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Abstract
Objective  To evaluate if a deep learning model can be used to characterise breast cancers on contrast-enhanced spectral 
mammography (CESM).
Methods  This retrospective mono-centric study included biopsy-proven invasive cancers with an enhancement on CESM. 
CESM images include low-energy images (LE) comparable to digital mammography and dual-energy subtracted images 
(DES) showing tumour angiogenesis. For each lesion, histologic type, tumour grade, estrogen receptor (ER) status, pro-
gesterone receptor (PR) status, HER-2 status, Ki-67 proliferation index, and the size of the invasive tumour were retrieved. 
The deep learning model used was a CheXNet-based model fine-tuned on CESM dataset. The area under the curve (AUC) 
of the receiver operating characteristic (ROC) curve was calculated for the different models: images by images and then by 
majority voting combining all the incidences for one tumour.
Results  In total, 447 invasive breast cancers detected on CESM with pathological evidence, in 389 patients, which repre-
sented 2460 images analysed, were included. Concerning the ER, the deep learning model on the DES images had an AUC 
of 0.83 with the image-by-image analysis and of 0.85 for the majority voting. For the triple-negative analysis, a high AUC 
was observable for all models, in particularity for the model on LE images with an AUC of 0.90 for the image-by-image 
analysis and 0.91 for the majority voting. The AUC for the other histoprognostic factors was lower.
Conclusion  Deep learning analysis on CESM has the potential to determine histoprognostic tumours makers, notably estrogen 
receptor status, and triple-negative receptor status.
Key Points   
• A deep learning model developed for chest radiography was adapted by fine-tuning to be used on contrast-enhanced  
   spectral mammography.
• The adapted models allowed to determine for invasive breast cancers the status of estrogen receptors and triple-negative  
   receptors.
• Such models applied to contrast-enhanced spectral mammography could provide rapid prognostic and predictive  
   information.
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MRI	� Magnetic resonance imaging
PACS	� Picture Archiving and Communication System
PR	� Progesterone receptor
ROC	� Receiver operating characteristic
ROI	� Region of interest
TNBC	� Triple-negative breast cancers

Introduction

Worldwide, breast cancer accounts for 11.6% of cancers of 
all genders and ages. 2.08 million new cases and 626,679 
deaths are estimated in 2018.

Contrast-enhanced spectral mammography (CESM), 
also called contrast-enhanced dual-energy mammography 
(CEDM), is an emerging technique used to evaluate neo-
vascularity of a breast lesion, usually associated with malig-
nancy [1], by using an iodine-based contrast intravenous 
agent.

In this dual-energy breast imaging, a low-energy image 
(LE), comparable to conventional digital mammography 
(full-field digital mammography – FFDM) [2], is acquired 
and a recombined image (dual-energy subtracted DES) is 
obtained by subtracting both high- and low-energy images. 
The iodinated contrast material better absorbs high-energy 
X-photons, thus revealing regions of angiogenesis [3].

CESM has shown its superiority to FFDM in terms of 
sensitivity (92.7% vs 71.5%) and specificity (67.9% vs 
51.8%) to detect primary breast cancers in dense breasts [4]. 
CESM has also a similar sensitivity and a slightly higher 
specificity compared to breast magnetic resonance imaging 
(MRI) which is considered the most sensitive technique for 
breast cancer detection (up to 100% sensitivity for both, with 
a specificity of 94% for CESM versus 88% for MRI in the 
studies) [5–7]. Moreover, compared to bMRI, CESM is more 
comfortable for the patients (position and faster acquisition 
time) but also less expensive [8, 9]. CESM is also efficient 
for the assessment of the extent of disease [10], for the evalu-
ation of tumour response to neoadjuvant chemotherapy [11], 
for post-therapy monitoring [12], and as a problem-solving 
tool in association with other examinations [13].

According to the European Society of Breast Imaging 
(EUSOBI), CESM is currently recommended in case of 
bMRI contraindication or if bMRI is not available [14].

In parallel to the development of CESM, deep learning 
algorithm which attempts to learn multiple levels of repre-
sentation of increasing complexity and abstraction [15] is a 
new powerful wave in all fields of radiology. Deep learning 
is a sub-domain of the machine learning (which is a sub-
domain of artificial intelligence).

One of the latest examples of its use is in chest radiogra-
phy, where a deep learning model, called CheXNeXt, can 

detect 14 clinically important pathologies [16]. On a vali-
dation set of 420 images for which the majority vote of 3 
cardiothoracic speciality radiologists served as ground truth, 
the algorithm achieved performance equivalent to the prac-
tising radiologists on 10 pathologies, better on 1 pathology, 
and worse on 3 pathologies [16].

Concerning mammography, an international study has 
already shown that a deep learning model could be used 
successfully for the screening of primary breast cancers on 
FFDM. A combination of human and machine results had 
a performance equivalent to that of the traditional double-
reading process but reduces the workload of the second 
reader by 88% [17]. More works are however needed for 
use in clinical practice [18].

As CESM is a recent technique, the contribution of deep 
learning to its interpretation has, to our knowledge, not been 
studied yet. In addition, following the EUSOBI recommen-
dations, CESM is rather used as a second line after FFDM 
screening in place of bMRI.

Thus, rather than differentiating between benign and 
malignant in primary screening, CESM could be used to 
determine prognostic factors (as a histologic grade, Ki67 
proliferation index, cell receptors) in case of cancer to adapt 
the treatment, as a “deep-radiomics” tool [19]. Most prog-
nostic factors are determined histologically. However, it is 
possible that the histological phenotype can also be identi-
fied in X-ray imaging [20], notably through deep learning 
analysis.

However, as CESM is a new technique, available data is 
still scarce. In such a situation, it is possible to use transfer 
learning with fine-tuning to adapt a deep learning model, 
learned on a large dataset (e.g., more than 100,000 images) 
to a new task with fewer images (e.g., less than 1000 
images). Transfer learning from CheXNeXt has already been 
used on FFDM to detect malignant lesions, with the best 
accuracy of 90.38% [21]. More recently, transfer learning 
from CheXNeXt has been used to detect COVID-19 infec-
tion (COVID-CXNet) with an accuracy of 94.20% [22].

The aim of this study was to evaluate if a deep learning 
model can be used to characterise breast malignant lesions 
on CESM.

Materials and methods

Data set

This was a retrospective mono-centric study (Henri Bec-
querel Cancer Center, Rouen Normandy, France) approved 
by the local ethics committee. Patients were informed that 
their anonymised images could be used for research and gave 
their consent. Indications for CESM in our institution were 
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the assessment of the extent of invasive disease (all invasive 
cancers, excluding in situ cancers), the evaluation of tumour 
response to neoadjuvant chemotherapy, post-therapy moni-
toring, and as a problem-solving tool. CESM was performed 
also in case of contraindications to performing bMRI or if 
bMRI was not available.

All CESM images performed between August 2017 and 
January 2019 were retrieved. Only biopsy-proven invasive 
cancers with an enhancement on CESM were included. 
CESM with benign lesions or borderline lesions or non-
enhanced malignant lesions were not included. The exclu-
sion criteria were as follows: chemotherapy prior to CESM, 
lack of histological data, the presence of artefacts (no pos-
sible visual analysis), a non-contributory examination (a 
lesion with very low enhancement, or a masking background 
enhancement making reliable segmentation of the lesion 
impossible) (Fig. 1).

For each lesion, its size (maximum diameter) was 
recorded. The breast density was evaluated according to 
the BI-RADS lexicon and the background parenchymal 
enhancement was scaled from 0 to 3 (0 = no enhancement, 
1 = minimal enhancement, 2 = moderate enhancement, and 
3 = marked enhancement). The type of enhancement (mass 
or non-mass enhancement) and the biopsy markers were 
retrieved.

In the case of multi-focal disease, the lesion with the 
maximum diameter was selected and the other lesions could 
also be selected if they were well separated with clear limits 
in at least one incidence.

Histopathology

The histological characteristics were based on analysis of 
the surgical specimen or percutaneous biopsy if the defini-
tive histologic analysis was not available or if the patient 
had received neoadjuvant chemotherapy.

For each lesion, histological type, Nottingham histolog-
ical score (histologic grade), estrogen receptor (ER) status, 
progesterone receptor (PR) status, HER-2 status, Ki-67 
proliferation index, and the size of the invasive tumour 
were retrieved.

According to current guidelines in France, the status 
was considered positive when the hormonal receptors 
(ER and PR) had a value ≥ 10% [23]. According to the 
GEFPICS recommendation, HER2 was considered posi-
tive if IHC results are 3 + or 2 + amplified on ISH (in situ 
hybridization) [24]. Similarly, the Ki 67 was considered 
high if it was ≥ 20% [25]. Triple-negative status, a known 
poor prognostic factor [26], was considered for a combi-
nation of ER-negative, PR-negative, and HER2-negative.

CESM image acquisition

CESM was performed on mammography system (Angio-
logic Stephanix, Hologic®) using an automated single-shot 
intravenous injection of iodinated contrast-agent (Iomeron 
350 mg/mL, Bracco®) with the dose of 1.5 mL/kg body 
weight with a flow rate of 3 mL/s followed by a saline 
flush, after eliminating contraindications. CESM image 
protocol acquisition is described in supplemental data.

Image pre‑processing

Patient images were extracted from the PACS (Picture 
Archiving and Communication System) and anonymised. 
Manual segmentation of the images was performed by a 
radiologist using an in-house plugin for the ImageJ soft-
ware [27]. All available breast incidences were considered. 
In the case of a visible lesion, the regions of interest (ROI) 
of the lesions were segmented as the smallest rectangular 
ROI encompassing the entire lesion [28] on the DES images, 
the subtracted images corresponding to the vascularisation. 
The segmented ROI was then propagated on the low-energy 
images, corresponding to an image similar to FFDM. Images 
were normalised to an 8bit (0–255) images. Images were 
then cropped from a 2560 × 3328 array to 1024 × 1024 array 
with the ROI lesion at the centre. In the case of a ROI lesion 
larger than 1024 in at least one axis (e.g., in case of large 
breast masses), the ROI lesion was proportionally resized to 
a 1024 × 1024 array. Image augmentation is utilised in order 

Fig. 1   Flowchart of the final analysis cohort. *Non-contributory 
examinations (artefacts, insufficient image quality, lesions with very 
low enhancement, or a limited field of view of CESM)
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to prevent over-fitting by using orthogonal (90°, 180°, and 
270°) rotations. Images were down-sized to 320 × 320 array 
to prevent resource exhaustion and decrease GPU RAM 
usage.

Deep learning analysis

Dataset was separated randomly on training (2 × 787 images, 
64%), validation (2 × 195 images, 16%), and testing (2 × 248 
images, 20%) datasets. Images of one patient could only be 
in one of these datasets, even if multiple lesions were seg-
mented. Frequencies of the different issues were equalised 
between the datasets.

The deep learning model used was a CheXNet-based 
model [29], fine-tuned on CESM dataset. CheXNet is 
based on a densely connected convolutional network 
with 121 layers (DenseNet-121 [30]) that takes a chest 
X-ray image as input and outputs the probability of a 
pathology. The CheXNet model was trained on a data-
set containing 112,120 frontal-view chest X-ray images 
individually labelled with up to 14 different thoracics 
[29]. This model, specialised in the analysis of thoracic 
radiographs, can be adapted by fine-tuning, a partial 
relearning on a new database, in order to analyse new 
pathologies, such as COVID, but also other examina-
tions, notably mammography [21, 22]. For the fine-tun-
ing, similar to the one performed in [22], Adam opti-
miser was used with a learning rate of 0.0001 and 10 
epochs. A fully connected layer followed by a dropout 
layer with a 0.2 dropping rate to prevent overfitting was 

used. The architecture of the model and fine-tuning per-
formed is presented in Fig. 2.

Three models were trained. The first one on the DES 
images only, the second one on the LE images only, and 
the third one on both DES and LE images. Images were 
analysed independently of the incidence. A majority vot-
ing, combining all the incidences for one tumour, was also 
performed for the three models. The learning of the mod-
els was done using python 2.7.17, tensorflow 2.4.1, and 
keras 2.4.3.

Statistical analysis

The receiver operating characteristic (ROC) curve and area 
under (AUC) of the ROC curve were calculated to assess 
the ability of the CNN to determine tumour grade (1 and 2 
vs. 3), hormone receptor status (ER positive vs. ER nega-
tive, PR positive vs. PR negative), Her2 (Her2 positive vs. 
Her2 negative), and Ki 67 (high or not), and triple negative 
vs. other.

The model was evaluated image by the image on DES 
and LE images separately, and then for all images simul-
taneously. Then results were calculated by majority voting 
(including all the incidences for one tumour) on the DES, 
LE images, and for the combination of LE and DES images.

We computed overall classification accuracy, as well 
as sensitivity, specificity, from the results image by image 
on DES and LE images separately, and then for all images 
simultaneously.

Statistical analysis was performed with python 2.7.17.

Fig. 2   Architecture of the deep learning model used based on the CheXNet model, himself based on a DenseNet-121 architecture. FC is fully 
connected layers
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Results

Patient population and lesion characteristics

A total of 447 malignant lesions in 389 patients (mean age, 
61.7 ± 12.6 years; age range, 27–91) were detected on CESM 
with pathological evidence, which ultimately represents 
2460 images analysed.

Patient demographics and imaging characteristics are 
provided in Table 1. The median size of enhancing lesions 
was 28.3 mm ± 23.0 (range 5.0–130.0). A description of the 
types of lesions and their histoprognostic factors are given 
in Table 2.

There were no significant differences between the train-
ing, the validation, and the testing sets in terms of histologi-
cal grade, estrogen receptor (ER) status, progesterone recep-
tor (PR) status, HER-2 status, Ki-67 proliferation index, or 
triple negative.

Deep learning analysis

Figures 3 and 4 illustrate the performance of the CNN algo-
rithm area under the receiver operating characteristic curve 
for the analysis image by image and by majority voting 
respectively.

Concerning the ER, the deep learning model on the DES 
images had an AUC of 0.83 with the image-by-image analy-
sis and of 0.85 for the majority voting. These results were 
slightly higher than those obtained for the LE images (0.73 
and 0.72, respectively) but comparable to those obtained 
when DES and LE images were combined (0.85 and 0.86, 
respectively). For the triple-negative analysis, a high AUC 
was observable for all models, in particularity for the model 
on LE images with an AUC of 0.90 for the image-by-image 
analysis and 0.91 for the majority voting.

The AUCs for the other histoprognostic factors were 
lower; for example, when DES and LE images were com-
bined, AUC = 0.65 for the diagnosis of the HER2 status or 
AUC = 0.62 to predict grade 3.

The sensitivity, specificity, and accuracy of the deep 
learning model image by the image on DES and LE images 
separately, and then for all images simultaneously for each 
category are provided in Table 3.

The best results were observed with the determination of 
the ER status on DES images with a sensitivity, a specific-
ity, and an accuracy of 82% and with the determination of 
the triple-negative status on LE images with a sensitivity of 
83%, a specificity of 85%, and an accuracy of 85%.

To illustrate a decision taken by the deep learning model, 
a representation of a gradCAM (a heat map showing the part 
of the image where the algorithm is focused for its decision) 
of the models for a triple-negative cancer is shown in Fig. 5.

Discussion

The aim of this retrospective study was to define if a deep 
learning model based on transfer learning can be used to 
characterise breast malignant lesions on CESM. Our results 
demonstrated a good performance to characterise estrogen 
receptor (ER) status and to differentiate triple-negative 
breast cancers (TNBC).

The characterisation of tumours is essential to define 
the best management and choose the different therapeutics. 
The analysis by deep learning allows the study of an entire 
tumour and of each detected lesion quickly and non-inva-
sively. This model could serve as a virtual biopsy and could 
also help radiologists target their biopsy to areas of interest.

Previous studies on CESM and machine learning have 
focused on the development of CAD systems to classify 
breast masses as benign or malignant.

Patel et al. used a machine learning algorithm based on 
SVM (support vector machine) classification and added radi-
omics analysis to show the diagnostic performance of com-
puter-assisted contrast-enhanced spectral mammography 
(CAD-CESM) on 50 lesions described on the CESM. Their 
results showed that this CAD-CESM can provide an overall 

Table 1   Patient characteristics

Unless otherwise specified, data are numbers of lesions with percent-
ages in parentheses
* Data are means ± standard deviations with ranges in parentheses

No. of patients 389
No. of lesions 447
Age * 61.7 ± 12.6 (27 – 91)
Number of images per lesion (mean) 5.5
Radiographic appearance
BI-RADS density rating

  Fatty (category A) 22 (5.6)
  Scattered fibroglandular density (cat-

egory B)
281 (72.2)

  Heterogeneously dense (category C) 78 (20.1)
  Extremely dense (category D) 8 (2.1)

Background parenchymal enhancement
  Minimal 224 (57.6)
  Mild 96 (24)
  Moderate 42 (10.8)
  Marked 27 (6.9)

Type of enhancement
  Enhancing masses 396 (88.6)
  Non-mass enhancement 51 (11.4)

Number of lesion with biopsy markers 35 (7.8)
Lesion size (mm) * 28.3 ± 23.0 (5.0 -130.0)
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diagnostic accuracy of 90% in predicting the malignancy of 
a lesion and that it could help radiologists’ interpretation, 
mainly by reducing the number of false-positive results [31]. 
Massafra et al. evaluated on 58 ROIs from 53 patients a 
CAD based on a radiomics analysis with 464 features of dif-
ferent kinds (such as points and corners of interest, textural 
and statistical features) on native or filtered images. After 
a principal component analysis (PCA), dimension reduc-
tion technique, and the use of random forest classifier, they 
obtained a model able to predict benign/malignant ROIs 
with median values for sensitivity and specificity of 88.37% 
and 100% [32]. These results improved on previous results 

obtained by the same team with median values of sensitivity 
and specificity of 87.5% and 91.7%, respectively [33].

In the study by Danala et al., they developed a CAD 
scheme of CESM images to classify breast masses. They 
demonstrated that CESM images could improve the accu-
racy of mass segmentation of a CAD and classify 111 
lesions as benign or malignant using perceptron-based mul-
tilayer machine learning. Their results also showed that LE 
and DES images contain valuable additional information and 
that the combination of these two types of images signifi-
cantly improved CAD lesion classification performance [34].

Perek et al. [35] compared two CNN methods, fine-tun-
ing a pre-trained network and fully training a convolutional 

Table 2   Histopathologic characteristics

Unless otherwise specified, data are numbers of lesions with percentages in parentheses
* Data are means ± standard deviations with ranges in parentheses

Parameter No. of tumours (n = 447)

Size of lesions (mm) * 20.6 ± 17.4 (2.0 -105.0)
Histologic type according to the WHO classification of tumours—Breast tumours 5th Edition 2019 (37)
Invasive breast carcinoma of no special type (invasive ductal carcinoma) 343
Invasive lobular carcinoma 72
Mixed invasive ductal and lobular carcinoma 7
Other carcinoma (n = 25)

  Mucinous carcinoma 8
  Invasive breast carcinoma of no special type associated with mucinous carcinoma 4
  Invasive breast carcinoma of no special type associated with an encapsulated papillary carcinoma 2
  Invasive breast carcinoma of no special type associated with invasive micropapillary carcinoma 1
  Encapsulated papillary carcinoma 1
  Metaplastic carcinoma 4
  Invasive micropapillary carcinoma 1
  Neuroendocrine carcinoma 2
  Tubular carcinoma 1

Mucinous carcinoma with invasive micropapillary carcinoma 1
Estrogen receptor status

  Positive (≥ 10%) 390 (87.2)
  Negative (< 10%) 57 (12.8)

Progesterone receptor status
  Positive (≥ 10%) 322 (72.0)
  Negative (< 10%) 125 (28)

HER2 status
  Amplified 50 (11.2)
  Not amplified 397 (88.8)

Ki67 status
   ≥ 20% 239 (53.5)
   < 20% 208 (46.5)

Tumour grade
  Grade 1 58 (13.0)
  Grade 2 267 (59.7)
  Grade 3 122 (27.3)

Triple-negative breast cancer (TNBC) 35 (7.8)

4839European Radiology  (2022) 32:4834–4844

1 3



neural network, for the classification of CESM breast mass 
as benign or malignant on 129 randomly selected breast 
lesions and obtained the following results using a multi-
modal network with 100% sensitivity and 66% specificity.

Gao et al. [36] evaluated a deep-CNN using 49 CESM 
cases employed to extract novel features from LE, recom-
bined or “virtual” recombined images to classify the cases as 
benign vs. cancer. They proved that the model performance 
can achieve an accuracy of 0.85 and an AUC of 0.84 using 
LE imaging, and they have shown to improve the accuracy of 
0.89 with an AUC of 0.91 using both LE and DES imaging.

There are no studies to date on the potential of deep 
learning to characterise malignant lesions. In addition, 
previous studies on machine learning and CESM were 
conducted on a smaller number of cases.

In a study by La Forgia et al. performed on 68 lesions 
from 52 patients, seven features (histogram and texture 
parameters) were extracted from each original ROI from 
both LE and DES images or 14 features per ROI. With a 
multivariate linear discriminant analysis, they found that 
for the tasks to differentiate ER status, PR status, Ki67, 
grade, TNBC status, and HER status, AUC values of 

Fig. 3   Diagnostic performance of the deep learning system image by image on DES (a) and LE images (b) separately, and then for all images 
simultaneously (c)
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Fig. 4   Diagnostic performance of the deep learning system by majority vote on DES (a) and LE (b) images separately, and then for all images 
simultaneously (c)

Table 3   Performance of the deep learning model image by image on DES and LE images separately, and then for all images simultaneously for 
each category

All data are in percentages (%)

DES Images LE Images DES and LE Images

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

ER 81.86 81.82 81.85 74.88 72.73 74.6 80.23 80.3 80.24
PR 60.94 62.71 61.35 56.25 57.14 56.45 59.64 59.82 59.68
HER2 56.67 60.55 60.08 56.67 61.47 60.89 60 54.82 55.44
Ki 67 58.96 61.4 60.08 55.97 57.02 56.45 55.97 56.14 56.05
GRADE 60.34 62.11 61.69 58.62 60 59.68 60.34 60.26 60.28
TNBC 72.22 81.3 80.65 83.33 84.78 84.68 72.22 73.26 73.19
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83.79%, 75.50%, 84.80%, 79.85%, 76.80%, and 90.89%, 
respectively should be achieved.

In another study performed by Marino et al., which also 
deals with CESM and artificial intelligence, the authors used 
another area of machine learning and radiomics analysis 
with the extraction of tumour features followed by a machine 
learning classification, to characterise breast lesions. They 
showed in their retrospective study of 103 breast cancers that 
radiomics analysis with CESM was able to differentiate inva-
sive tumours from non-invasive and define their hormone 
receptor status and tumour grade [37].

We found comparable results for the determination of 
ER status but not for the PR status and the grade. However, 
we found that our deep learning model was able to deter-
mine the TNBC status. For TNBC, the results observed 
can be related to the characteristics of these tumours that 

present a specific appearance in imaging (an irregular non-
calcified mass with ill-defined or spiculated margins on 
mammography, and a hypoechoic or complex mass with 
an irregular shape and non-circumscribed margins on 
ultrasound [38] and a rim enhancement on DCE-MRI for 
example) [39]. Interestingly, in accordance with the radio-
logical semiology described, the models developed in this 
study seem to take their decision on the ring for the DES 
images and on the ill-defined or spiculated margins for the 
LE images in case showed in Fig. 5. The quick detection 
before any surgery of TNBC is very interesting for this 
type of aggressive tumour for which patients can benefit 
from neoadjuvant chemotherapy in some cases. However, 
the results obtained with the LE images, comparable to 
the FFDM, and with the DES images were globally simi-
lar without any obvious improvement of the results by 

Fig. 5   Heat map with grad cam 
algorithm showing the regions 
where the decision for triple-
negative status is taken by the 
deep learning model for DES 
and LE images of a same lesion
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combining them with the majority voting system. This 
could call into question the interest of injection for this 
indication, although tumour localisation and segmentation 
are greatly facilitated by injection.

Our study has several limitations. First, it is a retrospec-
tive study mono-centric with a relatively small number of 
patients for deep learning analysis although we used data 
augmentation and transfer learning with fine-tuning to over-
come this limitation.

In our study, all the examinations were performed on the 
same mammography machine, which made it possible to 
obtain standardised images, but the results may not be appli-
cable in other centres using other equipment.

Finally, we did not take into account lesions that do not 
enhancement on the CESM and are only visible on the low-
energy image, which may induce a selection bias in our 
study.

Conclusion

In conclusion, our results demonstrate that deep learning 
analysis on CESM has the potential to determine histoprog-
nostic tumour makers, notably estrogen receptor status and 
triple-negative receptor status, which could provide rapid 
prognostic and predictive information.
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