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Abstract
Objectives Age estimation, especially in pediatric patients, is regularly used in different contexts ranging from forensic over
medicolegal to clinical applications. A deep neural network has been developed to automatically estimate chronological age from
knee radiographs in pediatric patients.
Methods In this retrospective study, 3816 radiographs of the knee from pediatric patients from a German population (acquired
between January 2008 and December 2018) were collected to train a neural network. The network was trained to predict
chronological age from the knee radiographs and was evaluated on an independent validation cohort of 423 radiographs
(acquired between January 2019 and December 2020) and on an external validation cohort of 197 radiographs.
Results The model showed a mean absolute error of 0.86 ± 0.72 years and 0.9 ± 0.71 years on the internal and external validation
cohorts, respectively. Separating age classes (< 14 years from ≥ 14 years and < 18 years from ≥ 18 years) showed AUCs between
0.94 and 0.98.
Conclusions The chronological age of pediatric patients can be estimated with good accuracy from radiographs of the knee using
a deep neural network.
Key Points
• Radiographs of the knee can be used for age estimations in pediatric patients using a standard deep neural network.
• The network showed a mean absolute error of 0.86 ± 0.72 years in an internal validation cohort and of 0.9 ± 0.71 years in an
external validation cohort.

• The network can be used to separate the age classes < 14 years from ≥ 14 years with an AUC of 0.97 and < 18 years from ≥ 18
years with an AUC of 0.94.
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Abbreviations
AUC Area under the curve
CNN Convolutional neural network
CT Computed tomography
MAE Mean average error
PACS Picture archiving and communication system
ROC Receiver operating characteristic

Introduction

Age estimation by radiological methods is performed by
assessing the skeletal maturity in scans and has applications
in many different contexts: In forensic medicine, the aim is to
identify the age of unknown deceased persons [1], whereas in
legal applications, the goal is to determine whether an adoles-
cents with dubious date of birth is of legal age [2]. In pediatric
endocrinology, bone age estimation is commonly used to de-
termine whether a growth disorder is present or not [3].

Various radiological approaches have been proposed for
bone age estimation ranging from radiographs of the hand
[4], elbow [5, 6], knee [7], pelvis [8], or feet [9], computed
tomography (CT) of the teeth [10], clavicle [11], or rib [12] to
magnetic resonance imaging (MRI) of the knee [13], hand
[14], or iliac crest [15]. Although undoubtedly bone age
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estimation from radiographs of the left hand is by far the most
commonly used in clinical routine, this method has some lim-
itations: The most frequent used reference for this is the
Greulich and Pyle (G&P) atlas, which is based on single ra-
diographs of the left hand taken more than 100 years ago from
a population in Cleveland, OH, consisting primarily of white
children of high socioeconomic status, raising the question
how well these data can be transferred to current populations.

Another method for bone age estimation is based on radio-
graphs of the knee. The knee appears well suited for age esti-
mation for several reasons: First, the knee yields information
for three epiphyses (the distal femur, proximal tibia, and prox-
imal fibula); second, the knee is easy to x-ray in a well-defined
position with low radiation exposure; and last but not least,
large current case series of knee radiographs can easily be
created, as the knee is frequently examined in daily clinical
practice in the context of trauma. Pyle and Hoerr created a
reference atlas for bone age estimation from knee radiographs
that can be similarly used as the well-known Greulich-Pyle
atlas [7]. The atlas was verified in certain populations and has
been shown to be rather precise, although small deviations
could be seen [16–19]. O’Connor proposed a more systematic
way to determine the age by introducing ten maturity indica-
tors and subsequent regression over the estimated ages for
each indicator [20].

Since the age estimation, based either on an atlas or on
maturity indicators, is time consuming and also prone to
intra- and inter-rater variability [21], an automation would
be of interest, because this would reduce the time effort while
at the same time lead to more standardization. Accordingly,
deep learningmethods [22] based on artificial neural networks
have been employed for automation of age estimation based
on radiographs of the hand [23]. A similar automation for age
estimation based on radiographs of the knee is currently miss-
ing. Therefore, in this study, we apply deep learning methods
to demonstrate that such automation is possible in a German
population.

Materials and methods

Ethical approval for this retrospective study was granted by
the local ethics committee (Institutional Review Board of the
University Hospital Essen; registry number 21-10069-BO).
Written and informed consent was waived by the ethics board
because of the retrospective nature. All methods and proce-
dures were performed in accordance with the relevant guide-
lines and regulations.

Patients

Using the radiological information system of our hospital
(University Hospital, Essen, Germany), all patients younger

than 21 years who had a radiograph of the knee in anterior-
posterior direction between January 2008 and December 2020
were collected. Two cohorts were created, patients with an
examination between January 2008 and December 2018
formed the training cohort, while those between January
2019 and December 2020 were used as the validation cohort.
Since patients present in the training as well as in the valida-
tion cohort can introduce positive bias, scans of patients in-
cluded in the training cohort were removed from the valida-
tion cohort so that each patient was included in exactly one of
the two cohorts. Scans were excluded if they were mislabeled
and showed a lateral view. They were also excluded if they did
not show the full knee between the distal femoral physis and
the proximal fibular physis (e.g., a scan was excluded if the
femur was of main interest of acquisition and the fibula was
thus not visible), or if a knee arthroplasty had been performed.
Scans with screws or temporary stabilization artifacts were not
excluded, as long as they did not occlude a major part of the
knee. Furthermore, if the image quality was deemed too low,
e.g., if the scan was under- or overexposed or a cast obstructed
the scan too much, the scan was excluded. In case both knees
were visible, only one of them was taken at random.

Based on these criteria, the training set comprised 3816
radiographs from 2350 patients, while the internal validation
cohort consisted of 423 radiographs of 327 patients respec-
tively (Fig. 1).

In addition, an external validation cohort was acquired
(Elisabeth Hospital, Essen, Germany). Patients with age <
21 years with a radiograph of the knee in anterior-posterior
direction between January 2020 and May 2021 were included
into the external validation cohort with the same criteria. After
applying the exclusion criteria, the external validation cohort
comprised 197 radiographs of 188 patients (Fig. 1).

Radiograph acquisition

All radiographs were acquired mainly on Siemens (Siemens
Healthineers), AGFA (AGFAHealthcare), and Canon (Canon
Medical Systems) scanners (Table 1). On average, the radio-
graphs were acquired with 65.7 kVp (range: 49.9–76.8), 64.8
kVp (range: 51.8–74.8), and 5.1 mAs (range: 1–42) and 5.2
mAs (range 1–32) in the training and internal validation co-
horts respectively. For the external validation cohort these
parameters were not available in the DICOM tags.

Collected variables

For each radiograph, the chronological age was computed by
taking the difference between the birth date and the acquisition
date. Moreover, the sex of the patient was extracted from the
DICOM tags and used as additional input to the neural net-
work. For all patients, the birth date as well as the sex infor-
mation was available.
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Cropping of the knee region

Since the radiographs exhibit a large variety and often
only part of the scan actually shows the knee, for efficien-
cy purposes, the images should be centered and cropped
roughly the center of ossification, i.e., largely around the
intercondylar area. Though manually annotating the area
is possible, for a fully automated solution, the area should
be cropped also automatically. Accordingly, a network
was trained to locate this area by randomly selecting and
annotating 1000 knee radiographs from the training cohort
by bounding boxes that enclosed the lower part of the
femur, the upper part of the tibia, and the upper part of
the fibula. The aspect ratio of the box was fixed to 2:3
since the knee is taller than wider. A cascade-CNN was
then trained to locate the area. Details of the network and
the training procedure can be found in Annex 1. After
training, the network was used as a preprocessing tool to
crop images around the intercondylar area for all
radiographs.

Preprocessing

The intensity of the cropped images was then linearly rescaled
to the range 0–255 (Fig. 2). Images were converted from
grayscale to RGB by replicating the gray channel.

Neural network

A standard network architecture, the ResNet-34, was used for
modeling [24]. Because it is well known that sex has a large
impact on the maturity of bones, sex was added as a feature to
the network. The ResNet-34 was pretrained on the ImageNet
dataset [25] and optimized using the L1 loss and the Adam
optimizer. During training, several augmentations were used,
which regularizes the network and helps its ability to general-
ize. The batch size was set to 32. Early stopping was em-
ployed to avoid overfitting. Details on the network can be
found in Annex 2.

Cross-validation

A 5-fold cross-validation was used during training to optimize
the learning rate and to obtain an estimate on the generaliz-
ability and performance of the network. The learning rate that
obtained the lowest average mean absolute error (MAE) over
the cross-validation folds was finally used. Two modeling
strategies were tested during cross-validation: using the single
best performing model or creating a snapshot ensemble [26].
Snapshot ensembling is a simple technique that boils down to
saving the top k best performing models that were seen during
training and creating a simple ensemble of these by taking the
median of their predictions. For this purpose, the best 5
models were saved during training.

Fig. 1 Patient flowcharts with inclusion and exclusion criteria

Table 1 Overview of the scanners used for the acquisition of the radiographs. Scanners with less than 50 examinations were gathered into the “Other”
group

All (N = 4436) Train
(N = 3816)

Internal validation
(N = 423)

External validation
(N = 197)

SIEMENS Flurospot Compact FD 2287 1884 403 0

AGFA (CR 58, Solo, 51xx, Compact Plus) 1902 1902 0 0

CANON 189 0 0 189

Other 58 30 20 8
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Evaluation

The final model was created by re-using the models trained
during cross-validation. The reason for this approach is that it
is not as wasteful as an explicit test cohort, which would have
to be split off from the training set and would not be used
directly in the final modeling. Such a test set would be neces-
sary in our case since the training of the networks used early
stopping, which depends explicitly on such a set. In addition,
using this approach, every radiograph obtains multiple predic-
tions which could be used as a confidence measure.

The modeling strategy (best model vs. snapshot) together
with the best learning rate which showed better results during
the cross-validation was selected as the final model.

In addition, the models were evaluated using receiver op-
erating characteristic (ROC) analysis for their ability to distin-
guish between the age groups < 14 and ≥ 14 years as well as <
18 and ≥ 18 years, which is relevant for forensic applications.

Statistics

All descriptive statistics were reported as mean ± standard
deviation. To compare the absolute mean differences between
the true and the predicted ages, a one-sided t-test was

employed. The null hypothesis for this test is that the absolute
differences (corresponding to prediction errors) on average are
larger than 1 year; the alternative hypothesis is that the errors
on average are smaller than or equal to 1 year. ROC analysis
was employed to evaluate separation of age groups. Statistical
significance was chosen to be below a p-value of 0.05.
Correlation coefficients were computed using Pearson’s meth-
od. All analyses were conducted with Python 3.7 and the
SciPy package.

Results

Demographics

The mean age of all patients was 14.0 ± 4.8 years (range: 0–21
years), with 1287 females and 1578males (Table 2 and Annex
3). No large deviation was seen between the distributions of
age and sex between the datasets (Fig. 3).

Cropping the knee region

The cropping of the knee region worked with high accuracy;
all knees were detected with the exception of 3 radiographs, 2

Fig. 2 Cropped knee radiographs for three patients. The upper row
depicts radiographs that were included into the study while the lower
row shows examples of radiographs that were excluded. A Male patient
(18.5 years). B Female patient (3.3 years). C Female patient (13.0 years).
D Male patient (6.8 years). E Female patient (15.7 years), excluded

because of low image quality. F Female patient (5.3 years) excluded
because the knee is not fully visible. G Female patient (19.8 years)
excluded because of knee arthroplasty. H Male patient (16.5 years)
excluded because of lateral view
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from younger children (< 2 years), yielding an accuracy above
99%. The errors on the 2 younger patients were not surprising,
since there were quite few younger children in the training set,
and no attempts had been made to deal with the imbalance.

Cross-validation

During the cross-validation the best learning rate as well as
modeling strategy (best single model vs. snapshot
ensembling) was tested. The best learning rate was 10−4 to-
gether with snapshot ensembling and yielded aMAE of 0.92 ±
0.76 years, although a large difference to the learning rate
9*10−5 could not be seen (Table 3). Also, snapshot
ensembling showed slightly better results, but again the im-
provement (0.03 years) against the best single best model was
only moderate.

Regarding the prediction of the age groups < 14 and ≥ 14
years, the accuracy of the snapshot ensembling model was
0.92, while the AUC was 0.98, with a sensitivity of 0.92 and
a specificity of 0.92. For the age groups < 18 and ≥ 18 years,
the accuracy of the model was again 0.92, with an AUC of
0.96. The model showed a sensitivity of 0.91 and a specificity
of 0.89. Details on the results can be found in Annex 4.

Internal validation

Since the snapshot ensemble together with a learning rate of
10−4 showed the best results, this combination was used for
final modeling. The trained models were then evaluated on the

internal validation cohort. The MAE of the model was 0.86 ±
0.72 years (Fig. 4A, B). Compared to the performance during
the cross-validation, the MAE was slightly lower. The one-
sided t-test indicated that the mean of absolute differences
between the true and the predicted age is less than 1 year (p
< 0.001). Accordingly, when comparing the true with the pre-
dicted age class, a good correspondence could be seen, al-
though for older patients a gap was visible, where the network
underestimates the age for these patients. The correlation co-
efficient was R = 0.97.

Prediction of the age groups was rather similar to the cross-
validation: The model showed an accuracy of 0.90, and an
AUC of 0.98 as well as a sensitivity and specificity of 0.92
for separating the 14-year age groups (Fig. 5A, B). Similarly,
it showed an accuracy of 0.90, and an AUC of 0.96, a sensi-
tivity of 0.96, and a specificity of 0.86 for the 18-year age
groups.

External validation

When predicting on the external validation cohort, the
model yielded a MAE of 0.9 ± 0.71 years (Fig. 4C, D).
Similar to the internal validation cohort, the performance
was slightly lower than observed during cross-validation.
The correspondence between the true and the predicted
age class was good as well, and no statistical difference
could be seen when testing for a difference smaller than
1.0 years (p = 0.017). A tendency to underestimate the
age in older patients could be observed as well, similar

Table 2 Demographics of the
patient collective. The p-value
denotes the significance of a chi-
square and a t-test for sex and age
between the training and the in-
ternal and external validation co-
horts, respectively

All Training cohort Internal validation cohort External validation cohort

Gender [F] 45% (1287/2865) 45% (1065/2350) 44% (143/327)

(p = 0.63)

42% (79/188)

(p = 0.42)

Age 14.0 ± 4.8

(range: 0–21)

14.0 ± 4.8

(range: 0–21)

14.0 ± 4.8

(range: 0–21)

(p = 0.92)

13.6 ± 4.4

(range: 1–21)

(p = 0.12)

Fig. 3 Histogram of the chronological age of all patients. Left: Patients in the training set (N = 2350). Middle: Patients in the internal validation set (N =
327). Right: Patients in the external validation set (N = 188)
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to the internal validation. Additionally, there seemed to be
also a slight overestimation for the age classes between 8
and 11. The correlation coefficient was R = 0.97.

Separating the age groups was similar to the valida-
tion groups, but showed higher specificity: The accuracy
of prediction of the 14-year age groups was 0.90 and
the AUC showed a performance of 0.97 with a sensi-
tivity of 0.91 and a specificity of 0.90 (Fig. 5C, D). For
prediction of the 18-year age groups, the accuracy was
0.90 as well, with an AUC of 0.94 and a sensitivity as
well as specificity of 0.90.

Discussion

Age estimation in pediatric patients based on the maturity of
bones is a commonly used practice for forensic, medicolegal,
or clinical purposes. In addition to bone age estimation using
radiographs of the hand, which is by far the most commonly
used method in clinical routine, bone age can also be estimat-
ed from radiographs of the knee. Using the Cleveland study,
which started in 1926, Pyle and Hoerr developed an atlas for
determining bone age from knee radiographs on a cohort of
American children [7]. This atlas has since become a widely

Table 3 Mean absolute error (in
years) and standard deviation of
the models trained during cross-
validation. The best absolute
value for each modeling strategy
is marked in bold

Modeling strategy Learning rate

9*10−4 6*10−4 3*10−4 1*10−4 9*10−5 6*10−5

Single best model 1.01 ± 0.84 0.98 ± 0.8 0.98 ± 0.8 0.96 ± 0.8 0.95 ± 0.79 0.97 ± 0.81

Snapshot
ensembling

0.97 ± 0.81 0.94 ± 0.79 0.94 ± 0.78 0.92 ± 0.76 0.93 ± 0.78 0.95 ± 0.78

Fig. 4 Results of the network
evaluated on the validation
cohorts. A Boxplot for the
predictions on the internal
validation cohort. B A histogram
of the prediction errors on the
internal validation cohort. C
Boxplot for the predictions on the
internal validation cohort. D A
histogram of the prediction errors
on the internal validation cohort.
In the boxplots, for each true
chronological age class, a
corresponding box with whiskers
for the corresponding network
predictions was drawn. The
median is marked by a red bar,
while the whiskers extend to the
points inside the 1.5*interquartile
range (IQR). In addition, all
samples were marked by small
dots. Outliers are marked with a
circle
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used referenced standard and has been subsequently verified
in different cohorts [16, 18, 19, 27]. However, more refined
estimation methods such as subtle maturity indicators have
also been proposed [20].

Because age determination from knee radiographs is quite
time consuming and is prone to high inter- and intra-observer
variability, automation is of clinical interest. In this study, we
have utilized a simple and commonly used deep network to
fully automate the chronological age estimation from knee
radiographs. The network showed a mean absolute error of
0.86 ± 0.72 years in the internal validation cohort. It was also
able to achieve a MAE of 0.9 ± 0.71 years on the external
validation cohort, showing that its generalizability could be
high. The maximum differences in prediction were 4.0 years
and 3.3 years respectively. Correlation of the predictions with
chronological age was high, yielding R = 0.97 for both vali-
dation cohorts. These results are roughly in line with the study
of Hackman et al. [17], who used the Pyle and Hoerr atlas in a
Scottish population and reported a standard deviation of 0.82

(females) and of 0.90 (males), a maximum difference of 4.3
years, and a correlation coefficient of R = 0.95.

Comparing the predicted age classes with the true age clas-
ses, the overall fit is rather good, although especially for older
patients a larger deviation could be seen. We believe that this
stems from the fact that the neural network’s output is normal-
ly distributed. Since no patient is older than 21 years, having a
mean of around 21 years would yield a higher loss than re-
ducing it to a lower mean. A similar effect should also be
present for younger patients, but as both cohorts contained
only very few very young patients, the effect is not visible
there.

For forensic applications, the age of 14 is essential in some
countries since a person becomes legally responsible at that
age. Similarly, with the completion of 18 years of age, adult
law is authoritative for a person. Because of this, we separated
two age groups < 14 and ≥ 14 years and < 18 and ≥ 18 years.
Both separations were rather good, showing AUCs of around
0.97 for the 14-year age group and 0.94 for the 18-year group.

Fig. 5 ROC curves for separating
the age groups <14 years from ≥
14 years and <18 years from ≥ 18
years on the validation cohorts. A
ROC curve for separating the 14-
year age groups on the internal
validation cohort. B ROC curve
for separating the 18-year age
groups on the internal validation
cohort. C ROC curve for separat-
ing the 14-year age groups on the
external validation cohort. D
ROC curve for separating the 18-
year age groups on the external
validation cohort
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Despite of this excellent performance, the model does not
reach a level high enough for forensic application in a clinical
context, where AUCs of at least 0.99 are necessary. The mod-
el could be used instead in addition to predictions from other
body parts like hands or clavicula to increase overall certainty.

Even though the results are encouraging, radiographs
go hand in hand with radiation exposure to the patient and
should be avoided especially in pediatric context. A
promising alternative to radiographs is MR imaging, since
they do not involve any radioac t ive exposure .
Accordingly, in a similar manner as Pyle and Hoerr,
Pennock et al. defined an atlas for age estimation in knee
MRI [28]. Automation of the age estimation based on
knee MRI was proposed by Dallora et al. [13]. They em-
ployed a two-step network that first selects the most in-
formative image slice of a given MRI which is then fed to
a second network to regress the age based on that slice.
The cohort comprised 402 patients of age 14–21, and a 5-
fold cross-validation obtained a MAE of 0.793 years for
men and 0.988 for women. These MAEs seem to be com-
parable to the MAEs we have achieved. In a similar study,
Auf der Mauer et al. employ a U-Net to segment MRIs
into age-relevant anatomical parts, which are then used to
regress the age [29]. They report a MAE of 0.69 ± 0.49
using cross-validation on the 175 patients of age 14–21
included into the study as well as an accuracy of 90.6%.
Their MAE can be regarded to be better than ours, be-
cause if restricted to the same age class 14–21 years, our
network achieves a MAE of 0.94 ± 0.74 years and 1.09 ±
0.78 years on the internal and external validation cohorts
respectively. Nonetheless, they report that their segmenta-
tion of age-relevant parts is of major help as it improves
the MAE from 0.97 ± 0.84 years to 0.81 ± 0.65 years
(tested only on a single fold of the cross-validation).
Thus, our approach might as well benefit from a segmen-
tation of the knee. Another stern difference between our
approach and the one by Auf der Mauer et al. lies in the
population: They used small, homogeneous study popula-
tion by including only males with middle to high socio-
economic status with no chronic diseases or severe bone
injuries. In contrast, our study population is quite hetero-
geneous since it comprises all available knee radiographs
from the last 12 years. Even though MRI for bone age
estimation avoids radiation exposure, it must be noted that
MRI has two major disadvantages: the long image acqui-
sition times, which are particularly problematic for very
young patients, and the high costs. Therefore, methods
based on ultrasound (US) were proposed [30] and a direct
comparison between MRI and ultrasound of the knee for
age estimation was performed by Herrmann et al. [31]. In
their pilot study of only 39 males aged between 14 and 19
years, they showed that MRI and US have a high inter-
rater agreement with respect to epiphyseal growth.

As mentioned above, bone age estimation based on
radiographs of the left hand is the most common used
method in clinical routine. Therefore, automation efforts
have been already undertaken for radiographs of the
hand, where the current systems are able to produce
results as good as those of an expert radiologist,
reaching typically error levels of around 4–5 months
[32], though recently Gong et al. improved the accuracy
substantially and obtained a mean absolute error of less
than 2 months [33]. While these results are impressive,
a key difference lies in the data used. Hand radiographs
often are taken for the task of age estimation, and an
extensive amount of work has been put into assembling
atlases representing normal growth. It cannot be ruled
out that with more effort similar levels of accuracy
could be obtained from knee radiographs.

Although the current study has demonstrated that an auto-
mated age estimation based on radiographs of the knee is
possible, our study shows several limitations. For one, it is
well known that aging slightly varies among different popu-
lations. While the validations cohorts came from two different
but nearby hospitals, they both reflect the same population.
Unfortunately, information on ethnicity or socioeconomic sta-
tus was not available for our study population; therefore, no
analysis on the influence of both on the network could be
performed.

Although the Pyle and Hoerr atlas uses AP and lateral
radiographs for age estimation, we only used radiographs in
AP view in our study. The reason for this was to keep the
network straightforward. We believe that adding lateral radio-
graphs will improve the estimations. This should be analyzed
more extensively in another study with external data from
different populations.

Even though machine learning systems and neural
networks in particular have shown impressive results,
they are still black boxes and their decisions are not
readily explainable, making any application in clinical
or medicolegal setup arguable, when they are being re-
lied upon without further supervision [34, 35]. A more
interpretable approach would be, e.g., to find the impor-
tant epiphyseal areas in the radiograph and then apply a
regression only over these areas. This would make the
network decision much more transparent. In addition,
we used a non-selected case series, which on the one
hand is advantageous, but on the other hand involves
the risk that it also includes individual patients who
have a growth disorder, which could potentially nega-
tively affect the performance of the network. Last but
not least, we used a common network architecture,
ResNet-34, which may not be completely optimal for
the task at hand, so more research should be done to
see if other network architecture may provide even bet-
ter results.
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Conclusion

The chronological age of pediatric patients can be estimated
with high accuracy from knee radiographs using a deep neural
network.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00330-022-08582-0.

Funding Open Access funding enabled and organized by Projekt DEAL.

Declarations

Guarantor The scientific guarantor of this publication is Kai
Nassenstein.

Conflict of interest The authors declare no competing interests.

Statistics and biometry Aydin Demircioglu, one of the authors has
significant statistical expertise.

Informed consent Written informed consent was waived by the
Institutional Review Board.

Ethics approval Institutional Review Board approval was obtained.

Methodology
• retrospective
• prognostic study
• performed at two institutions

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included
in the article's Creative Commons licence, unless indicated otherwise in a
credit line to the material. If material is not included in the article's
Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Lewis ME, Flavel A (2006) Age assessment of child skeletal re-
mains in forensic contexts. In: Schmitt A, Cunha E, Pinheiro J (eds)
Forensic anthropology and medicine: complementary sciences
from recovery to cause of death. Humana Press, Totowa, pp 243–
257

2. Schmeling A, Schulz R, Reisinger W, Mühler M, Wernecke KD,
Geserick G (2004) Studies on the time frame for ossification of the
medial clavicular epiphyseal cartilage in conventional radiography.
Int J Legal Med 118:5–8. https://doi.org/10.1007/s00414-003-
0404-5

3. Satoh M (2015) Bone age: assessment methods and clinical appli-
cations. Clin Pediatr Endocrinol 24:143–152. https://doi.org/10.
1297/cpe.24.143

4. Tanner JM,Whitehouse RH (1975) Assessment of skeletal maturity
and prediction of adult height (TW2 method). Academic Press,
New York

5. Sauvegrain J, Nahum H, Bronstein H (1962) Study of bone matu-
ration of the elbow. Ann Radiol (Paris) 5:542–550

6. Brodeur AE, Silberstein MJ, Graviss ER (1981) Radiology of the
pediatric elbow. GK Hall Medical Publishers, Boston

7. Pyle SI, Hoerr NL (1969) A radiographic standard of reference for
the growing knee. C. C. Thomas, Springfield

8. Wittschieber D, Schmeling A, Schmidt S, Heindel W, Pfeiffer H,
Vieth V (2013) The Risser sign for forensic age estimation in living
individuals: a study of 643 pelvic radiographs. Forensic Sci Med
Pathol 9(1):36–43

9. Whitaker JM, Rousseau L, Williams T, Rowan RA, Hartwig WC
(2002) Scoring system for estimating age in the foot skeleton. Am J
Phys Anthropol 118:385–392

10. Yang F, Jacobs R,Willems G (2006) Dental age estimation through
volume matching of teeth imaged by cone-beam CT. Forensic Sci
Int 159:S78–S83. https://doi.org/10.1016/j.forsciint.2006.02.031

11. Ufuk F, Agladioglu K, Karabulut N (2016) CT evaluation of medial
clavicular epiphysis as a method of bone age determination in ad-
olescents and young adults. Diagn Interv Radiol 22:241–246.
https://doi.org/10.5152/dir.2016.15355

12. Moskovitch G, Dedouit F, Braga J, Rougé D, Rousseau H, Telmon
N (2010) Multislice computed tomography of the first rib: a useful
technique for bone age assessment. J Forensic Sci 55:865–870.
https://doi.org/10.1111/j.1556-4029.2010.01390.x

13. Dallora AL, Berglund JS, Brogren M et al (2019) Age assessment
of youth and young adults using magnetic resonance imaging of the
knee: a deep learning approach. JMIR Med Inform 7:e16291.
https://doi.org/10.2196/16291

14. Ebner T, Stern D, Donner R, Bischof H, Urschler M (2014)
Towards automatic bone age estimation from MRI: localization
of 3D anatomical landmarks. In: Golland P, Hata N, Barillot C
et al (eds) Medical image computing and computer-assisted inter-
vention –MICCAI 2014. Springer International Publishing, Cham,
pp 421–428

15. Wittschieber D, Vieth V, TimmeM, Dvorak J, Schmeling A (2014)
Magnetic resonance imaging of the iliac crest: age estimation in
under-20 soccer players. Forensic Sci Med Pathol 10:198–202.
https://doi.org/10.1007/s12024-014-9548-5

16. Schaefer M, Hackman L, Gallagher J (2016) Variability in devel-
opmental timings of the knee in young American children as
assessed through Pyle and Hoerr’s radiographic atlas. Int J Legal
Med 130:501–509. https://doi.org/10.1007/s00414-015-1141-2

17. Hackman L, Black S (2013) Age estimation from radiographic
images of the knee. J Forensic Sci 58:732–737. https://doi.org/10.
1111/1556-4029.12077

18. Hackman L, Davies CM, Black S (2013) Age estimation using foot
radiographs from a modern Scottish population. J Forensic Sci 58:
S146–S150. https://doi.org/10.1111/1556-4029.12004

19. O’Connor JE, Bogue C, Spence LD, Last J (2008) A method to
establish the relationship between chronological age and stage of
union from radiographic assessment of epiphyseal fusion at the
knee: an Irish population study. J Anat 212:198–209. https://doi.
org/10.1111/j.1469-7580.2007.00847.x

20. O’Connor JE, Coyle J, Bogue C, Liam D Spence LD, Last J (2014)
Age prediction formulae from radiographic assessment of skeletal
maturation at the knee in an Irish population. Forensic Sci Int 234:
188.e1–188.e8. https://doi.org/10.1016/j.forsciint.2013.10.032

21. Thodberg HH, Jenni OG, Ranke MB, Martin DD (2012)
Standardization of the Tanner-Whitehouse bone age method in
the context of automated image analysis. Ann Hum Biol 39:68–
75. https://doi.org/10.3109/03014460.2011.642405

22. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:
436–444. https://doi.org/10.1038/nature14539

4821Eur Radiol (2022) 32:4813–4822

https://doi.org/10.1007/s00330-022-08582-0
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s00414-003-0404-5
https://doi.org/10.1007/s00414-003-0404-5
https://doi.org/10.1297/cpe.24.143
https://doi.org/10.1297/cpe.24.143
https://doi.org/10.1016/j.forsciint.2006.02.031
https://doi.org/10.5152/dir.2016.15355
https://doi.org/10.1111/j.1556-4029.2010.01390.x
https://doi.org/10.2196/16291
https://doi.org/10.1007/s12024-014-9548-5
https://doi.org/10.1007/s00414-015-1141-2
https://doi.org/10.1111/1556-4029.12077
https://doi.org/10.1111/1556-4029.12077
https://doi.org/10.1111/1556-4029.12004
https://doi.org/10.1111/j.1469-7580.2007.00847.x
https://doi.org/10.1111/j.1469-7580.2007.00847.x
https://doi.org/10.1016/j.forsciint.2013.10.032
https://doi.org/10.3109/03014460.2011.642405
https://doi.org/10.1038/nature14539


23. Halabi SS, Prevedello LM, Kalpathy-Cramer J et al (2019) The
RSNA pediatric bone age machine learning challenge. Radiology
290:498–503. https://doi.org/10.1148/radiol.2018180736

24. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for
image recognition. In: 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). pp 770–778

25. Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009)
ImageNet: a large-scale hierarchical image database. In: 2009
IEEE Conference on Computer Vision and Pattern Recognition.
pp 248–255

26. Huang G, Li Y, Pleiss G, Liu Z, Hopcroft JE, Weinberger KQ
(2017) Snapshot ensembles: train 1, get M for free.
ArXiv170400109 Cs

27. Yang YS, Lee DY (1974) A study on the skeletal development of
Korean children, Part II: the knee. J Korean Orthop Assoc 9:278–
283. https://doi.org/10.4055/jkoa.1974.9.3.278

28. Pennock AT, Bomar JD, Manning JD (2018) The creation and
validation of a knee bone age atlas utilizing MRI. J Bone Joint
Surg Am 100:e20. https://doi.org/10.2106/JBJS.17.00693

29. Auf der Mauer M,Well EJ, Herrmann J et al (2020) Automated age
estimation of young individuals based on 3D knee MRI using deep
learning. Int J Legal Med. https://doi.org/10.1007/s00414-020-
02465-z

30. Bilgili Y, Hizel S, Kara SA, Cihat Sanli C, Erdal HH, Altinok D
(2003) Accuracy of skeletal age assessment in children from birth to
6 years of age with the ultrasonographic version of the Greulich-

Pyle atlas. J Ultrasound Med 22:683–690. https://doi.org/10.7863/
jum.2003.22.7.683

31. Herrmann J, Säring D, Auf der Mauer M, Groth M, Eilin Well EJV
(2021) Forensic age assessment of the knee: proposal of a new
classification system using two-dimensional ultrasound volumes
and comparison to MRI. Eur Radiol 31:3237–3247. https://doi.
org/10.1007/s00330-020-07343-1

32. Iglovikov VI (2018) Paediatric bone age assessment using deep
convolutional neural networks. In: Deep learning in medical image
analysis and multimodal learning for clinical decision support.
Springer, p 11045

33. Gong P, Yin Z, Wang Y, Yu Y (2020) Towards robust bone age
assessment: rethinking label noise and ambiguity. In: Martel AL,
Abolmaesumi P, Stoyanov D et al (eds) Medical image computing
and computer assisted intervention – MICCAI 2020. Springer
International Publishing, Cham, pp 621–630

34. Hart A,Wyatt J (1990) Evaluating black-boxes as medical decision
aids: issues arising from a study of neural networks. Med Inform
(Lond) 15:229–236. https://doi.org/10.3109/14639239009025270

35. Rudin C (2019) Stop explaining black box machine learning
models for high stakes decisions and use interpretable models in-
stead. Nat Mach Intell 1:206–215. https://doi.org/10.1038/s42256-
019-0048-x

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

4822 Eur Radiol (2022) 32:4813–4822

https://doi.org/10.1148/radiol.2018180736
https://doi.org/10.4055/jkoa.1974.9.3.278
https://doi.org/10.2106/JBJS.17.00693
https://doi.org/10.1007/s00414-020-02465-z
https://doi.org/10.1007/s00414-020-02465-z
https://doi.org/10.7863/jum.2003.22.7.683
https://doi.org/10.7863/jum.2003.22.7.683
https://doi.org/10.1007/s00330-020-07343-1
https://doi.org/10.1007/s00330-020-07343-1
https://doi.org/10.3109/14639239009025270
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/s42256-019-0048-x

	Pediatric age estimation from radiographs of the knee using deep learning
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Materials and methods
	Patients
	Radiograph acquisition
	Collected variables
	Cropping of the knee region
	Preprocessing
	Neural network
	Cross-validation
	Evaluation
	Statistics

	Results
	Demographics
	Cropping the knee region
	Cross-validation
	Internal validation
	External validation

	Discussion
	Conclusion
	References


