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Abstract
Objectives To automatically detect MRI artifacts on dynamic contrast-enhanced (DCE) maximum intensity projections (MIPs)
of the breast using deep learning.
Methods Women who underwent clinically indicated breast MRI between October 2015 and December 2019 were included in
this IRB-approved retrospective study. We employed two convolutional neural network architectures (ResNet and DenseNet) to
detect the presence of artifacts on DCE MIPs of the left and right breasts. Networks were trained on images acquired up to and
including the year 2018 using a 5-fold cross-validation (CV). Ensemble classifiers were built with the resulting CV models and
applied to an independent holdout test dataset, which was formed by images acquired in 2019.
Results Our study sample contained 2265 examinations from 1794 patients (median age at first acquisition: 50 years [IQR: 17 years]),
corresponding to 1827 examinations of 1378 individuals in the training dataset and 438 examinations of 416 individuals in the holdout
test dataset with a prevalence of image-level artifacts of 53% (1951/3654 images) and 43% (381/876 images), respectively. On the
holdout test dataset, the ResNet and DenseNet ensembles demonstrated an area under the ROC curve of 0.92 and 0.94, respectively.
Conclusion Neural networks are able to reliably detect artifacts that may impede the diagnostic assessment of MIPs derived from
DCE subtraction series in breast MRI. Future studies need to further explore the potential of such neural networks to complement
quality assurance and improve the application of DCE MIPs in a clinical setting, such as abbreviated protocols.
Key Points
• Deep learning classifiers are able to reliably detect MRI artifacts in dynamic contrast-enhanced protocol-derived maximum
intensity projections of the breast.

• Automated quality assurance of maximum intensity projections of the breast may be of special relevance for abbreviated breast
MRI, e.g., in high-throughput settings, such as cancer screening programs.
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Abbreviations
AUPRC Area under the precision-recall curve
AUROC Area under the receiver operating characteristic

curve

CAM Class activation map
CNN Convolutional neural network
CPU Central processing unit
CV Cross-validation
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DCE Dynamic contrast enhanced
DWI Diffusion-weighted imaging
GB Gigabyte
IQR Interquartile range
IRB Institutional review board
MIP Maximum intensity projection
MRI Magnetic resonance imaging
NPV Negative predictive value
PPV Positive predictive value
PR Precision-recall
RAM Random-access memory
ROC Receiver operating characteristic
ROI Region of interest
T Tesla
UHE University Hospital Erlangen
X-ray Röntgen radiation

Introduction

Breast cancer is the most common cancer in women. Over the
past decades, population-based screening programs have been
implemented aiming to detect breast cancer in earlier stages and
to reduce mortality rates [1–3]. The most widely used diagnostic
method in breast cancer screening is X-ray mammography. In
contrast to this, magnetic resonance imaging (MRI) has been
described in several studies to provide a higher sensitivity with
regard to breast cancer detection (e.g., [4–7]). Using MRI in
breast imaging has historically been accompanied by discussions
about its potential to contributing to overdiagnosis and even
overtreatment [8, 9], as well as with regard to the question
whether the increased sensitivity of MRI (with detection of can-
cer at earlier stages and reduced interval cancer rates) effectively
contributes to a survival benefit [10, 11]. The latter, however, is
suggested in a recent literature review by Mann et al [12] for
participants in the MRI screening studies. These aspects, as well
as its high direct and indirect costs, might have contributed to the
so far relatively limited widespread use of MRI in, e.g., breast
cancer screening, although promising results, for example serv-
ing in supplemental screening for women with dense breast
tissue, have been reported [11], and also despite beneficial fea-
tures such as the lack of radiation exposure and the possibility to
extract kinetic tissue features such as perfusion [13]. Common
clinical indications to perform diagnostic MRI imaging of the
breast are therefore limited and include breast cancer screening
in high-risk patients and improvement of diagnostic sensitivity in
dense breast tissue, among others [14].

In order to further increase the efficiency and feasibility of
usingMRI for the application in population-based breast cancer
screening, the shortening of MRI protocols by reducing both
the number of sequences acquired and the assessment time is
the focus of ongoing research to develop abbreviated MRI
protocols (e.g., [15–19]). Some of these approaches include

image visualizations with maximum intensity projections
(MIPs) to represent the highest intensity values along one axis
of a 3-dimensional (3D) volume in a 2-dimensional (2D) im-
age, allowing radiologists to quickly interpret the whole vol-
ume based on this 2D projection. Kuhl et al [15] were among
the first to propose an abbreviated MRI protocol for breast
cancer screening that included the assessment of dynamic
contrast-enhanced (DCE) MIPs derived from subtraction im-
ages of postcontrast images with a high negative predictive
value (NPV) in their study.

Peculiarities in MRI breast imaging, such as the required
large field of view or the anatomy itself, which makes the
positioning of the patient in special radiofrequency coils an
important task influencing the image quality, make it particu-
larly susceptible to the occurrence of image artifacts [20, 21].
Although many techniques exist to prevent them, artifacts
commonly occur in MRI examinations, which can be caused
by various reasons [22–25]. The recognition of artifacts is of
high relevance as their presence may significantly impede
diagnostic assessment. This is particularly relevant when ap-
plying DCE protocols, since contrast agent application cannot
be repeated during a single examination, thus needing for an
additive repeat examination and a double exposure to contrast
agents in case of low image quality.

Therefore, additional methods for assessing artifacts would
be desirable to inform radiologists about their presence when
evaluating MIPs, e.g., in the context of abbreviated breast
imaging protocols where limited sequences are acquired and
artifacts might not be compensated by complementary se-
quences. We propose a deep learning–based approach for an
automated detection ofMRI artifacts on DCEMIPs to support
and improve the diagnostic assessment. Therefore, we trained
two convolutional neural network (CNN) algorithms to binary
classify MIP images of the left and right breasts with regard to
the presence of significant artifacts.

Material and methods

Study sample and ethics approval

The retrospective study was approved by the ethics committee
of the Friedrich-Alexander-University Erlangen-Nürnberg,
waiving the need for informed consent. Women who under-
went clinically indicated breast MRI at the Institute of
Radiology of the University Hospital Erlangen (UHE) be-
tween October 2015 and December 2019 were included in
this study. Inclusion was performed independent of the re-
spective indications, which covered all current clinical indica-
tions for a breast MRI examination. Only entirely completed
MRI examinations acquired with a full diagnostic protocol
including contrast agent application were included in the
analysis.
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MRI protocol

TheMRI examinations were performed using the routine clin-
ical MRI devices (1.5–3 Tesla MRI; model names: Aera,
Avanto, Sola, Vida, and Skyra from Siemens Healthineers).
The clinical MRI protocol consisted of morphologic, contrast-
enhanced, and diffusion-weighted imaging (DWI) sequences.
Herein, morphologic, non-contrast-enhanced MRI sequences
included T2-weighted sequences with and without fat sup-
pression, dynamically acquired T1-weighted imaging se-
quences, and DWI sequences. Subtraction series were created
by subtracting the second postcontrast images from the native
T1-weighted images by the scanner system. A detailed over-
view of the range of different DCE sequence settings is given
in supplemental Table S1.

Data processing

All data were transferred from the routine picture archiving
and communication system to analytic workstations. For each
included subtraction volume, a MIP of the DCE subtraction
image was generated in direction of the slice axis, which was
identical to the z-axis in all datasets, resulting in a 2D repre-
sentation of voxels with the highest intensities along the trans-
verse plane. From these MIPs, the upper left and right image
quadrants were cropped out automatically using Python (ver-
sion 3.8.5), displaying the left and right breasts as regions of
interest (ROIs). The cropping was assisted by anatomical
structures based on the sternum position, which was derived
from the corresponding native T1-weighted series.

Visual artifact assessment

One radiologist (S.B. > 10 years of experience in radiology)
visually rated the processed images with regard to the pres-
ence of artifacts. A binary labeling was performed on the level
of individual MIP images of the left and right breasts, indicat-
ing either the presence of (one or more) artifacts (1 = artifacts
present) or the absence of any artifacts (0 = no artifacts pres-
ent), without further localizing the artifacts on the images. The
positive class was defined as an artifact with the potential to
mask a suspicious finding of any size on the image but did not
have to occur within the area of an existing suspicious lesion
in MRI examinations that presented with a suspicious lesion
visible on the MIP.

Image preprocessing and image augmentation

All preprocessing steps were performed in Python (version
3.8.5) using the SimpleITK library version 2.0.2 [26, 27]. A
MIP was computed from each included subtraction volume of
the second postcontrast phase in the direction of the z-axis
resulting in a 2D representation of voxels with the highest

intensities along the transverse plane. We here used images
of the second postcontrast phase as related to the timing of the
contrast agent administration in the locally established MRI
protocols; this postcontrast phase is considered to provide the
highest image quality. From the resulting images, the upper
left and right image quadrants were cropped out, displaying
the left and right breasts as ROIs (see schema in the supple-
mentary information, Figure S1). The cropping was assisted
by anatomical structures based on the sternum position, which
was derived from the corresponding native T1-weighted series
using an in-house developed Python script. This sternum-
assisted cropping was applied only if the cropping position y-
crop was greater than 1/2 × imageheight to ensure the inclusion
of the ROI in the resulting image section. The exact cropping
position ycrop was calculated by adding an offset of 5% of the
image height to the sternum position:

ycrop ¼ ysternumpos þ 0:05� imageheight

Images were further normalized (mean = 0, standard devi-
ation = 1), resized to 256 × 256 pixel, and saved as NumPy
arrays [28] that served as input for the deep learning algo-
rithms. For the visual expert reading regarding the presence
of artifacts, these cropped images were additionally saved as
JPEG files. The following standard image augmentation tech-
niques were implemented using themonai Python library ver-
sion 0.4.0 [29]: random rotation (probability: 0.5; maximum
angle: 180 degrees), random flip across x-axis and y-axis
(probability: 0.5), and random zoom (probability: 0.5; mini-
mum zoom: 0.5; maximum zoom: 1.5).

Deep learning

Experiments were performed using two CNN architectures, a
DenseNet121 [30] and a ResNet18 [31], to perform a binary
classification to detect the presence or absence of artifacts on
DCE MIP images of the left and right breasts. The data were
split into a training dataset formed by the examinations acquired
up to and including the year 2018 and an independent holdout
test dataset including all examinations acquired in 2019 from
patients, which were not already contained in the training
dataset. The neural networks were trained using a stratified 5-
fold cross-validation (CV), i.e. a proportion of 20% of the
training dataset was used for testing in each fold. The training
data of each fold was further split by 80 to 20% into the actual
training dataset and a validation dataset to monitor the valida-
tion loss and metrics. All CV models were trained for 200
epochs using a batch size of 128, resulting in 19 steps per epoch.
Trainings were carried out on a Tesla V100 graphics processing
unit with 32GB memory and an Intel® Xeon® CPU E5-2698
v4 @2.20GHz (20 cores) with 256GB RAM.

For each network architecture, an ensemble classifier was
built from the CV models using the weights from the epoch
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with the lowest validation loss observed within 200 epochs.
Hence, each of the two ensembles consisted of 5 models, which
were finally applied to predict the presence of artifacts in the
holdout test dataset ; the predicted probabilities of the 5 models
were averaged [32] and images with final probabilities > 0.5 were
considered to contain artifacts. Further details on the initial net-
work settings and network modifications are given in the supple-
mentary information (the “Deep Learning” section).

Statistical analysis

Statistical analyses were performed with the R software version
4.0.4 [33]. Continuous variables were compared between two
groups using the Wilcoxon rank sum test (two-sided).
Relationships between categorical variables were assessed by
measuring their association in contingency tables. The calcula-
tion of basic summary statistics and the Wilcoxon rank sum test
[34] was implemented in base R [33]. Contingency tables (with
statistics) were calculated with the sjstats R package version
0.18.1 [35]. Theφ correlation coefficient [36] was used to mea-
sure the association between two dichotomous variables. Its p
value was calculated using the chi-square test. For all statistical
tests, a significance level α = 0.05 was used. Model metrics
were calculated with the mlr3measures package version 0.3.1
[37]. Graphics were created with the R packages ggplot2 version
3.3.3 [38], ggpubr version 0.4.0 [39], and precrec version 0.12.1
[40]. To assess the strength of agreement between the ResNet
and the DenseNet ensemble classifiers with regard to the predic-
tion of artifacts in the independent holdout test dataset, Cohen’s
kappa [41] for two raters was calculated using the R package irr
version 0.84.1 [42]. According to Landis and Koch, the strength
of agreement based on the kappa statistic can be categorized as
follows: kappa < 0.00, poor; 0.00 to 0.20, slight; 0.21 to 0.40,
fair; 0.41 to 0.60, moderate; 0.61 to 0.80, substantial; 0.81 to
1.00, almost perfect [43]. To support the interpretability of the
deep learning classifiers, class activation maps (CAMs) can be
used to represent so-called discriminative regions as color-coded
heatmaps, which mark locations in the image that are considered
important by the CNN classifier to decide on the derived class
[44]. These CAMs were computed for the test images from the
model with the highest area under the receiver operating charac-
teristic (ROC) curve on the holdout test dataset using the
GradCAM++ algorithm [45] to provide a better interpretability
of the model’s predictions utilizing the implementation already
provided with the monai library [29].

Results

Study sample characteristics

Our study sample contained 2265 MRI examinations from
1794 patients (median age at first acquisition: 50 years

[IQR: 17 years]), which were acquired between October
2015 and December 2019. One thousand four hundred sixty-
one individuals of the study sample received one MRI exam-
ination, 225 individuals received two, 80 individuals received
three, and 28 individuals received four or more MRI exami-
nations. The training dataset included examinations acquired
up to and including the year 2018, corresponding to 1827
examinations of 1378 patients (median age at first acquisition:
50 years [IQR: 16.75 years]), resulting in a total of 3654 train-
ing images. The independent holdout test dataset was formed
with all examinations acquired in 2019 from patients, which
were not already included in the training dataset. This holdout
test dataset contained 438 examinations of 416 patients (me-
dian age at first acquisition: 51 years [IQR: 18 years]), result-
ing in 876 test images. Demographic data, sample character-
istics, and target class distribution across the datasets are
shown in Table 1.

No significant difference in the distribution of the age at
first acquisition could be observed between the training cohort
and the test cohort (p value: 0.2). When including repeated
studies for one patient, the overall training cohort was signif-
icantly younger than the test cohort (p value: < 0.001).

Presence of artifacts within the dataset

Artifacts were detected by the visual reading in 51% (2332 out
of 4530 images) of all images in the dataset. This corresponds
to the presence of artifacts bilaterally in 36.7% (n = 832 ex-
aminations), unilaterally in 29.5% (n = 668 examinations),
and the absence of artifacts in 33.8% (n = 765 examinations)
of all examinations.

In the training dataset and in the test datasets, artifacts were
present in 53% (1951 out of 3654 images) and 43% (381 out
of 876 images) of all images, respectively, which corresponds
to a statistically significant difference of the presence of arti-
facts between the training dataset and the test dataset (φ cor-
relation coefficient: 0.078; p value: < 0.001).

Deep learning

The ResNet ensemble demonstrated an area under the ROC
curve of 0.923 for the detection of artifacts in breast DCE
MIPs, while the DenseNet ensemble provided an area under
the ROC curve of 0.940 on the holdout test dataset (Table 2).
Herein, the NPV was 0.874 for the ResNet and 0.915 for the
DenseNet ensemble with nearly equivalent positive predictive
values (PPVs) of 0.816 and 0.8, respectively (Table 2).

During the 5-fold CV training, the ResNet models provided
an area under the ROC curve of 0.879 (± 0.010) on average
and the DenseNet models provided an area under the ROC
curve of 0.896 (± 0.012) with an average NPV of 0.776 (±
0.012) and 0.791 (± 0.019), and a PPV of 0.823 (± 0.018) and
0.830 (± 0.029), respectively (Table 3). With a kappa = 0.83
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(p < 0.001), there was an “almost perfect” agreement (accord-
ing to [43]) between the DenseNet and the ResNet ensemble
classifiers with regard to the prediction of artifacts in the
independent holdout test dataset. Table 4 shows the results
of the comparison of the model performance between the
DenseNet and the ResNet during CV. For all performance
measures, no statistically significant differences between
the two network architectures could be observed.
However, the number of epochs until convergence (“Best
epoch”) and the average time per epoch until convergence
were significantly lower/shorter for ResNet compared to
DenseNet.

Figure 1 shows the ROC curve (left column) and the
precision-recall (PR) curve (mid column) of the 5 ResNet

CV models (row 1) and the performance of the ResNet en-
semble on the full holdout test dataset (row 2). The
training and validation loss curves for the ResNet aver-
aged over the 5 CV folds are shown in the right column
of Fig. 1. It can be recognized here that there is no
further improvement in the validation loss from about
epoch 100, which is in accordance with the best epochs
shown in Table 3 (mean of the best epochs of the 5
ResNet CV folds: 88.800 (± 25.371)) and might be
caused by overfitting.

Figure 2 shows the ROC curve (left column) and the PR
curve (mid column) of the 5 DenseNet CVmodels (row 1) and
the performance of the DenseNet ensemble on the full holdout
test dataset (row 2). The training and validation loss curves for
the DenseNet averaged over the 5 CV folds are shown in the
right column of Fig. 2. Here, overfitting can be observed from
around epoch 160, which is also reflected by the best epochs
shown in Table 3 (mean of the best epochs of the 5 DenseNet
CV folds: 159.0 (± 36.407)), however, accompanied by a
larger standard deviation compared to the ResNet CVmodels.

Class activation maps

Figure 3 exemplarily demonstrates CAMs for one each of a
true positive, true negative, false positive, and false negative
predicted images from the holdout test dataset for the respec-
tive class predicted by the classifier (supplemental Figures S2
to S5 provide further CAM images for each of these
categories). All CAM images were computed using the
DenseNet model with the highest area under the ROC curve
on the holdout test dataset, i.e. CV model M2 (AUROC =

Table 1 Demographic data,
sample characteristics, and target
class distribution across the
training dataset and test dataset.
IQR interquartile range

Variable Overall sample Training dataset Test dataset

N patients 1794 1378 416

Age

Median age (IQR) (years) 49 (16) 49 (16) 50 (18)

Median age (IQR) at first acquisition (years) 50 (17) 50 (16.75) 51 (18)

N examinations 2265 1827 438

N repeated examinations per patient

One examination 1461 1067 394

Two examinations 225 203 22

Three examinations 80 80

Four examinations 27 27

Six examinations 1 1

N images 4530 3654 876

Left breast 2265 1827 438

Right breast 2265 1827 438

N artifacts (%) 2332 (51%) 1951 (53%) 381 (43%)

Left breast 1147 (51%) 959 (52%) 188 (43%)

Right breast 1185 (52%) 992 (54%) 193 (44%)

Table 2 Ensemble classifier performance on the holdout test dataset.
The table shows the performance of the ensemble classifiers for ResNet
and DenseNet on the holdout test dataset. AUROC area under the receiver
operating characteristic curve, AUPRC area under the precision-recall
curve, PPV positive predictive value, NPV negative predictive value

Variable DenseNet ResNet

Accuracy 0.858 0.848

AUROC 0.940 0.923

AUPRC 0.928 0.907

Sensitivity 0.900 0.840

Specificity 0.826 0.855

PPV 0.800 0.816

NPV 0.915 0.874
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0.938; see supplemental Table S2) and examined and
interpreted by an experienced radiologist (S.B.). The class-
discriminative regions for the correctly predicted artifact-
containing images coincide well with the artifact-affected re-
gions (true positives, Fig. 3 [TP] and supplemental Figure S2).
For the correctly predicted artifact-free images, the class-
discriminative regions for the negative class rather seem to
reflect areas with a sharp demarcation of contrast agent-
containing blood vessels from breast tissue (true negatives,
Fig. 3 [TN] and supplemental Figure S3). When incorrectly
predicting an artifact in artifact-free images (false positives),
the CAMs of the (falsely predicted) positive class seem to
correlate with either regions in the image that give a blurred
impression (Fig. 3 [FP] and supplemental Figure S4, images A
and E), or with regions that contain high intensity values
(supplemental Figure S4, images B, C, and D), whereas the
incorrect classification of the absence of an artifact in an
artifact-containing image (false negatives) results in heatmaps
for the (falsely predicted) negative class that seems to correlate
with regions in the image that contain either high intensity
values, such as contrast enhancements spots, or dense breast
tissue (Fig. 3 [FN] and supplemental Figure S5, images A and
B), and areas with a sharp demarcation of contrast agent-
containing blood vessels from breast tissue (supplemental
Figure S5, images C–E).

Artifacts in images with significant lesions

Figure 4 represents 9 clinical cases taken from our dataset with
BI-RADS 5 and BI-RADS 6 lesions, respectively. The first
row represents 3 different cases without artifacts (a–c). Tiles
d–f show images, where the artifact has no or a moderate
influence on the diagnostic assessment, whereas in the last
row, the presence of artifacts significantly impedes the diag-
nostic evaluation of the lesions (g–i).

Discussion

We demonstrated a deep learning–based approach consisting
of two CNN ensembles, each trained with a 5-fold CV, to
automatically detect MRI artifacts on DCEMIPs of the breast.
The DenseNet ensemble (area under ROC: 0.940)
outperformed the ResNet ensemble (area under ROC: 0.923)
on the independent holdout dataset (Table 2). While the PPVs
derived on the holdout test dataset of both ensemble networks
are quite similar (both ~0.8), the NPV of the DenseNet is
0.915 compared to 0.874 for the ResNet. These values suggest
that the DenseNet detected artifacts in the independent hold-
out test dataset quite reliably.

The reasons for artifacts in MRI examinations vary widely
with numerous possible sources [22–25]. Breast MRI itself

Table 3 Cross-validation results. The table shows the performance
measures of the 5 cross-validation models for ResNet and DenseNet on
their test datasets. CV cross-validation, Mean (unweighted) average over
the 5 CV folds, SD (unweighted) standard deviation over the 5 CV folds,

AUROC area under the receiver operating characteristic curve, AUPRC
area under the precision-recall curve, PPV positive predictive value, NPV
negative predictive value, sec seconds, Time per epoch average time per
epoch observed until convergence

Model Variable CV fold 1 CV fold 2 CV fold 3 CV fold 4 CV fold 5 Mean (SD)

DenseNet Best epoch 177 146 101 190 181 159.0 (± 36.407)

Time per epoch (sec) 17.740 17.738 17.765 17.732 17.711 17.737 (± 0.019)

Accuracy 0.819 0.844 0.798 0.803 0.792 0.811 (± 0.021)

AUROC 0.906 0.906 0.886 0.901 0.881 0.896 (± 0.012)

AUPRC 0.925 0.921 0.894 0.923 0.894 0.911 (± 0.016)

Sensitivity 0.797 0.838 0.831 0.803 0.800 0.814 (± 0.019)

Specificity 0.845 0.850 0.760 0.803 0.782 0.808 (± 0.039)

PPV 0.854 0.865 0.798 0.824 0.808 0.830 (± 0.029)

NPV 0.785 0.822 0.797 0.780 0.773 0.791 (± 0.019)

ResNet Best epoch 67 82 64 118 113 88.800 (± 25.371)

Time per epoch (sec) 8.162 8.152 8.195 8.125 8.129 8.153 (± 0.028)

Accuracy 0.807 0.813 0.795 0.796 0.789 0.800 (± 0.010)

AUROC 0.884 0.891 0.867 0.884 0.871 0.879 (± 0.010)

AUPRC 0.905 0.913 0.889 0.913 0.887 0.901 (± 0.013)

Sensitivity 0.779 0.818 0.805 0.780 0.805 0.797 (± 0.017)

Specificity 0.839 0.806 0.783 0.815 0.771 0.803 (± 0.027)

PPV 0.847 0.829 0.809 0.829 0.801 0.823 (± 0.018)

NPV 0.769 0.795 0.778 0.763 0.775 0.776 (± 0.012)
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provides a certain range of potential artifacts that has exten-
sively been examined in literature, also giving advice on pos-
sible counter mechanisms [20]. Our results demonstrate that
visually detectable artifacts frequently occur in dynamic breast
MRI with about two-third of all examinations of our cohort
revealing artifacts in DCE MIPs. Artifact prevalence has
mainly been investigated to the specific subgroup of motion
artifacts, which have been reported by Carbonaro et al [46]
with a rate of 35%, whereas Clauser et al [47] reported motion
artifacts alone in about 46% of the cases, and Fiaschetti et al
[48] reported any artifacts in 33% of the evaluated studies.

However, since the exact definition of “artifacts” differs
among the studies as do the used MRI devices, the compara-
bility of these results to ours may be limited.

Abbreviated breast MRI protocols with the assessment of
MIPs as the primary analysis have been introduced by Kuhl
et al [15] in their landmark paper in 2014.With the potential to
reduce examination and reading times, the ongoing work to
develop abbreviated imaging protocols aims to further in-
crease the applicability of MRI as a highly sensitive method,
e.g., for breast cancer screening programs (reviewed in [49]).
Besides a majority of MRI breast imaging protocols that in-
clude DCE sequences, also contrast-agent free techniques
such as DWI are being explored [50]. All abbreviated imaging
techniques do share the common feature that only few acqui-
sitions are available for the assessment, further increasing the
importance of persistent high image quality since no compen-
sating complementary additive acquisitions are available.
Using MIPs as a primary reading source adds up to the chal-
lenge, as hyperintense artifacts in the single slices progress
into the MIP projections. Thus, for radiologists, the awareness
of the presence of artifacts is of high relevance as they can
obscure relevant lesions (e.g., Fig. 4, tiles g–i).

For a better interpretability of the neural networks’ deci-
sion, we decided to generate CAMs. These represent class-
discriminative regions as heatmaps for an input image to vi-
sualize image regions that were considered important by the
neural network to infer the predicted class [44]. Notably, the
class-discriminative regions for the correctly classified artifact
images coincide well with image regions that indeed contain
artifacts (Fig. 3 [TP] and supplemental Figure S2). CAMs of
the correctly classified artifact-free images indicate that a

Table 4 Comparison of the DenseNet and the ResNet network
architectures. The table shows the p values computed with the
Wilcoxon rank sum test to compare the performance results of the two
utilized network architectures during cross-validation. AUROC area
under the receiver operating characteristic curve, AUPRC area under the
precision-recall curve, PPV positive predictive value, NPV negative pre-
dictive value, sec seconds, Time per epoch average time per epoch ob-
served until convergence, * p value < 0.05, ** p value < 0.01

Variable p value

Best epoch 0.032*

Time per epoch (sec) 0.008**

Accuracy 0.421

AUROC 0.093

AUPRC 0.207

Sensitivity 0.530

Specificity 1.000

PPV 1.000

NPV 0.151

Fig. 1 ResNet plots. The figure shows the receiver operating
characteristic (ROC) curve (left column) and the precision-recall curve
(mid column) and the loss curves (right column) for the ResNet architec-
ture. Row 1: ROC and PR curve averaged over 5 cross-validation folds.

Row 2: ROC and PR curve for the ensemble’s prediction on the indepen-
dent holdout test dataset. The training loss (dark blue) and the validation
loss (yellow) curves are averaged over 5 CV folds
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sharp demarcation of contrast agent-containing blood vessels
from breast tissue seems to be considered important by the
neural network for its decision regarding the absence of arti-
facts (Fig. 3 [TN] and supplemental Figure S3), which is
underlined by the observation that these sharp demarcation
of blood vessels may also be related to the occurrence of false
negative predictions (Fig. 3 [FN] and supplemental
Figure S5). This is reasonable, since this clear differentiation
would no longer be given in case of, e.g., the presence of motion
artifacts. However, image regions that give a blurred impression
or regions with high intensity values may cause false positive

predictions (Fig. 3 [FP] and supplemental S4). It has to be noted
here that some of the images of supplemental Figure S4 indeed
contain slightly blurred image impressions in the areas that are
located by the class-discriminative regions in the CAMs for the
“falsely predicted” class (rows 2–3 in supplemental Figure S4,
images A, C, D, E), which, however, were not considered “sig-
nificant artifacts” (with the potential to mask a suspicious find-
ing) during the radiologist’s reading.

Recently, researchers also applied artificial intelligence to
detect and classify lesions in DCEMIPs of the breast [51–53].
Possibly, such automated evaluations might also be hampered

Fig. 2 DenseNet plots. The figure shows the receiver operating
characteristic (ROC) curve (left column) and the precision-recall curve
(mid column) and the loss curves (right column) for the DenseNet archi-
tecture. Row 1: ROC and PR curve averaged over 5 cross-validation

folds. Row 2: ROC and PR curve for the ensemble’s prediction on the
independent holdout test dataset. The training loss (dark blue) and the
validation loss (yellow) curves are averaged over 5 CV folds

Fig. 3 Class activation maps
(examples). The figure shows the
Grad-CAM++ visualizations for
one each of a true positive (TP),
true negative (TN), false positive
(FP), and false negative (FN)
predicted images from the hold-
out test dataset for the respective
predicted class. The heatmaps
depict with the color gradient
from blue to red the relevance of
each pixel for the inference of the
respective class.
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by MRI artifacts present on MIP images. Therefore, our re-
sults may also help to further improve automated lesion de-
tection and classification by complementing these with an
automated artifact detection in the future.

Limitations

Our study has several limitations. First, abbreviated breast MRI
protocols are currently mostly evaluated as potential screening
examinations; however, our dataset was extracted from a patient
population of a university hospital; thus, screening collectives
might present different patient characteristics. Second, a signifi-
cant deviation of the proportion of artifacts was observed between
the training and the test dataset (53% vs. 43% artifact-containing
images, respectively). We are aware of the fact that the neural
networks were exposed to a different class distribution during
training compared to inferring the holdout test dataset, potentially
influencing their performance. Third, another limitation could be
the use of a binary outcome in our present study, potentially
leading to images classified as “negative,” which may, however,
contain slight artifacts considered insignificant to the image eval-
uation (as outlined above). In contrast, artifact-containing images
were not further subcategorized, resulting in some range of artifact
severity and different types of artifacts in images of the positive
class. Since these circumstances could contribute to the occur-
rence of both false positives and false negatives, future studies

could include a more finely granulated artifact categorization. In
addition, since the analysis was based on artifacts in MIP images,
artifacts or technical issues that might impede the diagnostic as-
sessment but are invisible on MIPs might have been missed, e.g.,
an improper administration of contrast agents. Another important
limitation is that the information on the scanner model and mag-
netic field strength were not provided as input for training the
deep learning algorithms. A subsequent analysis of the ensemble
classifiers’ model performance on the holdout test dataset strati-
fied by scanner model (supplementary information, Tables S3
and S4) indicates that these information might indeed be helpful
for improving the predictions and future studies should include
them to investigate their influence on the prediction of artifacts in
MRI images. There is also some evidence that the presence of
lesions (defined as BI-RADS score ≥ 3)may potentially influence
the classifiers’ performance (supplementary information,
Tables S5 and S6). It would be interesting to evaluate this in more
detail in the future, although the practical use in artifact detection
for quality assurance is certainly limited, as the information on the
BI-RADS score would need to be available in advance of the
diagnosticMRI examination. Furthermore, althoughwe have test-
ed the algorithms on an unseen and independent holdout test
dataset, no external validation was performed in this retrospective
single institution study. Finally, a multi-reader setting to establish
the ground truth might further improve the automated artifact
detection in MIPs.

Fig. 4 BI-RADS 5 and BI-RADS
6 lesions in clinical cases (exam-
ples). Each tile of the figure pre-
sents the left or right breast of one
clinical case with a diagnosed BI-
RADS 5 or BI-RADS 6 lesion.
Row 1 (a–c) shows images with-
out the presence of artifacts (a:
BI-RADS 6; b: BI-RADS 6; c:
BI-RADS 5). Row 2 (d–f) shows
images that contain artifacts with
no or moderate influence on the
diagnostic assessment (d: BI-
RADS 5; d: BI-RADS 5; f: BI-
RADS 6). Row 3 (g–i) shows
images with artifacts potentially
impeding the diagnostic evalua-
tion (g: BI-RADS 6; h: BI-RADS
6; i: BI-RADS 5)
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Conclusion

In summary, neural networks are able to reliably detect arti-
facts that may impede the diagnostic assessment of MIPs de-
rived from DCE subtractions series in breast MRI protocols.
Although future studies are required to further improve the
detection of artifacts in MRI images using deep learning and
to investigate the relevance of these methods to complement
quality assurance in the clinical settings, our work demon-
strates the potential of neural networks to serve as quality
indicators and to complement automated lesion detection
and classification.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00330-022-08626-5.
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