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Abstract
Objectives Artificial intelligence (AI)–based image analysis is increasingly applied in the acute stroke field. Its implementa-
tion for the detection and quantification of hemorrhage suspect hyperdensities in non-contrast-enhanced head CT (NCCT) 
scans may facilitate clinical decision-making and accelerate stroke management.
Methods NCCTs of 160 patients with suspected acute stroke were analyzed regarding the presence or absence of acute 
intracranial hemorrhages (ICH) using a novel AI-based algorithm. Read was performed by two blinded neuroradiology 
residents (R1 and R2). Ground truth was established by an expert neuroradiologist. Specificity, sensitivity, and area under 
the curve were calculated for ICH and intraparenchymal hemorrhage (IPH) detection. IPH-volumes were segmented and 
quantified automatically by the algorithm and semi-automatically. Intraclass correlation coefficient (ICC) and Dice coef-
ficient (DC) were calculated.
Results In total, 79 of 160 patients showed acute ICH, while 47 had IPH. Sensitivity and specificity for ICH detection 
were 0.91 and 0.89 for the algorithm; 0.99 and 0.98 for R1; and 1.00 and 0.98 for R2. Sensitivity and specificity for IPH 
detection were 0.98 and 0.89 for the algorithm; 0.83 and 0.99 for R1; and 0.91 and 0.99 for R2. Interreader reliability for 
ICH and IPH detection showed strong agreements for the algorithm (0.80 and 0.84), R1 (0.96 and 0.84), and R2 (0.98 and 
0.92), respectively. ICC indicated an excellent (0.98) agreement between the algorithm and the reference standard of the 
IPH-volumes. The mean DC was 0.82.
Conclusion The AI-based algorithm reliably assessed the presence or absence of acute ICHs in this dataset and quantified 
IPH volumes precisely.
Key Points  
• Artificial intelligence (AI) is able to detect hyperdense volumes on brain CTs reliably.
• Sensitivity and specificity are highest for the detection of intraparenchymal hemorrhages.
• Interreader reliability for hemorrhage detection shows strong agreement for AI and human readers.
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NCCT   Non-contrast-enhanced head computed 
tomography

NIHSS   National Institutes of Health Stroke Scale
pmRS  Pre-stroke Rankin Score
ROC  Receiver-operating-curve
SD  Standard deviation
TDS  Testing data-subset

Introduction

Acute stroke accounts for almost 10% of all deaths world-
wide. It affects one in four people over their lifetime [1], 
and intracranial hemorrhage (ICH) is one of the most dev-
astating forms [2]. According to its wide availability and 
its low acquisition time, non-contrast-enhanced computed 
tomography (NCCT) of the head is the preferred imaging 
modality for patients with acute stroke symptoms [3]. In this 
context, NCCT serves—in particular—to rule out acute ICH 
and thus enables a faster and more adequate treatment [4].

In the last few decades, artificial intelligence (AI)–aided 
analysis of medical imaging data has been implemented reli-
ably in many healthcare areas [5], including the diagnosis of 
acute ischemic or hemorrhagic stroke. Since these so-called 
computer-aided diagnosis (CAD) applications have been 
primarily introduced to provide radiologists with a second 
opinion, they have nowadays become an integral part of clin-
ical routine [6]. One established CE-marked decision sup-
port tool on NCCT of patients with suspected acute stroke 
is e-ASPECTS by the company Brainomix Limited (herein-
after referred to as Brainomix). This application can assess 
signs of ischemic hypodensity in NCCT of the brain and 
quantify the associated Alberta Stroke Program Early Com-
puted Tomography Score (ASPECTS) in nearly real time 
[7]. Since acute ICH accounts for approximately 10–20% 
of all strokes [8], an AI-based image analysis regarding the 
detection and quantification of hemorrhage suspect hyper-
densities in patients with acute stroke would help to improve 
workflow, for example by triaging radiological data and thus 
improving outcomes [9], as well as reduce medical errors, 
for example by providing a second opinion [10]. Therefore, 
the present study investigates the performance of a novel 
algorithm from Brainomix regarding the automated detec-
tion and segmentation of hemorrhage suspect hyperdensities 
on NCCT in comparison to neuroradiologists.

Methods

Data collection and study design

The datasets were retrospectively assembled over a period of 
1 year, starting from September 2017. All cases of patients 

with a suspected acute stroke presented in our department 
who underwent an NCCT were assessed. A total of 1297 
cases were evaluated (fellow with 5 years of training in neu-
rology and stroke) for their eligibility for inclusion within 
our trial testing data subset (TDS, n = 160). Data collection 
and analysis were approved by the local ethics committee 
(Medical Faculty of Heidelberg University). Patient consent 
was waived due to the retrospective, descriptive character of 
this single-center study.

The primary screening phase involved a visual inspec-
tion of all NCCT layers. Individual labeling was made with 
annotation about the following: (1) the presence or absence 
of ICH, and if present its type and anatomical localization; 
(2) the presence of pronounced artifacts, their localization, 
and probable cause (e.g., coils, clipping, or hearing aids); 
(3) the presence of pronounced physiological or pathological 
calcifications with a descriptive quantification; and finally 
(4) the presence of other hemorrhage-like structures (for 
example, meningioma, hyperdense vessels, calcified tumors, 
and vascular malformations).

All the included cases were pseudonymized and ranked 
according to the date and time of admission to our hospi-
tal. During this process, 110 cases were excluded; princi-
pal exclusion criteria were age under 18 years old, cases 
with absent, deficient, or inaccurate clinical or radiological 
findings, as well as reduced quality of NCCT images with 
a resulted uncertain interpretability usually arising due to 
different types of pronounced artifacts, like artifacts related 
to excessive motion or dense foreign bodies such as endo-
vascular coils and hearing aids [11].

In the subsequent sampling phase, based on the pre-calcu-
lated sample size, we tried to generate a challenging evalua-
tion dataset using a stratified-convenience sampling strategy. 
In order to enrich the cohort with challenging pathologies of 
the algorithm, we selectively formed two main groups—with 
serval subgroups each—based on the presence or absence 
of ICHs, type of hemorrhagic lesions, and the appearance 
of hemorrhagic-like lesions (see Table 1 in the Supplemen-
tary Appendix). The sampling was terminated whenever 
the targeted number of cases in each group was reached. 
Detailed information on the inclusion criteria as well as the 
sampling process is provided in Fig. 1 of the Supplementary 
Appendix.

Significant clinical findings were gathered retrospectively 
from the electronic medical charts and documents; including 
basic demographics (age, gender), date and time of admis-
sion and first CT imaging, representative scores (pre-stroke 
Rankin Score [pmRS], National Institutes of Health Stroke 
Scale [NIHSS], arterial pressure), use of anticoagulants or 
antiplatelet medications, and the presence of relevant co-
morbidities (arterial hypertension, diabetes mellitus, hyper-
cholesterinemia, previous stroke, and atrial fibrillation or 
atrial flutter).
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Imaging andpostprocessing

CT image acquisition of the 160 patients was performed 
in a non-enhanced technique with standard settings accord-
ing to clinical routine. Therefore a 64-slice multidetector, 
single-source scanner (Somatom Definition AS, Siemens 
Healthineers) with a tube voltage of 120 kV and a tube cur-
rent of 20 mAs was used. Reconstruction of all CT images 
was conducted with a J40s kernel with a slice thickness of 
1 mm in the axial plane.

The hyperdensities detection and segmentation algorithm 
from Brainomix was developed by training a deep convolu-
tional neural network (CNN) on thin-slice CT brain images 
with manual voxel-wise annotations of hyperdensities, as 
well as images from a normal control population. Fully con-
volutional networks and, in particular, U-Net were designed 
to make predictions at the voxel level. U-Net was initially 
proposed for biomedical image segmentation [12]. A sim-
plified description of its architecture can be comprehended 
as an encoder network followed by a decoder network. The 
encoder is able to capture the context in the image into 
deeper features, whereas the decoder enables precise locali-
zation of those features into the voxel space. The developed 
U-Net operates into the 3D volumes in order to segment the 
hyperdense regions from the CT scans in a fully automated 
manner. Voxel-wise probabilities of hyperdensity are then 
thresholded to produce a binary hyperdense volume mask 
and corresponding volume estimate (in ml). No Hounsfield 
unit-based thresholds are being used to distinguish hyper-
densities typical of acute bleed from other hyperdensities, 
such as calcification. Instead, the CNN is trained with cases 
that have common calcification (e.g., pineal gland and cho-
roid plexus) and those voxels do not belong to the positive 
class and therefore are trained to be recognized as normal. 
CT images of our TDS were analyzed fully automatically 
by the algorithm regarding the presence or absence of 

hemorrhage suspect hyperdensities. Additionally, the intrac-
ranial located hyperdensities were automatically segmented 
and quantified by the algorithm. The algorithm generates all 
the results in nearly real-time (up to a maximum processing 
time of 1 min).

All CT scans were read by two neuroradiology residents 
with 2 years of experience each, using a picture archiving 
and communication system workstation (CENTRICITY 
PACS 4.0; GE Healthcare). Both readers were blinded to the 
presence or nature of an acute ICH. A board-certified neu-
roradiology consultant with more than 15 years of experi-
ence and full access to all clinical and radiological data also 
classified each scan to provide the ground truth. Acute ICHs 
were classified as either parenchymal, intraventricular, suba-
rachnoidal (SAH), epidural (EDH), subdural, or a combina-
tion, respectively. Each intraparenchymal hematoma (IPH) 
was also segmented semi-automatically by a neuroradiology 
resident and validated by the consultant neuroradiologist, 
based on density thresholds using Amira software (version 
5.4.1; Thermo Fisher Scientific Inc.) to provide a reference 
for the volumes calculated automatically by the algorithm 
from Brainomix. All segmentations were performed after 
completing the testing experiment regarding the detection 
and classification of any ICH. A comparison between the 
automatically and semi-automatically segmented IPHs is 
demonstrated in Fig. 1.

Statistical analysis

Prior to the conduction of the study and creation of TDS, a 
sample size calculation was performed, based on estimat-
ing the desired confidence interval width for the Kappa 
statistic regarding the agreement between software and 
ground truth. Assuming Cohen’s kappa coefficient (κ) of 
0.9 and an expected 50% prevalence of ICH, at least 139 
subjects in order for the confidence interval width to be 

Fig. 1  Segmentation of an 
intraparenchymal hemorrhage 
(IPH) in the right frontal and 
parietal lobe of a patient with 
acute stroke. The IPH was seg-
mented automatically (left) by 
the algorithm from Brainomix 
and semi-automatically (right) 
by Amira software to provide 
a reference standard. The Dice 
similarity coefficient for this 
example was 0.95
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0.2 were required (i.e., the lower bound of the confidence 
interval will be 0.8). We decided to include 160 cases 
(approximately 15% more than the calculated sample size). 
To enrich the experiment dataset with pathological cases, 
we intentionally determined a higher ICH prevalence than 
epidemiological observations.

Specificity and sensitivity were calculated, and a 
receiver-operating-curve (ROC) analysis was performed 
for both readers and the algorithm (for ICH and IPH). The 
interrater agreement against the reference standard was 
assessed by Cohen’s κ. The intraclass correlation coeffi-
cient (ICC) was calculated, using an absolute-agreement 
definition in a two-way mixed model and a 95% confidence 
interval, to describe the agreement of quantitative values 
of IPH between the software and the reference standard. In 

order to evaluate the similarity between the segmented IPH 
of both datasets, the Dice coefficient (DC) was calculated.

A standard software package (SPSS 26, IBM) was used 
for statistical analysis.

Results

According to the established ground truth, acute ICH was 
present in 79 of 160 patients, whereby a detailed description 
of the individual bleeding locations is provided in Table 2 of 
the Supplementary Appendix. An example for the detection 
and quantification of an IPH by the algorithm is demon-
strated in Fig. 2.

The results regarding the sensitivity and specificity for 
detecting any ICH were as follows: Brainomix algorithm: 

Fig. 2  Example of a patient 
with acute stroke symptoms and 
intraparenchymal hemorrhage 
(IPH) on non-contrast-enhanced 
head CT (left, red arrows). The 
detection of IPH, segmentation, 
and volume quantification were 
performed automatically by 
the algorithm from Brainomix 
(right, yellow arrows) in nearly 
real-time. The above-demon-
strated findings will be provided 
to the user. The fully automated 
quantification of the IPH in this 
example resulted in 11 ml
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0.91 and 0.89; reader 1: 0.99 and 0.98; and reader 2: 1.00 
and 0.98. The area under the curve (AUC) was 0.90, 0.98, 
and 0.99, respectively. A detailed description of the results 
for ICH detection, including the corresponding confidence 
intervals and Cohen’s kappa coefficient, is provided in 
Table 1. The results of the ROC analysis are demonstrated 
in Fig. 3.

Sensitivity and specificity for detection of IPH (47 
out of 128 cases had IPH; further information is given in 

Table 4 of the Supplementary Appendix) were as follows: 
Brainomix algorithm 0.98 and 0.89; reader 1: 0.83 and 
0.99; and reader 2: 0.91 and 0.99. AUC was 0.93, 0.91, and 
0.95, respectively. A detailed description of the results for 
IPH detection is demonstrated in Table 2, while the results 
of the corresponding ROC analysis are shown in Fig. 4.

Interreader reliability (IRR) for detection of ICH and 
IPH showed strong agreements for the algorithm (0.80 and 
0.84), reader 1 (0.96 and 0.84), and reader 2 (0.98 and 
0.92), respectively. Further information on the ICC results, 
including the corresponding confidence intervals, is pro-
vided in Table 1 (for ICH) and Table 2 (for IPH). There 
was only one case with EDH in our TDS, and it was cor-
rectly detected as an ICH by the algorithm and both neu-
roradiology residents. Among the 7 false-negative cases 
of the algorithm were 3 SAH, 3 SDH (2 acute on chronic 
and 1 acute), and 1 IPH, while 6 of the 9 false-positive 
cases had calcifications (i.e., 2 calcified meningiomas), 
and 3 dense vessel signs. Figure 5 depicts two examples 
of false-positive and false-negative cases.

The ICC of the quantitative IPH volumes of 44 cases 
was 0.98 (confidence interval: 0.96–0.99) and thus indi-
cating excellent reliability between the algorithm and 
the semi-automated reference. In 3 IPH cases, a semi-
automated segmentation of the hemorrhage volumes was 
technically not feasible due to its diffuse expansion with 
additional subarachnoid and intraventricular parts as well 
as its close proximity to the skull base. Detailed infor-
mation on the automatically and semi-automatically cal-
culated volumes of each case is given in Table 6 of the 
Supplementary Appendix.

The mean DC regarding the similarity of the automatic 
and semi-automatic segmented IPH was 0.82 (0.76–0.87).

Table 1  Summary of the 
results for the detection of any 
intracranial hemorrhage

BX Brainomix algorithm; R1 neuroradiology resident 1; R2 neuroradiology resident 2; AUC  area under the 
curve; ICC intraclass correlation coefficient
Confidence intervals are provided in brackets

Sensitivity Specificity AUC Kappa ICC

BX 0.91 (0.83–0.96) 0.89 (0.80–0.95) 0.90 (0.85–0.95) 0.80 (0.71–0.89) 0.80 (0.71–0.89)
R1 0.99 (0.93–1.00) 0.98 (0.91–1.00) 0.98 (0.96–1.00) 0.96 (0.92–1.00) 0.96 (0.92–1.00)
R2 1.00 (0.95–1.00) 0.98 (0.91–1.00) 0.99 (0.97–1.00) 0.98 (0.94–1.00) 0.98 (0.94–1.00)

Fig. 3  Results of the ROC analysis for detection of intracranial hem-
orrhage by both readers and the Brainomix algorithm. Further infor-
mation regarding the sensitivity, specificity, AUC, and Cohen’s kappa 
coefficient are provided in Table 1. R1 neuroradiology resident 1; R2 
neuroradiology resident 2; BX Brainomix algorithm

Table 2  Summary of the 
results for the detection of any 
intraparenchymal hemorrhage

BX Brainomix algorithm; R1 neuroradiology resident 1; R2 neuroradiology resident 2; AUC  area under the 
curve; ICC intraclass correlation coefficient
Confidence intervals are provided in brackets

Sensitivity Specificity AUC Kappa ICC

BX 0.98 (0.89–1.00) 0.89 (0.80–0.95) 0.93 (0.89–0.98) 0.84 (0.74–0.93) 0.84 (0.74–0.93)
R1 0.83 (0.69–0.92) 0.99 (0.93–1.00) 0.91 (0.84–0.98) 0.84 (0.75–0.94) 0.84 (0.75–0.94)
R2 0.91 (0.80–0.98) 0.99 (0.93–1.00) 0.95 (0.90–1.00) 0.92 (0.84–0.99) 0.92 (0.84–0.99)
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Discussion

For the first time, we describe the performance of the novel 
AI-based algorithm from Brainomix for the detection and 
quantification of acute ICH on NCCT of patients with a sus-
pected acute stroke. The algorithm showed a strong agree-
ment for automatic detection of ICH and IPH, respectively, 
compared to the ground truth. However, the performance of 
the two neuroradiology residents was better, except for IPH 
detection, for which the algorithm showed higher sensitivity, 
but lower specificity. The agreement of the volume meas-
urement of the algorithm and the semi-automated reference 
was excellent. An overview of several segmentation methods 
with a comparison to the present study is shown in Table 5 
of the Supplementary Appendix.

AI-based image analysis is increasingly applied in clini-
cal practice, especially in the field of acute stroke [13]. 
Despite this evolution, there are still a limited number of 
AI-based applications commercially available to assess ICHs 
in patients with acute stroke. Besides this novel application, 
two of the clinically most commonly used applications are 
Rapid ICH by iSchemaView, Inc. and Viz ICH by Viz.ai, 
Inc. While the results for the algorithm from Brainomix are 
named above, recent studies for detection of all types of 
ICHs, excluding hemorrhagic transformations, have dem-
onstrated a sensitivity of 0.95 and a specificity of 0.94 for 
Rapid ICH (detailed information is provided on https:// www. 
rapid ai. com/ rapid- ich); studies for Viz ICH have shown a 
sensitivity and specificity of 0.94 and 0.88 in [14] and 0.90 

and 0.99 in [15], respectively (see Table 4 of the Supple-
mentary Appendix).

Moreover, numerous studies regarding the performance of 
further algorithms for ICH detection [16–22], ICH subtypes 
classification [20, 22, 23], and segmentation [24–27] have 
been published in the literature in the last few years. Hssay-
eni et al. [27] summarized in their research paper various 
approaches for ICH detection, classification, and segmenta-
tion. They noticed that in most studies using large datasets, 
a high level of sensitivity and specificity could be reached 
during the testing of the individual algorithms[19–22]. For 
example, Ye et al. [20] achieved one of the best results. They 
used a dataset of 2537 CT scans (1642 with ICH and 895 
without ICH) for training and tested a dataset of 399 CT 
scans (194 with ICH and 105 without ICH), resulting in a 
sensitivity of 0.98 and a specificity of 0.99. A further study 
by Jnawali et al. [18] included 34,848 CT scans (8465 with 
ICH and 26,383 without ICH) for training and tested a total 
of 5509 CT scans (1891 with ICH and 3618 without ICH), 
obtaining a sensitivity of 0.77 and a specificity of 0.80. 
Comparing these as well as further findings, investigating 
commercial and non-commercial software for ICH detection 
to the Brainomix algorithm, the results feature an equiva-
lent high level of performance [14, 15, 27]. However, a fair 
comparison between the performances of the individual 
tools is limited due to the heterogenicity of the training and 
testing modalities as well as the diversity of the included 
hemorrhage cases. Moreover, the algorithm’s detection per-
formances varied depending on the type of ICH, while SAH 
and EDH were the most difficult types to classify [20–26]. 
The described difficulty in detecting SAH is in line with 
our results; however, EDH cases were only occasionally 
presented in our neurological emergency department, as 
trauma cases were primarily treated by the neurosurgical 
emergency department. Nevertheless, acute SDHs were 
also challenging to recognize in our study, matching the lit-
erature and the common difficulties in SDH diagnosis [28]. 
Regarding the studies investigating the performance of the 
commercially available applications Rapid ICH and VIZ 
ICH, one major strength of our dataset is the inclusion of 
various types of ICHs and other intracranial hyperdensities, 
while the other studies provided no further information to 
this regard [14, 15] (additional reference: https:// www. rapid 
ai. com/ rapid- ich).

In Table  4 of the Supplementary Appendix, we 
recapitulated some results based on Hssayeni et al.’s 
research and compared their findings to the present 
study as well as to both other commercially available ICH 
detection tools.

Some limitations of our study should be noted and dis-
cussed. In concordance with our study design, cases with 
significant artifacts were excluded; this may not reflect all 
possible real-work circumstances. The usage of a single CT 

Fig. 4  Results of the ROC analysis for detection of intraparenchymal 
hemorrhage by both readers and the Brainomix algorithm. Further 
information regarding the sensitivity, specificity, AUC, and Cohen’s 
kappa coefficient are provided in Table 2. R1 neuroradiology resident 
1; R2 neuroradiology resident 2; BX Brainomix algorithm

https://www.rapidai.com/rapid-ich
https://www.rapidai.com/rapid-ich
https://www.rapidai.com/rapid-ich
https://www.rapidai.com/rapid-ich


2252 European Radiology (2022) 32:2246–2254

1 3

scanner for the imaging process may have reduced the tech-
nical bias; however, a generalization of the results to other 
types of CT scanners may be limited. Blinding essential clin-
ical data—like the side of hemisymptomatic neurological 
deficiency—might have influenced the performance of the 
physicians; the clinical presentation of symptoms is usually 
essential for the anatomical localization of pathologies on 
radiological images.

Moreover, our study focused mainly on non-traumatic 
ICHs, and all the collected images were obtained from 
patients with a suspected acute ischemic or hemorrhagic 
stroke. Therefore, the algorithm’s performance in detecting 
and quantifying ICHs in traumatic cases necessitates further 
investigation.

Despite these limitations, the present study delivered 
concrete results of the algorithm's sensitivity and specificity 

Fig. 5  Two examples for 
patients with acute stroke 
symptoms for whom the 
detection of bleeding suspect 
hyperdense volumes was 
rated false negative (left) and 
false positive (right) by the 
Brainomix algorithm. In the 
false-negative case, an acute 
subarachnoid hemorrhage in 
the basal cisterns (red arrows) 
was not detected reliably by the 
algorithm; instead, a hyper-
dense vessel was marked (green 
arrows). In the false-positive 
case, an aneurysm of the basilar 
artery was detected wrongly as 
an intracranial bleeding suspect 
hyperdensity (yellow arrows)
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compared to neuroradiology residents and the ground truth. 
Even with the presence of challenging, multiple non-path-
ological hemorrhage-like structures in our TDS, the algo-
rithm’s performance was comparable to other commercial 
and non-commercial algorithms used for ICH and IPH 
detection, while resulting in excellent findings regarding the 
quantification of IPH. Despite the good results achieved by 
the Brainomix algorithm, the overall performance of neu-
roradiologists was better. Therefore, the algorithm’s current 
performance precludes its use as a stand-alone automated 
tool for establishing a final diagnosis and selecting stroke 
patients for reperfusion treatment; however, the aim of AI-
powered software tools to interpret images of stroke victims 
should rather be to enhance the performance of physicians 
and more studies to this regard are needed [29]. Moreover, 
the excellent automated volume quantification might enable a 
standardized prospective patient selection in future IPH trials.

Conclusion

In this dataset with 160 cases enriched with challenging 
non-ICH pathologies, the AI-based algorithm from Braino-
mix was reliable in detecting acute ICHs and quantifying 
IPH-volumes. This actual performance may help to provide 
a well-founded second opinion for clinicians before estab-
lishing a final diagnosis but precludes the algorithm to be 
used as a stand-alone tool. Moreover, larger, randomized 
controlled trials with a prospective study design should be 
performed to validate the findings presented here.
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