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Abstract
Objectives To develop and validate a general radiomics nomogram capable of identifying EGFR mutation status in non-small cell lung 
cancer (NSCLC) patients, regardless of patient with either contrast-enhanced CT (CE-CT) or non-contrast-enhanced CT (NE-CT).
Methods A total of 412 NSCLC patients were retrospectively enrolled in this study. Patients’ radiomics features not signifi-
cantly different between NE-CT and CE-CT were defined as general features, and were further used to construct the general 
radiomics signature. Fivefold cross-validation was used to select the best machine learning algorithm. Finally, a general 
radiomics nomogram was developed using general radiomics signature, and clinical and radiological characteristics. Two 
groups of data collected at different time periods were used as two test sets to access the discrimination and clinical useful-
ness. Area under the receiver operating characteristic curve (ROC-AUC) was applied to performance evaluation.
Result The general radiomics signature yielded the highest AUC of 0.756 and 0.739 in the two test sets, respectively. When 
applying to same type of CT, the performance of general radiomics signature was always similar to or higher than that of 
models built using only NE-CT or CE-CT features. The general radiomics nomogram combining general radiomics signa-
ture, smoking history, emphysema, and ILD achieved higher performance whether applying to NE-CT or CE-CT (test set 1, 
AUC = 0.833 and 0.842; test set 2, AUC = 0.839 and 0.850).
Conclusions Our work demonstrated that using general features to construct radiomics signature and nomogram could help 
identify EGFR mutation status of NSCLC patients and expand its scope of clinical application.
Key Points 
• General features were proposed to construct general radiomics signature using different types of CT of different patients  
   at the same time to identify EGFR mutation status of NSCLC patients.
• The general radiomics nomogram based on general radiomics signature, and clinical and radiological characteristics  
   could identify EGFR mutation status of patients with NSCLC and outperformed the general radiomics signature.
• The general radiomics nomogram had a wider scope of clinical application; no matter which of NE-CT and CE-CT the  
   patient has, its EGFR mutation status could be predicted.
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Abbreviations
ATS  American Thoracic Society
CI  95% Confidence interval
CT  Computed tomography
CE-CT  Contrast-enhanced CT
COPD  Chronic obstructive pulmonary disease
DICOM  Digital Imaging and Communications in 

Medicine
EGFR  Epidermal growth factor receptor
EGFR-TKI  EGFR tyrosine kinase inhibitors
ERS  European Respiratory Society
GBDT  Gradient boosting decision tree
G-NC  General NE-CT and CE-CT
ICC  Intraclass correlation coefficient
ILD  Interstitial lung disease
LR  Logistic regression
NBC  Naive Bayesian classification
NE-CT  Non-contrast-enhanced CT
NSCLC  Non-small-cell lung cancer
PACS  Picture Achiving and Communication 

System
RF  Random forest
SVM  Support Vector machine
VOI  Volume of interest

Introduction

Considering the growing insight into the molecular mecha-
nisms of lung cancer, the treatment of non-small-cell lung 
cancer (NSCLC) has shifted its focus to determining onco-
genic driver mutation subtypes. The most common gene 
mutation in NSCLC is epidermal growth factor receptor 
(EGFR) mutation [1, 2]. A recent study showed that the 
patient who received third-generation EGFR-TKI of osi-
mertinib even had a longer overall survival [3]. Therefore, 
the testing of EGFR mutation status before treatment is very 
important.

The detection of EGFR mutant status relies on tumor 
tissue from surgical or tissue biopsy, which is an inva-
sive sampling method. Inspired by genomics and tumor 
heterogeneity, radiomics approach transforms any type 
of medical images into quantitative data to guide clini-
cal decisions [4, 5]. Studies have shown that either non-
contrast-enhanced CT (NE-CT) or contrast-enhanced CT 
(CE-CT) can be used to build radiomics models to predict 
EGFR mutation status [6–9]. CE-CT showed superior 
diagnosis abilities over NE-CT in identifying the type of 
EGFR mutant [10]. Radiomics comparison study showed 
that some radiomics features were not significantly differ-
ent between NE-CT and CE-CT [11]. However, whether 
radiomic features extracted from NE-CT and CE-CT can 

be used together to build EGFR mutation status prediction 
model remains unknown.

The purpose of this study is to develop a method to 
construct radiomics signature and nomogram using dif-
ferent types of CT from different patients simultaneously, 
so that it cannot only identify EGFR mutation status of 
NSCLC patients, but also can be applied to different 
types of CT.

Materials and methods

Study population

This study was approved by our institutional review board. 
Informed consent from the patients was waived for this ret-
rospective study. The study comprises two sets of patients 
from different study time. The first set included a total of 
784 patients with pathological confirmed NSCLC from 
January of 2017 to June 2019. The second set is from June 
of 2020 to December of 2020, when a total of 44 patients 
with NSCLC and who underwent paired NE-CT and CE-CT 
before surgery were retrospectively enrolled. The exclusion 
criteria were as follows: (I) without molecular testing of 
EGFR mutation; (II) without CT before surgery; (III) with 
a history of other malignant tumors; (IV) with therapy before 
detection of EGFR mutations. The EGFR mutant status was 
detected with a polymerase chain reaction and confirmed 
by direct sequencing [12]. The clinical information includ-
ing age, gender, smoking history, pulmonary function tests, 
pathological type, and the results of molecular testing were 
collected from the personal medical charts.

As shown in Fig. 1, the enrolled patients were divided 
into three sets: (I) training set (n = 327), which consisted 
of patients whose scan time was before June of 2019 and 
only had one type of CT (167 NE-CT and 160 CE-CT); 
(II) test set 1 (n = 66), which consisted of patients whose 
scan time was before June of 2019 and had both NE-CT and 
CE-CT (66 NE-CT and 66 CE-CT); (III) test set 2 (n = 19), 
which consisted of patients whose scan time was during June 
of 2020 and December of 2020 and had both NE-CT and 
CE-CT (19 NE-CT and 19 CE-CT).

CT scan protocol

All patients who underwent chest CT scan used one of 
the two multidetector CT systems (Brilliance CT, Philips 
Healthcare; Toshiba CT). All the subjects were examined at 
full inspiration in the supine position with or without con-
trast material. The scanning parameters were as follows: 
100–120 kVp, 100 mA, detector collimation of 64 × or 
128 × 0.625 mm; field of view of 350 × 350 mm; and matrix 
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of 512 × 512 using a reconstruction kernel for the lung. For 
CE-CT, after routine CT, a dose of 85 mL non-ionic iodi-
nated contrast material (350 mg iodine/mL, Omnipaque, GE 
Healthcare) was injected into the antecubital vein at a rate of 
3.0 mL/s using an automated injector (Ulrich CT Plus 150, 
Ulrich Medical). CT scanning was performed again with a 
25-s delay after the injection. NE-CT and CE-CT of 5 mm 
were retrieved from the Picture Archiving and Communica-
tion System (PACS) workstation with format of DICOM.

CT evaluation

One chest radiologist with 15 years of experience inter-
preted the CT radiological features, including size, location, 
mass or nodules, morphology, opacity of tumor, interstitial 
changes of lung, bronchitis, bronchiectasis, emphysema, 
lymphadenopathy, pleural thickening, and pleural retrac-
tion. She described the location of tumor in the five lobes 
consisting of the upper lobes, middle lobe, and lower lobes. 
The radiological morphology features of tumor were subcat-
egorized as lobulation, spiculation, cavitation, and pleural 
retraction. The opacity of tumor was classified into solid, 
part-solid, mostly part-solid, or ground-glass nodule [13]. 
Interstitial lung disease (ILD) diagnosis referred to the diag-
nostic criteria updated by the American Thoracic Society 
(ATS)/European Respiratory Society (ERS) in 2013 [14].

VOI segmentation and radiomics features extraction

Figure 2 showed the workflow of this study. The entire tumor 
on CT images was defined as the volume of interest (VOI). 
The same chest radiologist used a research platform (Infer-
Scholar; https:// www. infer- vision. com/) to manually seg-
ment the VOI slice. the voxel size of VOI was resampled to 
1*1*1  mm3 by cubic interpolation to reduce the variability 
of radiomic feature values due to different voxel sizes [15].

For each VOI, PyRadiomics [16] was used to automati-
cally extract the quantitative radiomic features. Radiomic 
features extraction was performed on the VOI and the VOI 
converted by different filters. Specifically, six types of radi-
omics features were extracted, including first-order (18 
features), gray-level co-occurrence matrix (GLCM, 22 fea-
tures), gray-level size zone matrix (GLSZM, 16 features), 
gray-level run length matrix (GLRLM, 16 features), neigh-
boring gray-tone difference matrix (NGTDM, 5 features), 
and gray-level dependence matrix (GLDM, 14 features). 
When calculating the texture features and two first-order 
features, the values of CT were discretized with a fixed bin 
width of 32 Hounsfield units (HU). Overall, 1092 quantita-
tive radiomic features were extracted. Details of the radiom-
ics features were provided in supplementary Table 1.

Feature selection in terms of reproducibility

To evaluate the reproductivity of the radiomic features, 
1 month later, 50 patients were randomly selected from the 

Fig. 1  The flowchart of inclusion and exclusion criteria of patients to this study
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training set and re-segmented by the previous radiologist. 
Intraclass correlation coefficient (ICC) was utilized to evalu-
ate the intra-observer agreement between the two repeated 
segmented; values > 0.80 indicated good reproducibility, 
otherwise was excluded in the following feature selection 
process[8].

General feature

To explore whether the radiomic features obtained by 
NE-CT and CE-CT can be used simultaneously for analysis, 
we compared three data usage methods. Here, we proposed 
a general features approach, called G-NC (General NE-CT 
and CE-CT). The general features selection that contained 
three steps was applied in the training set. The first step was 
to divide the data into two groups according to their CT type 
(NE-CT or CE-CT). In the second step, the differences of 
radiomic features extracted from two groups were compared 
using Mann–Whitney U test. In the third step, the radiomic 
features showed significant differences between two groups 
(p < 0.05) were excluded, and the rest of the features were 
retained as general features. The second data usage method 

was called NE, which indicated the radiomic features 
extracted from NE-CT. The last data usage method was to 
use the radiomic features extracted from CE-CT, namely CE.

Selection of prediction factors and establishment 
of prediction model

We used a three-stage feature selection method for 
predicting factors selection. The first stage was to perform 
a Mann–Whitney U test between EGFR wild-type and the 
EGFR mutant patients for all radiomic features. The features 
with p < 0.05 were input to the second stage. The second 
stage was to calculate the Pearson correlation coefficient, 
defined as r, between each pair of input features. If there was 
a pair of features with |r|> 0.85, only the one with a smaller 
p value calculated in the first stage would be kept. The last 
stage was to evaluate all remaining features’ importance by a 
feature selection algorithm called Boruta. The algorithm was 
designed as a wrapper around Random Forest classification 
algorithm, which provided unbiased and stable selection of 
important and non-important attributes from an information 
system. After feature selection, a fivefold cross-validation 

Fig. 2  The workflow of this study
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strategy was used to choose the best machine learning 
method to construct a radiomic model [17]. The machine 
learning methods used included support vector machine 
(SVM), logistic regression (LR), random forest (RF), 
gradient boosting decision tree (GBDT), and naive Bayesian 
classification (NBC).

Nomogram construction

The radiomics signature was the prediction score of the 
radiomic model (details in supplementary). All clinical 
and radiological characteristics that differ significantly 
between EGFR wild-type and EGFR mutant in the training 
set, as well as the radiomics signature, were included in 
a multivariate logistic regression using forward stepwise 
selection to select independent predictors. Finally, a 
nomogram was contracted based on the independent 
predictors.

Statistical analysis

The differences of all features between EGFR wild-type 
and EGFR mutant were assessed using Mann–Whitney 
U test for continuous variables and Fisher’s exact test or 
chi-square test for categorical variables. The discrimina-
tion was evaluated by area under the receiver operating 
characteristic curve (ROC-AUC). Decision curve analy-
sis (DCA) was used to evaluate clinical usefulness by 
quantifying the net benefits of the nomogram in both 
two test sets [18]. DeLong test [19, 20] was used for 
statistical comparisons of ROC curves. All statistical 
analyses were performed with R (version 3.5.0; http:// 
www. Rpro- ject. org) and SPSS (version 22.0, IBM). A 
two-tailed p value was considered statistically significant 
if less than 0.05.

Results

Clinical and radiological characteristics

There were 176, 37, and 9 patients with EGFR mutation and 
151, 29, and 10 with EGFR wild-type in the training set, test 
set 1, and test set 2, respectively. EGFR mutation rates were 
significantly higher in women than those in men, and in non-
smokers than in smokers. Regarding other non-radiomics 
features, histology, COPD, ILD (p < 0.001), type of lesion 
(p = 0.008), size (p = 0.001), and emphysema (p < 0.001) 
were statistically different between the two groups. EGFR 
mutation was more likely to be found in groups with smaller 
size, adenocarcinoma and without emphysema, COPD, and 
ILD (Table.1).

Radiomics model analysis

The final feature counts of NE, CE, and G-NC were 
5, 1, and 5, respectively (supplementary Table 2). The 
machine learning algorithms used for NE, CE, and G-NC 
were LR, LR, and RF (supplementary Table 3). The pre-
diction performance of radiomics models was described 
in Table 2. Regardless of which test set, using CE-CT for 
prediction yielded higher performance. Compared with 
NE and CE, G-NC had the best prediction performance 
in both two test sets. In particular, when NE-CT was 
used for prediction in the test set 1, the performance 
improvement was significant (AUC: 0.656 vs. 0.730; 
p < 0.05).

Diagnostic performance measurements

As shown in Table 3 and Fig. 3, a multivariate logistic 
regression was used to develop an individualized prediction 
nomogram. Table 4 indicated the prediction performance 
of nomogram when different types of CT were used for pre-
diction in the two test sets. In the test set 1, the AUCs of 
the nomogram were 0.833 and 0.842 (accuracy: 0.727 and 
0.758; sensitivity: 0.784 and 0.784; specificity: 0.655 and 
0.724) for NE-CT and CE-CT, respectively. In the test set 
2, the AUCs of the nomogram were 0.839 and 0.850 on 
NE-CT and CE-CT, respectively. The accuracy, sensitivity, 
and specificity have the same values for NE-CT and CE-CT 
(accuracy: 0.842; sensitivity: 0.889; specificity: 0.800).

ROC curves of nomogram on the two test sets are shown 
in Fig. 4. On test set 1, when using NE-CT to predict, the 
nomogram is significantly outperformed than NE model 
(p = 0.013), and it is also significantly outperformed than 
G-NC model (p = 0.027). When using CE-CT to predict, 
there is no significant difference between the nomogram and 
the CE model, nor the G-NC model. On test set 2, no matter 
whether NE-CT or CE-CT is used for prediction, there is no 
significant difference between nomogram and other models. 
The correlation was used to evaluate the consistency of the 
nomogram in predicting NE-CT and CE-CT of the same 
subject. The correlation coefficients were 0.772 and 0.660 
in the test set 1 and test set 2, respectively.

Clinical use

The decision curve shown in Fig. 5 was used to evaluate 
the benefits of the nomogram using NE-CT (blue line) to 
predict and using CE-CT to predict (orange line). On the 
test set 1, for threshold probabilities > 70%, nomogram 
using NE-CT to predict added most benefit. On test set 2, 
for threshold probabilities < 70%, nomogram using CE-CT 
to predict added most benefit. On both two test sets, at any 
given threshold probability, using nomogram for prediction 
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added more or equal benefit than using the “All-EGFR-TKIs 
therapy” and “None-EGFR-TKIs therapy.”

Discussion

Radiomics can transform any type of medical images into 
quantitative data to aid in diagnosis and treatment, such as 
identifying EGFR mutant status. Most radiomics signatures 
are based on a single type of medical image, which limits the 
scope of their use due to uncertain image type accessibility 
for patients in clinical practice. Moreover, using only one 
type of medical image for radiomics signature development 
cannot tap into the advantages of other existing types of data. 
In this study, we proposed a method to construct radiomics 
signature using multiple types of CT all at once. Both our 
proposed general radiomics signature and nomogram could 
be directly applied on patient’s NE-CT or CE-CT, which fur-
ther expand its scope of clinical application. The detection of 
EGFR mutation status could potentially guide physicians to 
treat patients with distinct therapeutic strategies. Currently, 
radiomics features extracted from NE-CT or CE-CT are 
widely used in the literature. Previous studies revealed that 
radiomics signature based on NE-CT had good performance 
in EGFR mutation detection with AUC of 0.796 in the test 
set 1 and on CE-CT showed an accuracy of 0.755 and a sen-
sitivity of 0.929 [9]. Another study showed the performance 
of the radiomics signature based on CE-CT was better than 
that based on NE-CT, but not statistically significant [10]. 
Inspired by Kakino R et al. [11], we hypothesized that both 
NE-CT and CE-CT-based radiomics signatures can detect 
EGFR mutation. The experimental results on two test sets 
showed that the general radiomics signature can be applied 
to NE-CT and CE-CT, and the performance was better than 
the radiomics signature based on a single type of CT (NE 
and CE). Especially for NE-CT, a significant performance 
improvement has been obtained.

The data size of the training set for build general radi-
omics signature was twice the data size of training sets for 
building NE and CE, which may lead to incomparable per-
formance. However, we argue that this is one of the benefits 
that our proposed general feature could bring, that is, we 
could utilize more data in a real-world clinical setting by 
merging different CT types, thereby improving the perfor-
mance of the model. We conducted an ablation experiment 
to prove that the performance improvement was not only due 
to the increase of data size, but also because of the rational 
use of data (supplementary). On the one hand, directly mix-
ing NE-CT and CE-CT for modeling did not lead to per-
formance improvement. On the other hand, even under the 
same amount of data, general radiomics signature had the 
best performance.
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Radiomics is not the only non-invasive detection method 
for EGFR mutations. Previously, physicians and radiologists 
tried to predict EGFR mutations through clinical and con-
ventional CT characteristics, which were easily collected 

and would not be influenced by different CT types. Our find-
ings are consistent with those of most existing studies that 
EGFR mutations were associated with female, non-smokers, 
and adenocarcinoma histology [21, 22]. Furthermore, the 
rate of EGFR mutations in NSCLC with COPD was signifi-
cantly lower than that in NSCLC patients without COPD, 
in line with previous findings [23]. Past studies found that 
the radiological characteristics of maximum diameter, loca-
tion, density, lymphadenopathy, spiculation, vacuole sign, 
air bronchograms, pleura retraction, emphysema, and fibro-
sis were associated with EGFR mutation status [24, 25]. 
Consistent with these studies, we found smaller size, GGO, 
bronchiectasis, lymphadenopathy, obstructive pneumonia 
and absence of emphysema, and fibrosis were more likely 
to be associated with tumors with EGFR mutations, despite 

Table 2  The predictive 
performance of each radiomic 
model on the two test sets. For 
the radiomic model constructed 
using only NE-CT or CE-CT, 
the performance was only 
evaluated on the corresponding 
type of CT

p: Delong test values, when using NE-CT as input, calculate the significant difference between G-NC 
model and NE model; when using CE-CT as input, calculate the significant difference between G-NC 
model and CE model
CE-CT, contrast-enhanced CT; G-NC, general NE-CT and CE-CT; NE-CT, non-contrast-enhanced CT

Model CT type Data number Test set 1 Test set 2

NE-CT CE-CT NE-CT CE-CT

NE NE-CT 167 0.656 ± 0.018 \ 0.657 ± 0.031 \
CE CE-CT 160 \ 0.737 ± 0.028 \ 0.711 ± 0.035
G-NC NE and CE-CT 327 0.730 ± 0.028 0.756 ± 0.043 0.727 ± 0.033 0.739 ± 0.023
p value (G-NC vs. other) 0.048 0.059 0.205 0.582

Table 3  Multivariable logistic regression for nomogram construction

CI, confidence interval; ILD, interstitial lung disease; OR, odds ratio

Independent predictors β OR (95% CI) p

Sex  − 0.561 0.571 (0.337–0.967) 0.037
Emphysema  − 0.950 0.387 (0.202–0.741) 0.004
ILD  − 2.141 0.118 (0.025–0.544) 0.006
Radiomic signature     4.031 56.328 (14.078–225.379)  < 0.001
Intercept  − 1.299 0.273 (0.125–0.597) 0.001

Fig. 3  Nomogram. The nomo-
gram was built in the training 
set with the sex, emphysema, 
ILD, and radiomic signature

Table 4  Performance of 
EGFR mutation predicted by 
nomogram in the two test sets

AUC , area under curve; CE-CT, contrast-enhanced CT; NE-CT, non-contrast-enhanced CT

Performance Test set 1 Test set 2

NE-CT CE-CT NE-CT CE-CT

AUC 0.833 (0.737–0.918) 0.842 (0.733–0.926) 0.839 (0.641–1.000) 0.850 (0.608–1.000)
Accuracy 0.727 (0.621–0.833) 0.758 (0.652–0.848) 0.842 (0.684–1.000) 0.842 (0.684–1.000)
Sensitivity 0.784 (0.636–0.906) 0.784 (0.636–0.905) 0.889 (0.625–1.000) 0.889 (0.667–1.000)
Specificity 0.655 (0.476–0.821) 0.724 (0.548–0.885) 0.800 (0.500–1.000) 0.800 (0.500–1.000)
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Fig. 4  Receiver operating characteristic curves (ROCs). a ROC for the nomogram using NE-CT and CE-CT to predict in test set 1. b ROC for 
the nomogram using NE-CT and CE-CT to predict in test set 2

Fig. 5  Decision curve analysis (DCA). The y axis represents the net 
benefit, which was determined by calculating the difference between 
the expected benefit and the expected harm associated with each pro-
posed model [net benefit = true-positive rate (TPR) – (false-positive 
rate (FPR) × weighting factor), where the weighting factor = thresh-
old probability/ (1-threshold probability)]. The green line represents 
the assumption that all patients with EGFR-TKIs therapy. The dotted 
line represents the assumption that all patients without EGFR-TKIs 
therapy. a DCA for the nomogram using NE-CT and CE-CT in test 

set 1. For threshold probabilities > 70%, nomogram using NE-CT to 
predict added more benefit than using CE-CT. b DCA for the nomo-
gram using NE-CT and CE-CT in test set 2. For threshold probabili-
ties < 70%, nomogram using CE-CT to predict added more benefit 
than using NE-CT. On both two test sets, using nomogram for pre-
diction added more or equal benefit than using the “all-EGFR-TKIs 
therapy” and “none-EGFR-TKIs therapy” at any given threshold 
probability
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insignificant difference in density, bronchiectasis, lymphad-
enopathy, and obstructive pneumonia. We also found that 
the frequency of EGFR mutations was higher in patients 
without emphysema or fibrosis than patients with emphy-
sema or fibrosis, which is consistent with results of a prior 
study [26]. This indicates that CT findings of emphysema 
or fibrosis may be possible to predict the presence of EGFR 
mutations. Thus, a natural step forward is to combine radi-
omics signature and clinical or radiological characteristics 
to improve the accuracy of EGFR mutation status.

For this purpose, we constructed the general radiom-
ics nomogram, which consists of general radiomics signa-
ture, smoking history, emphysema, and ILD. The result on 
the both two test sets indicated that regardless of whether 
NE-CT or CE-CT was used for prediction, the predictive 
performance of nomogram outperformed that of general 
radiomics signature and other models. The result of cor-
relation matrix indicated that the nomogram predictions 
had good correlation for using CE-CT and NE-CT of the 
same subject on the test set 1 and test set 2. The decision 
curve analysis also showed that the nomogram added more 
or equal benefits than using the “All-EGFR-TKIs therapy” 
and “None-EGFR-TKIs therapy” at any given threshold 
probability.

There are several limitations in this study. First, this 
is a retrospective and single-center study. Although we 
constructed a time-based testing set in this study, external 
validation with more samples from other institutions is 
needed. Second, we divided all patients with both NE-CT 
and CE-CT into the test set, which may introduce sample 
selection bias. Third, our general feature selection method 
may filter out some radiomics features that may benefit 
the prediction of EGFR mutation status. In this study, we 
found that the feature groups used to establish NE and CE 
both contained wavelet-LHH_ngtdm_Strength. However, 
this feature was significantly different between NE-CT 
and CE-CT, and therefore excluded in general radiom-
ics signature building process. It is necessary to develop 
a comprehensive method to use the radiomics features 
extracted from NE-CT and CE-CT more effectively in 
the future.

In conclusion, the general radiomics signature built 
jointly based on NE-CT and CE-CT has a good perfor-
mance for EGFR mutation status prediction. Additionally, 
the nomogram consisting of radiomics, clinical, and radio-
logical characteristics showed the most optimal predictive 
ability. Both general radiomics signature and nomogram 
are applicable to both NE-CT and CE-CT. Therefore, in 
clinical practice, the nomogram could be a potential non-
invasive tool for EGFR mutation status detection.
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