence
labels and final datapoints available are presented by individ-
ual magnets in Table 1.

For a unique image series, three images (first, middle, and
last as sorted by position and instance number) were selected
as input to the model. Three images were chosen as a fixed
input size as required by the model. Although this discards
images for some image series, it maintains a degree of the
temporal, contrast, and spatial information within the series.
This was chosen empirically to balance model performance
versus model size, based on preliminary experiments. Images
were resized to a 256 × 256 pixel array using bilinear interpo-
lation, with array values normalised by the minimum and
maximum values to between 0 and 1, per channel. The three
images were combined to form a “3-channel” array of shape
256 × 256 × 3 as a single datapoint for model input. For MRI
sequences with fewer than 3 images, the first image was re-
peated once or twice as required.

Ground truth

Ground truth labels were semi-automatically assigned. Series
descriptions for each unique extracted image series were first
assigned to classes by a board-certified cardiac radiologist with
15 years’ cardiac MRI experience (SCMR Level 3 equivalent,
RPL). All data were then automatically sorted into separate

classes based on series description. Of the possible sequence
and plane combinations, classes were included in the analysis if
at least 20 unique datapoints for that class were present in the
entire dataset, resulting in 35 labels incorporating both sequence
type and imaging plane (Table 1). The remaining unassigned
classes were excluded from further analysis.

Labelled images were then manually reviewed for com-
pleteness, label correctness, and diagnostic quality by the
same radiologist. Incorrectly labelled images were reassigned
to the correct label if present, or excluded if absent. Aberrant
congenital anatomy (n = 1 patient) and image sets that did not
belong to one of the 35 labels, were considered non-diagnos-
tic, or incomplete (2140/26,456 automatically extracted im-
ages, 8.1%) were excluded from further analysis. The final
datasets underwent repeat review for any misclassification
by the same radiologist prior to network training, at least 4
weeks after initial review.

Data partitioning

In total, 64% of experiment data was chosen for training, 16%
for validation, and 20% for testing for SVT and MVT, with
MVTexternal trained on 80% and 20% of the internal data for
training and validation respectively, and tested on all of the
external data (Supplementary Table 1). Stratified sampling of
train, validation, and test sets was performed to eliminate sam-
pling bias, with study-level partitioning to ensure no closely
related images from the training set were within validation or

Fig. 2 Summary of experiments performed. Initially, a model was
developed and trained on data from a single centre (Centre 1) and
single vendor (Vendor 1), and tested on data from all 3 vendors.
Subsequently, the model was trained on multi-vendor data from Centres

1–3 and tested on a hold-out test set derived from the same multivendor
data. Finally, the multivendor trained model was tested on external
datasets obtained from systems not used for training
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test sets for each given class. For MVT, 206 datapoints were
excluded from the hold out test set, where data from patients

with more than one study for a given class was present in the
training data.

Table 1 Sequence and plane of all data, with prevalence of datapoints presented by magnet

Data used for model training External Validation

Centre 1 Centre 2 Centre 3 Centre 2 Centre 4 Centre 4

Vendor Philips Philips Siemens Siemens GE Philips Siemens Siemens

Field strength (T) 1.5 3 1.5 1.5 1.5 1.5 1.5 3

Sequence Plane

B0 map Axial 0 36 0 0 0 0 0 0

Cine bSSFP 2-Chamber 275 131 0 181 50 24 13 4

Cine bSSFP 3-Chamber 153 54 0 94 47 27 14 6

Cine bSSFP 4-Chamber 192 145 0 109 50 27 14 15

Cine bSSFP LVOT 43 3 2 40 0 0 8 5

Cine bSSFP RVOT 31 4 0 0 7 0 0 10

Cine bSSFP Short axis 345 194 0 107 48 35 19 13

DBLGE 2-Chamber 127 3 0 0 0 0 0 0

DBLGE 3-Chamber 107 5 0 0 0 0 0 0

DBLGE 4-Chamber 110 4 0 0 0 0 0 0

DBLGE Short Axis 129 3 0 0 0 0 0 0

EGE 2-Chamber 112 3 0 0 0 0 0 0

EGE 3-Chamber 83 3 0 0 0 0 0 0

EGE 4-Chamber 84 3 0 0 0 0 0 0

FST2 2-Chamber 26 3 25 0 0 3 3 1

FST2 3-Chamber 22 0 27 0 0 0 3 1

FST2 4-Chamber 28 3 25 0 47 2 3 1

FST2 Short axis 30 9 27 0 45 4 0 3

HASTE Axial 137 11 0 88 47 16 45 14

MOLLI- Short axis 136 66 94 0 0 0 30 0

MOLLI+ Short axis 141 53 113 0 0 0 29 0

Phase contrast Aorta 31 7 0 103 11 0 1 12

Phase contrast MPA 23 5 0 0 8 0 1 9

Perfusion Short axis 60 83 0 175 0 17 0 0

Scout Imaging Multiplanar 156 121 0 87 0 8 90 0

T2 mapping bright blood Short axis 0 0 28 0 0 0 0 0

T2 mapping dark blood Short axis 26 16 0 0 0 0 0 0

T2* mapping Short axis 9 33 5 0 0 0 0 0

Test Perfusion (Pre contrast) Short axis 36 55 0 93 0 15 0 0

TI scout 4-Chamber 30 0 5 0 0 0 0 0

TI scout Short axis 271 55 172 90 52 18 43 12

WBLGE 2-Chamber 163 60 0 101 47 34 42 5

WBLGE 3-Chamber 141 55 0 98 47 25 33 4

WBLGE 4-Chamber 147 48 0 96 49 30 46 4

WBLGE Short axis 221 78 0 176 47 21 50 14

Total 3625 1352 523 1638 604 306 487 133

bSSFP balanced steady-state free precession imaging; LVOT left ventricular outflow tract, perpendicular to 3-chamber plane;RVOT right ventricular outflow
tract (oblique sagittal plane);DBLGE dark blood late gadolinium-enhanced images (blood pool nulled); EGE early gadolinium-enhanced images; FST2 fat-
suppressed T2-weighted imaging; HASTE half-Fourier acquisition single-shot turbo spin echo imaging; MOLLI+ Modified Look Locker Inversion
Recovery imaging post contrast;MOLLI- native Modified Look Locker Inversion Recovery imaging;MPAmain pulmonary artery; TI scout inversion time
scout imaging for late gadolinium-enhanced imaging; WBLGE white blood late gadolinium-enhanced images (normal myocardium nulled)
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Model

A 2D CNN, CardiSort, was iteratively developed to evaluate
spatial imaging features for two-output (sequence and plane)
multiclass classification. All inputs were shuffled prior to pre-
sentation to the network. An input layer and three deep
convolutional layers with kernel sizes of 3 × 3 were employed
for the model with 32, 32, 64, and 128 filters respectively.
These were followed by two fully connected layers of 256
and 64 units respectively prior to the output layer, with sepa-
rate outputs for sequence type and imaging plane (Fig. 3). A
ReLU activation function [11] was used for all layers prior to
the output layer, with a softmax output used for classification
[12]. He-normal weight initialisation was employed [13].

Training details

Details of training, including data augmentation, selected
hyperparameters, and training platform, are provided in
Supplementary Methods. Training was performed for 480
epochs, with the lowest summed validation loss observed at
least 60 epochs prior to this for all experiments, using cate-
gorical cross entropy as the loss metric for both outputs.

The MVTexternal model is made available at https://github.
com/cianmscannell/cardisort, with accompanying code for its
application to classifying non-curated data and sorting it into
complete imaging series by sequence and plane label.

Evaluation

Model performance was assessed by overall and per-class
classification accuracy (true positive rate) for (a) sequence
type, (b) imaging plane, and (c) combined sequence and plane
accuracy (Combined). Combined weighted precision, recall,
and F1-scores were also calculated. Confusion matrices and
gradient-weighted class activation mapping (Grad-CAM)
were employed to assess the developed models [14].

Results

For SVT, overall test set accuracy, precision, recall, and F1-
scores of 81.2%, 0.86, 0.82, and 0.82 were achieved. Test set
sequence type and plane accuracies were 85.2% and 93.2%
respectively (Table 2). Best performance for Centre 1 data was
achieved compared to Centres 2 and 3, where images were
acquired on different vendor systems to the training data (per-
class results presented in Supplementary Table 2). An exam-
ple of the differences (in white blood late gadolinium-
enhanced images (WBLGE)) between vendors, leading to
poor accuracy on unseen vendors for SVT, is shown in Fig.
4a.

MVT overall test set accuracy, precision, recall, and F1-
scores of 94.3%, 0.95, 0.94, and 0.94 were found. Test set
sequence type and plane accuracies were 96.1% and 97.9%,

Fig. 3 Model architecture. Batch
normalization and ReLU
activation were used for all
hidden layers, with Softmax
activation for classification
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respectively (Table 2). Excellent accuracy was observed for
Vendor 2 data (97.9% sequence, 99.2% plane, 97.9%
Combined), with near-perfect sequence accuracy for Vendor
3 data (99.3% sequence, 96.2% plane, 95.5% Combined), and
stronger plane versus sequence accuracy for Vendor 1 (95.2%
sequence, 97.9% plane, 93.4% Combined). The lowest se-
quence accuracy was observed for Vendor 1 native modified
Look Locker inversion recovery (MOLLI) imaging (39.0%),
most frequently predicted as cine imaging, compared to 100%
sequence accuracy for native MOLLI for Vendor 2, and no
Vendor 3 MOLLI data available (Supplementary Table 3).
Grad-CAM analysis demonstrated motion-related artefact as
a cause of incorrect predictions for this sequence (Fig. 4b).
Fat-suppressed T2-weighted (FST2) weighted short axis im-
aging sequence accuracy was poor for Vendor 2 (4/6
datapoints, 66.7%), with failure of fat suppression and
banding artefact observed (Fig. 4c). MVT sequence and plane
confusion matrices are presented in Fig. 5a.

MVTexternal achieved overall test set accuracy, preci-
sion, recall, and F1-scores of 86.6%, 0.90, 0.87, and
0.86 on external data (Table 2). Sequence, plane, and
Combined accuracies of 85.6%, 92.2%, and 78.1% re-
spectively for Vendor 1, and 96.1%, 93.4%, and 90.8%
respectively for Vendor 2 were recorded. High F1-
scores for common classes including cine imaging in
multiple planes, MOLLI native and post-contrast

imaging, TI scout imaging, and WBLGE imaging in
all planes were found (Supplementary Table 4).

Excellent overall sequence accuracy of MVTexternal was
observed for cine (94–100%), phase contrast (100%), and
long-axis WBLGE (92–100%). Poorest sequence accuracy
was observed for (Vendor 1) perfusion imaging (0%), most
commonly misclassified as cine (10/17 datapoints) or TI scout
sequences (7/17). Differences in sequence parameters, total
acquisition time, and contrast protocol (dual-bolus [15] for
Vendor 1 training versus single bolus technique for external
data), led to visually different image characteristics (Fig. 4d).
Relatively low sequence accuracy was observed for WBLGE
short axis imaging for Vendor 1 (16/21, 76.2%), classified as
dark blood LGE imaging (DBLGE) in 4/21 cases. Suboptimal
myocardial nulling and absence of myocardium and blood
pool in the included magnitude reconstructed image when
positioned distal to the left ventricular apex were observed
for incorrect predictions, impacting ability to differentiate be-
tween WBLGE and DBLGE (see Fig. 4a, Vendor 1).

MVTexternal demonstrated high plane prediction accuracy
for most common sequence types including cine, MOLLI, TI
scout, andWBLGE imaging, strongest for 4 chamber (100%),
axial (100%), and short-axis imaging (304/323, 94.1%), and
high for 2-chamber (115/129, 89.1%) and 3-chamber (100/
113, 88.5%) planes. Poor plane performance was observed
for the main pulmonary artery (1/10, 10%), 2-chamber FST2

Table 2 Accuracy, weighted precision, weighted recall and weighted F1-score of the model on test data for each experiment by Centre and Vendor.
Combined metrics represents data where both sequence type and plane accuracy are required for a true positive result.

Experiment Centre Vendor Sequence
accuracy (%)

Plane
accuracy (%)

Combined
accuracy (%)

Combined
Precision

Combined
Recall

Combined
F1-score

Single vendor training* 1 Philips 958/1025
(93.46)

1004/1025
(97.95)

938/1025
(91.51)

0.93 0.92 0.91

1 and 2 Siemens 322/438
(73.52)

372/438
(84.93)

295/438
(67.35)

0.79 0.67 0.66

3 GE 79/133
(59.40)

112/133
(84.21)

73/133
(54.89)

0.78 0.55 0.53

All All 1359/1596
(85.15)

1488/1596
(93.23)

1306/1596
(81.83%)

0.86 0.82 0.82

Multivendor training** 1 Philips 976/1025
(95.22)

1003/1025
(97.85)

957/1025
(93.37)

0.94 0.94 0.93

1 & 2 Siemens 233/238
(97.90)

236/238
(99.16)

233/238
(97.90)

0.98 0.98 0.98

3 GE 132/133
(99.25)

128/133
(96.24)

127/133
(95.49)

0.99 0.95 0.95

All All 1341/1396
(96.06)

1367/1396
(97.92)

1317/1396
(94.34)

0.95 0.94 0.94

Multivendor training – external
validation

2 Philips 262/306
(85.62)

282/306
(92.16)

239/306
(78.10)

0.86 0.78 0.77

4 Siemens 596/620
(96.13)

579/620
(93.39)

563/620
(90.81)

0.93 0.91 0.91

All external
data

858/926
(92.66)

861/926
(92.98)

802/926
(86.61)

0.90 0.87 0.86

*One class (short-axis T2 bright blood mapping) was omitted from test datasets for single vendor training due to absence of this class in the training data

**Cases where patients overlapped with training data were omitted from the test set for multivendor training
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Fig. 4 Error analysis. A White blood LGE short-axis imaging demon-
strating differences between vendors, with 3 image types, magnitude
reconstructed inversion recovery (Magnitude), phase reconstructed inver-
sion recovery (Phase), and reference imaging to estimate background
phase and surface coil field maps (Reference) images present for
Vendor 1. Only the magnitude reconstructed and phase reconstructed
images are present for Vendor 2, and only magnitude reconstructed im-
ages present for Vendor 3 source data. Also note that differentiation
between dark and white blood LGE imaging depends upon appearance
of blood and myocardium on magnitude images. B Multivendor training
native modified Look-Locker Inversion Recovery (MOLLI) T1 mapping,
demonstrating a correct and incorrect prediction for Vendor 1 data. In both
examples, model attention is focused upon the blood within the ventricles
and blood vessels, as indicated by Grad-CAM heat maps superimposed on
the original images (second and fourth rows), where red represents a high
degree of model attention. However, motion-related artefact is present in
the incorrect example, with activation visualized over the inferoseptal seg-
ment of the left ventricle (arrows), where myocardial signal appears similar
to that of the blood pool on the T1 map (arrowhead), incorrectly predicted
as cine short-axis imaging. C Multivendor training fat-suppressed T2-

weighted short-axis imaging demonstrating a correct and incorrect predic-
tion. For the correct prediction, model attention is focused upon the sub-
cutaneous fat, myocardium, and spleen (arrows), similar to structures a
human reader would assess to identify the image type and plane. For the
incorrect prediction, the model is focused upon banding artefact related to
off-resonance effects at air/soft tissue interfaces (arrowheads). This was
predicted as cine short-axis imaging, with cine imaging generally perform-
ed with balanced steady-state free precession imaging, which is most prone
to banding artefact. D Multivendor training external short-axis perfusion
imaging examples of a correct prediction from the validation set and incor-
rect prediction from the external test set. For the correct prediction, model
attention is focused upon the right ventricle (arrows) and to a lesser extent
the left ventricle, where large relative fluctuations in the contrast of the
blood pool of the left and right ventricular chambers are present. For the
incorrect prediction, the model is more focused upon the blood pool of the
left ventricle (arrowheads), with similar signal within left and right ventri-
cles observed at the mid and basal levels. Note that apical blood pool signal
was variable for both training/validation and test dataset, with high signal
sometimes observed secondary to flow-related “enhancement” on early
perfusion imaging, prior to contrast arrival (hollow arrow)
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(4/7, 57.1%), and right ventricular outflow tract (5/10, 50%),
with relatively few datapoints available for training. Poor
plane performance for short axis FST2 (1/7, 14.3%) was not-
ed, with differences in image export observed between exter-
nal test (single-slice location per series) and training data
(multiple-slice locations per series). Confusion matrices for
sequence and plane are presented in Fig. 5b.

Discussion

In this study, a multivendor deep learning model was devel-
oped and validated on external data with high accuracy and
F1-scores for identifying commonly performed sequences,
particularly cine and WBLGE imaging, and for standard ana-
tomic and cardiac planes. Our work highlights the importance

Fig. 4 (continued)
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Fig. 4 (continued)
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Fig. 4 (continued)

European Radiology (2022) 32:5907–5920 5917



of training the model on a diverse, multi-institutional
multivendor dataset, with SVT demonstrating high perfor-
mance on hold-out test data from the same institution, but poor
performance on data from other institutions and vendors, with
improved accuracy with MVT on the hold-out multivendor
test set.

The variability of clinically used cardiac MRI sequences is
also highlighted, impacting model generalizability, exempli-
fied in our study by the decrease in accuracy of MVT from
internal test to external data. Though model performance was
still very high for common image sequences, it was lower for
sequences with differences in parameters and image appear-
ance between external validation and training images, shown
by our experience with perfusion imaging. Image artefacts,
e.g., misregistration from motion for MOLLI, banding arte-
fact, or failure of fat suppression, also impacted model accu-
racy. Differences in image export between vendors and insti-
tutions also impacted the robustness of the developed model.
Vendors provide users with the option to save and export a
sequence with multiple slice locations as a single or multiple
series. This impacted the model’s ability to predict short-axis

FST2 for MVTexternal, where differences in image storage
existed between training and external data. Even for se-
quences that appear relatively uniform, subtle cross-vendor
and within-vendor differences may impact model generaliz-
ability, as was observed for short axis cine imaging for auto-
mated ventricular segmentation [16]. Data augmentation can
aid generalizability but does not entirely solve the problem.
Greater exposure to a larger variety of data and permutations
of image storage for classes with multiple slice locations
would likely improve accuracy.

We have made CardiSort available for the scientific
community to utilise, facilitating development of fully au-
tomated pipelines by allowing automated selection of the
requisite image series for processing. We have also pro-
vided our trained model weights, should other scientists
wish to use transfer learning to include their own data,
additional classes, or other magnet systems. Manual se-
lection of the desired sequence is still required in auto-
mated cardiac MRI post-processing pipelines described to
date [4–6, 17]. Automated extraction from non-curated
data would provide a crucial first step to applying AI

Fig. 5 Confusion matrices for multivendor training. A Hold-out test set sequence (left) and plane (right) confusion matrices; B external data sequence
(left) and plane (right) confusion matrices
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prospectively in the clinic, rather than retrospectively in a
controlled environment. A proposed future clinical
workflow would incorporate CardiSort to classify images
received directly from the scanner, with sorted images
then automatically sent to the appropriate post-
processing pipeline for quantitative metrics, e.g. ventricu-
lar segmentation [18], myocardial strain [19], perfusion
quantification [5], and scar quantification and classifica-
tion [20], and results of post-processing automatically re-
turned for image interpretation.

There are some limitations to our work. This was a relatively
small dataset for a deep learning task, with data augmentation
used to expose the network to a greater variety of inputs. Some
classes were not available for every vendor in the training data
and for external validation. We deliberately chose not to incor-
porate metadata within model input, which is variable between
vendors/centres and may be incomplete or unavailable in public-
ly available datasets. While the datasets reflect real-world com-
position of clinical adult cardiacMRI, themodelwas only trained
to recognise standard cardiac anatomy, with insufficient data
available for congenital abnormalities.

Our approach, sampling only 3 images per sequence, likely
impacted accuracy for predicting sequences that vary tempo-
rally, in image contrast or included image type throughout the
acquisition, as was observed for short-axis WBLGE for
MVTexternal. This represents a practical and efficient means
of representing sequences to a model requiring data of a con-
sistent shape for training. Cardiac MRI sequences may com-
prise a single image or multiple images, and a single or up to
three image types, and this approach ensured representation of
these. Future work might incorporate other architectures, for
example, a 3-dimensional CNN with greater number of input
images per sequence and/ or a recurrent neural network to
incorporate more sequential information, at the expense of
training efficiency.

In conclusion, we have trained a deep learning network on
multi-institutional multivendor data to infer 35 unique cardiac
MRI sequences by sequence type and imaging plane, with
high performance for the most common image types.We have
also made our work available for other scientists to use on
their own non-curated datasets or to adapt to include addition-
al sequences. Sorting of non-curated data represents a hereto-
fore missing link in the development of efficient and fully
automated processing pipelines, essential if they are to be
ultimately translated from the research to the clinical domain.
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