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Abstract
Background Main challenges for COVID-19 include the lack of a rapid diagnostic test, a suitable tool to monitor and predict 
a patient’s clinical course and an efficient way for data sharing among multicenters. We thus developed a novel artificial 
intelligence system based on deep learning (DL) and federated learning (FL) for the diagnosis, monitoring, and prediction 
of a patient’s clinical course.
Methods CT imaging derived from 6 different multicenter cohorts were used for stepwise diagnostic algorithm to diagnose 
COVID-19, with or without clinical data. Patients with more than 3 consecutive CT images were trained for the monitoring 
algorithm. FL has been applied for decentralized refinement of independently built DL models.
Results A total of 1,552,988 CT slices from 4804 patients were used. The model can diagnose COVID-19 based on CT alone 
with the AUC being 0.98 (95% CI 0.97–0.99), and outperforms the radiologist’s assessment. We have also successfully tested 
the incorporation of the DL diagnostic model with the FL framework. Its auto-segmentation analyses co-related well with 
those by radiologists and achieved a high Dice’s coefficient of 0.77. It can produce a predictive curve of a patient’s clinical 
course if serial CT assessments are available.
Interpretation The system has high consistency in diagnosing COVID-19 based on CT, with or without clinical data. Alter-
natively, it can be implemented on a FL platform, which would potentially encourage the data sharing in the future. It also 
can produce an objective predictive curve of a patient’s clinical course for visualization.
Key Points  
• CoviDet could diagnose COVID-19 based on chest CT with high consistency; this outperformed the radiologist’s  
   assessment. Its auto-segmentation analyses co-related well with those by radiologists and could potentially monitor  
   and predict a patient’s clinical course if serial CT assessments are available. It can be integrated into the federated  
   learning framework.
• CoviDet can be used as an adjunct to aid clinicians with the CT diagnosis of COVID-19 and can potentially be used for 
   disease monitoring; federated learning can potentially open opportunities for global collaboration.
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Abbreviations
AUC   Area under curve
CC-CCII  China Consortium of Chest CT Image 

Investigation
CI  Confidence interval
CLAIM  Artificial Intelligence in Medical Imaging
CNN  Convolutional neural networks
COVID-19  Coronavirus disease 2019
CT  Computed tomography
DC  Dice coefficient
DL  Deep learning
EMR  Electronic medical records
FL  Federated learning
GN  Group normalization
GPR  Gaussian process regression
GPU  Graphics processing unit
GRU   Gated recurrent unit
NPV  Negative prediction value
PCR  Polymerase chain reaction
PPV  Positive prediction value
RNN  Recurrent neural net
ROC  Receiver operating characteristic curve
SVM  Support vector machine
WS  Weight standardization

Introduction

The current gold standard diagnostic test for coronavirus 
disease 2019 (COVID-19) using polymerase chain reaction 
(PCR) has several limitations [1]. Its accuracy also depends 
on the patient’s clinical condition, sampling technique, and 
test kits used [2]. It also does not provide any informa-
tion about the patient’s disease severity. Chest computed 
tomography (CT) has emerged as a useful adjunct, but there 
were concerns about its accuracy as certain CT features of 
COVID-19 mimic other viral chest infections [3].

To overcome these challenges, we have developed the 
CoviDet, a deep learning (DL) system for CT analysis of 
COVID-19, with and without electronic medical record 
(EMR) data. We have also included an auto-segmentation 
algorithm to test its ability to perform automated monitoring 
and predicting of COVID-19 changes in serial CT.

To enable its future applications globally, we have tested 
its application within a federated learning (FL) framework. 
FL has been recently proposed as a promising strategy for 
decentralized refinement of independently built DL models 
[4]. As only encrypted parameters are exchanged, it avoids 
data protection and privacy issues associated with the shar-
ing of sensitive personal data to the main study site. This 
will open up opportunities to speed up global collaboration 
against COVID-19 and refine the model generalizability.

Methods

Study design overview and image datasets

This study was approved by the ethics committee of the 
First Affiliated Hospital of Guangzhou Medical Univer-
sity (2020–94). Informed consent was waived because of 
its retrospective nature. We present the following article in 
accordance with the strengthening the reporting of Artifi-
cial Intelligence in Medical Imaging (CLAIM) guideline 
checklist. The CoviDet system uses five algorithms for two 
main functions: (1) stepwise diagnosis of COVID-19 from 
other chest diseases based on CT with or without clinical 
data and (2) auto-segmentation and monitoring/predicting of 
COVID-19 changes on CT. Figure 1 summarizes the data set 
and design for each algorithm, and the application process 
is summarized in Supplementary Fig. 1.

A total of 1,552,988 CT slices from 4804 patients were used 
for this study. They were grouped into 6 cohorts according to 
the data source (Supplementary Fig. 2 to Supplementary Fig. 6 
and methods). Cohort 1 and 2 comprised confirmed COVID-
19 cases. Cohort 3 refers to the control group (non-viral infec-
tion causes), and cohort 4 were patients with non-COVID-19 
viral pneumonia. The segmentation and monitoring of clinical 
progress utilized CT data from COVID-19 patients with more 
than three consecutive repeat CT scans from a subset of cohort 
2 for training and cohort 5 for validation. Cohort 6 was an inde-
pendent validation cohort from the China National Center for 
Bioinformation database, which is constructed from cohorts 
from the China Consortium of Chest CT Image Investiga-
tion (CC-CCII). All CT images in cohort 6 are classified into 
laboratory-confirmed COVID-19 (n = 944), common pneu-
monia (n = 712), and normal controls (n = 621). The stepwise 
diagnosis model utilizes DL #1 to distinguish between viral 
pneumonia (including COVID-19) from other lung conditions 
(pulmonary nodule, pulmonary tuberculosis, and ordinary lung 
scans). Transferred learning from DL #1 is then used in DL 
#2 to develop another model to distinguish COVID-19 from 
other causes of viral pneumonia (Supplementary Fig. 7 and 
methods) [5]. DL #3 then combines DL #2 with the support 
vector machine (SVM) trained using EMR data to evaluate the 
further diagnostic performance [6]. DL #4 is used for lesion 
segmentation and DL #5 is used for automated monitoring and 
predicting of CT changes relating to COVID-19.

Four experienced radiologists were included in the anno-
tation process to establish the ground truth for lung tissue 
classification in positive cases (COVID-19 or other viral 
pneumonia). Two radiologists were involved in the process 
of creating fine boundaries with the use of Materialise’s 
interactive medical image control system (Materialise Mim-
ics V20.0) to highlight pathology in the same CT section to 
avoid the inclusion of noisy data.
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Construction and validation of the deep learning 
model for the stepwise COVID‑19 diagnosis system

The data cleaning and pre-processing model is a small resid-
ual network (ResNet-18) achieving fast training and reason-
ing (Supplementary Fig. 8 and methods).

The learning models for the diagnosis system were based 
on the ResNeXt-50 + weight standardization (ws) + gated 
recurrent unit (GRU) (Supplementary Fig. 9a, Supplemen-
tary methods, and Supplementary parameters). A set of 
CT slides was selected for classification, and the GRU, an 
implementation of recurrent neural net (RNN), encodes the 
features selected by ResNeXt-50 to obtain the final output 
of the whole scan. In this approach, there is no need to spe-
cifically annotate the special location of a lesion; instead, 
a positive or negative label for the full scan was sufficient 
for model training. To solve the problem of memory usage, 
the ResNeXt-50 + ws model was used for feature extraction, 
which has been shown to provide acceptable outcomes with 
small batch sizes. A 2080Ti graphics processing unit (GPU) 
was used for training. We use ws + group normalization (gn) 
in our model instead of the more widely used batch nor-
malization due to the small batch size in order to achieve 
better performance. As a result, we used the pre-trained 

ResNeXt-50 + ws + gn structure for image feature extrac-
tion from the whole model (Supplementary Fig. 9a). We 
then applied a classification method based on a combination 
of a deep convolutional neural network (CNN) that extracts 
discriminative visual features from each slide automatically 
and an RNN that integrates features from each slide given 
by CNN into the features of the whole scan to obtain the 
classification result [7].

To include clinical features such as laboratory tests and 
clinical symptoms, SVM is used (Supplementary Fig. 9b, 
Supplementary methods, and Supplementary parameters), 
which is a classical classifier that functions well in many dif-
ferent tasks [8]. With different kernels, SVM can deal with a 
high-dimensional vector for classifying. In this paper, three 
kinds of kernels are used for classifying the clinical data for 
DL #3: a linear kernel, a polynomial kernel, and a radial 
basis function (Gaussian) kernel (RBF kernel).

Construction and validation of the deep learning 
model for clinical progress prediction of COVID‑19

DL #4 The first step was to train the segmentation model to 
provide the segmented lesion area and calculate the lesion 
volume. DeeplabV3 + with Densenet121 as the backbone is 
used for the segmentation model deployed on the website 

Fig. 1  Flow chart for the development and testing of the CoviDet system
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(Supplementary Fig. 9c, Supplementary methods, and Sup-
plementary parameters) [9]. For better visualization, this 
model was reconstructed and displayed as a 3-dimensional 
pulmonary model. To evaluate the performance of the seg-
mentation model, the Dice coefficient (DC) was used.

DL #5 Patients who had at least 3 different consecutive 
scans after admission were used for the monitoring and pre-
dicting of the disease course. Gaussian process regression 
(GPR) was used to mimic the lesion curve and to predict 
the changes of the patients’ lesion area ratio (lesion area/
pulmonary area) (Supplementary Fig. 9d and methods) [10].

Using the average lesion area of the 3 known time points 
measured by DL #4, DL #5 was used to provide an individu-
alized visual prediction of a patient’s progress. For those 
with 4th and 5th time points, the agreement between the 
predicted values using this curve was compared with that of 
the actual values of these time points.

Federated learning

To test the feasibility of using CoviDet within the FL frame-
work, we have implemented it in a simulated FL environ-
ment. In the FL model, training was performed locally in 
different sites rather than in a single central site, and only 
encrypted parameters were shared, as depicted in Supple-
mentary Fig. 9e and methods.

Statistical analysis

The classification results in the diagnosis and differentiation 
model were evaluated based on the area under curve (AUC) 
of the receiver operating characteristic curve (ROC), sensi-
tivity, specificity, accuracy (true predictions/total number of 
cases), positive prediction value (PPV), negative prediction 
value (NPV), and F1 score. The model was run 5 times to 
obtain a 95% confidence interval (CI) of the AUC and aver-
age sensitivity, specificity, PPV, NPV, and F1 score of the 
test set. Sensitivity was the ratio of positives that were cor-
rectly discriminated, and specificity was the ratio of nega-
tives that were correctly discriminated. PPV = true positive/
(true positive + false positive)), NPV = true negative/(true 
negative + false negative)). The F1 score was a measure of 
the accuracy of a binary model. The Yoden index was used 
to choose the best cut-off value. R (version 4.0.0) was used 
for statistical analysis.

Role of the funding source

The funder had no role in the study design, data collection, 
data analysis, data interpretation, or writing of the report. 
The corresponding author had full access to all the data in 

the study and had final responsibility for the decision to sub-
mit for publication.

Results

Diagnostic performance of deep learning #1: 
to distinguish viral pneumonia from control cases 
based on chest CT

DL #1 can diagnose viral pneumonia (COVID-19 and 
other viral pneumonia) from controls with a sensitivity 
of 0.98 (95% CI 0.98–0.99), a specificity of 1.00 (95% 
CI 0.99–1.00), an AUC of the receiver of 0.99 (95% 
CI 0.99–0.99) (Fig. 2a) and an f1 score of 0.98 (95% CI 
0.98–0.98). The average diagnostic time was 5.74 ± 5.01 s. 
In addition, the PPV of the algorithm was 1.00 (95% CI 
1.00–1.00), the NPV was 0.97 (95% CI 0.96–0.97), and the 
accuracy was 0.96 (95% CI 0.96–0.97).

Diagnostic performance of deep learning #2: 
to distinguish COVID‑19 from other viral pneumonia 
based on chest CT

To train the DL #2 to distinguish COVID-19 from other viral 
pneumonia, the model parameters in DL #1 were used as 
initial parameters. A transfer learning strategy from DL #1 
was used to improve the accuracy of DL #2 (Supplementary 
Fig. 7). This algorithm identifies COVID-19 from other viral 
pneumonia with a sensitivity of 0.98 (95% CI 0.98–0.98), a 
specificity of 0.95 (95% CI 0.95–0.96), and an AUC of 0.98 
(95% CI 0.98–0.99) (Fig. 2b). The f1 score of this model was 
0.97 (95% CI 0.97–0.98). The average diagnostic time was 
6.75 ± 6.04 s. The PPV was 0.91 (95% CI 0.90–0.92), and 
the NPV was 0.99 (95% CI 0.98–0.99); the accuracy was 
0.93 (95% CI 95% CI 0.93–0.93).

Comparison of the diagnostic performance 
of the deep learning #2 algorithm to those 
of radiologists for distinguishing COVID‑19 
from other viral pneumonia based on CT

Forty-five radiologists from 15 hospitals were asked to ana-
lyze 100 CT scans: 50 randomized CT scans from COVID-
19 patients and 50 randomized CT scans from other viral 
pneumonia. Fifteen of them were senior radiologists with 
over 15 years’ experience, 10 were middle-grade radiologists 
with 10 to 15 years’ experience, and 20 were junior radiolo-
gists with less than 10 years’ experience.

The overall sensitivity and specificity for the radiolo-
gists were 0.68 and 0.98 respectively, with an average AUC 
of 0.86 (95% CI 0.78–0.94). The specific diagnostic out-
comes varied with the experience of the radiologist and are 

2238 European Radiology (2022) 32:2235–2245



1 3

summarized in Supplementary Table 1, with the AUC 
ranging from 0.81 to 0.89. To compare with the radiolo-
gist’s performance, the same 100 scans were analyzed by 
DL #2. This yielded a sensitivity of 0.90, a specificity of 
0.92, and an average AUC of 0.97 (95% CI 0.94–1.00) 
(Fig.  2c), which was superior to the expert’s assess-
ments. The average diagnosis time of radiologists (from 
the first sight to make the diagnosis) is 59.91 ± 24.07 s, 
which is much longer than that of DL #2 (6.95 ± 5.03 s; 
p < 0.001).

Diagnostic performance of deep learning #2 
when used in combination with clinical data 
to distinguish COVID‑19 from other viral pneumonia 
(deep learning #3)

To investigate the diagnostic performance when clinical data 
was included, clinical features that were analyzed by SVM 

were combined with DL #2 to generate DL #3. The clini-
cal features are summarized in Supplementary Table 2 and 
3. The sensitivity was 0.97 (95% CI 0.97–0.97), specificity 
was 0.98 (95% CI 0.98–0.98), and AUC was 0.99 (95% 
CI 0.99–1.00; p < 0.001) (Fig. 2d). The f1 score of this 
model was 0.97 (95% CI 0.97–0.97). The average diag-
nostic time was 6.75 ± 6.04 s. The PPV was 0.97 (95% CI 
0.97–0.97), the NPV was 0.98 (95% CI 0.98–0.98), and 
the accuracy was 0.97 (95% 0.97–0.98). Meanwhile, in 
the radiologists’ test, the classification performance was 
not improved when adding with the clinical data. The sen-
sitivity and specificity for the radiologists were 0.67 and 
0.96, respectively, and the average AUC was 0.84 (95% CI 
0.80–0.91), whether or not the clinical data was added in 
the same test data set.

Fig. 2  Performance of the CoviDet system for diagnosing differ-
ent conditions. a The ROC curve of DL #1 on the test set between 
viral pneumonia (COVID-19 and other types of viral pneumonia) 
and controls (pulmonary nodule, pulmonary tuberculosis, and nor-
mal lung) based on chest CT. b The ROC curve of DL #2 on the test 
set between COVID-19 and other types of viral pneumonia based on 
chest CT. c The comparison of the diagnostic performance between 
DL #2 and radiologists with different experience. d The ROC curve 
of DL #3 on the test set between COVID-19 and other types of viral 
pneumonia based on CT and clinical features from EMR (“CoviDet 
only” is the deep learning model CoviDet with only CT input; SVM 

uses clinical features as input; “poly,” “linear,” and “rbf” are polyno-
mial, linear, and RBF kernels for SVM, respectively; “X svm only” 
(X for poly, linear, or RBF) is the model with only clinical features; 
“CoviDet + X svm” is the model combining outputs of both CoviDet 
and SVM). e The ROC curve of the stepwise diagnosis system (step-
wise DL #1 and DL #2) for COVID-19 from board population (all 
samples in the test group). f The ROC curve of the stepwise diagnosis 
system (stepwise DL #1 and DL #2) for COVID-19 of independent 
validation in cohort 5 and 6. ROC, receiver operating characteris-
tic curve; AUC, area under curve; DL, deep learning; FL, federated 
learning; EMR, electronic medical record

2239European Radiology (2022) 32:2235–2245
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Diagnostic performance of CoviDet to distinguish 
COVID‑19 from non‑COVID‑19 based on CT alone 
(stepwise combination of deep learning #1 
and deep learning #2)

Stepwise combination of DL #1 and DL #2 was used to eval-
uate the detection of COVID-19 cases from non-COVID-19 
cases based on CT alone, which is its most important task 
for clinical application. Our results showed that the CoviDet 
stepwise diagnostic algorithm can differentiate COVID-19 
cases from all non-COVID-19 cases (other viral pneumo-
nia and control cases), with a sensitivity of 0.93 (95% CI 
0.93–0.93), a specificity of 0.95 (95% CI 0.95–0.95), an 
accuracy of 0.95 (95% CI 0.95–0.96), and an AUC of 0.98 
(95% CI 0.97–0.99) (Fig. 2e).

The external validation was conducted using two inde-
pendent cohorts (cohort 5 and cohort 6) (Fig. 2f). The 
CoviDet stepwise diagnostic algorithm (the combination 
of DL #1 and #2) can differentiate COVID-19 cases from 
all non-COVID-19 cases with a sensitivity of 0.96 (95% CI 
0.96–0.97), a specificity of 0.95 (95% CI 0.95–0.97), and an 

AUC of 0.98 (95% CI 0.98–0.99) in cohort 5 and a sensitiv-
ity of 0.95 (95% CI 0.95–0.96), a specificity of 0.96 (95% 
CI 0.95–0.98), and an AUC of 0.98 (95% CI 0.98–0.99) in 
cohort 6.

Diagnostic performance of CoviDet in the federated 
learning framework

To test the feasibility of CoviDet operating within a FL 
framework, we have applied the DL diagnostic algorithm in 
a simulated FL environment. For DL #1 (Fig. 2a), the AUC 
of the FL model was 0.98 (95% CI 0.98–0.98), the sensitiv-
ity was 0.97 (95% CI 0.97–0.98), and the specificity was 
0.94 (95% CI 0.94–0.95); for DL #2 (Fig. 2b), the AUC was 
0.98 (95% CI 0.97–0.98), the sensitivity was 0.96 (95% CI 
0.96–0.96), and the specificity was 0.92 (95% CI 0.92–0.93).

In FL, CoviDet can distinguish COVID-19 from non-
COVID-19 cases with a sensitivity of 0.95 (95% CI 
0.97–0.98), a specificity of 0.96 (95% CI 0.97–0.98), an 
accuracy of 0.97 (95% CI 0.97–0.98), and an AUC of 0.98 
(95% CI 0.98–0.99).

Fig. 3  The performance of the CoviDet system on segmentation. A 
The performance of DL #4 on a lesion segmentation task shown in 
examples at different stages; the upper pictures were two-dimensional 
segmentation display, and the lower pictures were three-dimensional 
segmentation display. B The performance of DL #4 on a lesion seg-
mentation task is shown in the upper row of pictures, and the cor-
responding segmentation by radiologists is shown in the lower row of 

pictures. C The consistency of CT segmentation between DL #4 and 
radiologists. D Dice on the validation data set changing with train-
ing epochs. E Bland–Altman plot of the predicted and actual time 
interval of the 3rd to 4th time point (spot indicates sample; dotted line 
indicates average difference; red line indicates upper and lower lim-
its of agreement). F Bland–Altman plot of predicted and actual time 
intervals of the 3rd to 5th time point
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Algorithm for auto‑segmentation, disease 
severity assessment, and automated monitoring 
of COVID‑19 CT changes (DL #4 and #5)

To assess the severity and monitor the CT changes associated 
with COVID-19 over time, an auto-segmentation model (DL 
#4) was constructed to outline the abnormal lesion area on 
CT and to calculate the lesion area/normal lung area ratio, 
which were displayed as a 2-dimensional and reconstructed 
as a 3-dimensional model (Fig. 3a). Compared with manual 
segmentation by radiologists (Fig. 3b, c), the auto-segmen-
tation correlated closed with that performed by radiologists, 
with a low root mean square error of 0.01; with 40 epochs, 
the segmentation model can achieve a high Dice’s coefficient 
of 0.78 (Fig. 3d).

Using the average lesion area/normal lung area ratio, 
obtained CT scans from 3 known time points measured by 
DL #4 and DL #5 were used to test if it was possible to pro-
vide automated monitoring and prediction of COVID-19-re-
lated CT changes. The graph plot by DL #5 provided a visual 
graphic trend of the CT changes. Majority in our test cohort 
have a radiological course similar to that reported by Pan et al 
[11] (Fig. 4a), where the radiological changes peaked and 
recovered. Some had shown signs of recovery but relapsed 

(Fig. 4b); others had either plateaued (Fig. 4c) or were show-
ing features of deterioration (Fig. 4d).

To evaluate the model’s ability to predict CT changes 
beyond the 3rd time point, we have used those COVID-
19 patients with 3 or more chest CT scans to predict the 
time interval taken between the 3rd and 4th or the 3rd 
and 5th time points, based on the average lesion area/
normal lung area ratio measured at those respective time 
points available. This was compared with the actual 
known time interval. There was no statistical difference 
between the predicted and actual time intervals of the 
3rd to the 4th time point (predicted 5.00 ± 5.08 days vs. 
actual 4.61 ± 2.61 days; p = 0.53) (Fig. 3e) and the 3rd to 
the 5th time point (predicted 7.72 ± 10.6 days vs. actual 
9.82 ± 5.84 days; p = 0.17) (Fig. 3f).

Systematic review of current work

To evaluate the novelty of our work, we conducted a sys-
tematic review based on peer-reviewed publications on the 
use of AI for chest CT analysis of COVID-19 (Supplemen-
tary Fig. 10 and methods). Finally, 16 studies were included 
(Table 1) [12–27]. All 16 published studies were based on 
either a 2D CNN or a 3D CNN only, with an AUC range 

Fig. 4  The Gaussian process curve of dynamic lesion prediction based on repeated CT in a single patient. a Disease showing peak and recovery. 
b Disease showing recovery but relapsing. c Disease showing a plateau. d Disease showing deterioration
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of 0.82 to 0.99. Only two studies reported additional func-
tions of prognostic prediction. The control groups in major-
ity of the studies were community-acquired pneumonia, 
non-COVID-19, or normal chest CT. No study was based 
on stepwise diagnostic design. There is no published peer-
reviewed work on the use of FL for this field at present.

Discussion

Our proposed CoviDet (Supplementary Fig. 1–14) is novel 
and different from other published reports on the use of AI 
for CT diagnosis of COVID-19 in several ways.

Novel use of the 2D CNN combined with RNN for CT 
analysis

Unlike most reported AI frameworks of COVID-19, 
which relied on 3D CNN [13, 22], we have used the 2D 
CNN + RNN framework. This is because 3D kernels are 
typically small and require down-sampling of the image. 
This can lead to data loss and affect prediction accu-
racy [28]. To avoid this, we use 2D CNN to extract fea-
tures from each slide. Then, GRU, an implementation of 
RNN, used information extracted from several adjacent 
slides, integrating them into a global feature vector for 
the whole CT scan. This also avoids the time-consuming 
annotation required for 2D CNN and avoids the large 
memory system required for 3D CNN. It is more consist-
ent with the strategy of radiologists. All these in com-
bination led to better performance and higher accuracy 
than previous works, even when CT without clinical data 
was used on its own.

Novelty of the stepwise diagnosis algorithm

The rationale for using the stepwise diagnosis algorithm is 
to mimic the decision-making process made by clinicians 
during the CT assessment for COVID-19. From a techni-
cal perspective, such a stepwise approach was also easier to 
implement as the first step to distinguish viral pneumonia 
and from other pulmonary conditions is a coarse-grained 
classification function. In this study, the AUC of our model 
for this process is 0.99.

However, it is a more challenging task to distinguish 
COVID-19 pneumonia from other viral pneumonia on CT 
scans for our expert radiologists as well as for DL algorithm 
implementation. This is because it is a fine-grained classi-
fication task, which requires the model to learn more subtle 
changes. With the use of transfer learning from the first step, 
the model can distinguish COVID-19 from other viral pneu-
monia cases with the AUC as high as 0.98, outperforming 
experienced radiologists.

Incorporation of federated learning

To avoid the need for transmission of any potentially sensi-
tive data to another country or site, FL has been put forward 
as a way to refine DL models by implementing the learning 
process locally [4]. Only encrypted parameters are trans-
ferred to the coordinating site for further model refinement. 
We therefore have successfully tested the incorporation of 
our CoviDet model with the FL framework. This will open 
up new opportunities for global collaboration especially dur-
ing this pandemic as this approach can avoid issues associ-
ated with data sharing ownership and privacy breaches. It 
will allow the rapid development of this model and improve 
its generalizability.

Potential for automated CT monitoring of COVID‑19

The other unique and useful feature of CoviDet is the incor-
poration of DL to provide automated assessment of disease 
severity and CT monitoring of COVID-19 changes. The plot 
of the lesion area changing over time provides an automated 
graphic visualization of CT changes for clinicians to monitor 
a patient’s progress and make clinical recommendations. We 
had tried to use the GPR to mimic and predict the clinical 
course for COVID-19 patients individually. This is a practi-
cal and important property for COVID-19 lesion area predic-
tion because the conditions of patients can vary greatly as 
seen in Fig. 4. Thus, it is unreasonable to handle all of them 
by a pre-trained prediction model.

Study limitations

There are several limitations to this study. First, the sample 
size used for the monitoring of COVID-19 CT changes is 
modest; a large data set is required to confirm its clinical 
usefulness and improve its accuracy. Second, the therapeu-
tic-related information was not involved in this model, and 
the clinical course might be affected by the medical care. 
Third, the generalizability of the FL model needs to be vali-
dated in the future.

Conclusions

The CoviDet can accurately diagnose COVID-19 based on 
CT scans with or without clinical data. There is potential 
to further apply CoviDet for the monitoring and prediction 
of a patient’s clinical course. Alternatively, it can be imple-
mented on a federated learning platform.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00330- 021- 08334-6.
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