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Abstract
Objective To conduct perilesional region radiomics analysis of contrast-enhanced mammography (CEM) images to differentiate
benign and malignant breast lesions.
Methods and materials This retrospective study included patients who underwent CEM fromNovember 2017 to February 2020.
Lesion contours were manually delineated. Perilesional regions were automatically obtained. Seven regions of interest (ROIs)
were obtained for each lesion, including the lesion ROI, annular perilesional ROIs (1mm, 3 mm, 5 mm), and lesion + perilesional
ROIs (1 mm, 3 mm, 5 mm). Overall, 4,098 radiomics features were extracted from each ROI. Datasets were divided into training
and testing sets (1:1). Seven classification models using features from the seven ROIs were constructed using LASSO regression.
Model performance was assessed by the AUC with 95% CI.
Results Overall, 190 women with 223 breast lesions (101 benign; 122 malignant) were enrolled. In the testing set, the annular
perilesional ROI of 3-mmmodel showed the highest AUC of 0.930 (95% CI: 0.882–0.977), followed by the annular perilesional
ROI of 1 mm model (AUC = 0.929; 95% CI: 0.881–0.978) and the lesion ROI model (AUC = 0.909; 95% CI: 0.857–0.961). A
new model was generated by combining the predicted probabilities of the lesion ROI and annular perilesional ROI of 3-mm
models, which achieved a higher AUC in the testing set (AUC = 0.940).
Conclusions Annular perilesional radiomics analysis of CEM images is useful for diagnosing breast cancers. Adding annular
perilesional information to the radiomics model built on the lesion information may improve the diagnostic performance.
Key Points
• Radiomics analysis of the annular perilesional region of 3 mm in CEM images may provide valuable information for the
differential diagnosis of benign and malignant breast lesions.

• The radiomics information from the lesion region and the annular perilesional region may be complementary. Combining the
predicted probabilities of the models constructed by the features from the two regions may improve the diagnostic performance
of radiomics models.
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Abbreviations
ADC Apparent diffusion coefficient
AJCC American Joint Committee on Cancer
AUC Area under the ROC curve
BC Breast cancer
BI-RADS Breast Imaging Reporting and Data System
CC Craniocaudal
CEM Contrast-enhanced mammography
CI Confidence interval
DES Dual-energy subtraction
GLCM Gray-level co-occurrence matrix
GLRLM Gray-level run length matrix
GLSZM Gray-level size zone matrix
HE High energy
ICC Intraclass correlation coefficient
LASSO Least absolute shrinkage and selection operator
LE Low energy
MLO Mediolateral oblique
MRI Magnetic resonance imaging
ROC Receiver operating characteristic
ROI Region of interest
SD Standard deviation
SLN Sentinel lymph node
TIL Tumor-infiltrating lymphocyte

Background

Contrast-enhanced mammography (CEM) is an emerging
breast imaging technology [1–3]. Based on the dual-energy
mammographic technique, it utilizes intravenous injection of
iodinated contrast material to depict the contrast-enhanced
area of breast lesions [4, 5]. Breast cancers (BCs) can be de-
tected on CEMwith high sensitivity due to the neovascularity
associated with malignancy [6, 7], even in women with dense
breasts [8–10].

With the advances of computer technology, radiomics has
been developing rapidly. Radiomics utilizes high-throughput
computing to extract a large number of image features and
converts standard-of-care medical images into quantifiable
data, which can subsequently be analyzed using conventional
biostatistics and artificial intelligence, including machine
learning methods [11, 12]. Some previous studies utilized
radiomics analysis in the diagnosis of BC and showed prom-
ising results [13–18]. However, these studies solely focused
on the extent of the tumor. The immediate surrounding tumor
environment or the bulk parenchyma around the tumor has
remained unexplored thus far.

With increasing interest in the tumor microenvironment in
recent decades, there has been a growing body of research
focusing on the quantitative characterization of the surrounding
peripheral areas of tumors, since this area is related to the blood
and lymphatic plexus, immune infiltration, and stromal

response [19–23] and may contribute to risk factors determin-
ing tumor formation [24]. Considering the unique biological
significance of the peritumoral region, several recent studies
have tried to explore the role of the peritumoral radiomics fea-
tures of BC and have shown promising results for these features
in predicting diagnosis [25–28] or prognosis [29, 30], as well as
in reflecting intrinsic biological factors and the therapeutic re-
sponse of BC [31, 32]. However, these studies employed breast
magnetic resonance imaging (MRI) or ultrasound images, and
no studies so far have used the perilesional radiomics features in
CEM images for the diagnosis of BC.

Therefore, the main goal of this study was to evaluate
whether radiomics analysis of the perilesional region in
CEM images can contribute to the differentiation between
benign and malignant breast lesions. Furthermore, we
intended to explore which range of the perilesional region
may provide the most valuable diagnostic information.

Methods and materials

Study subjects

We retrospectively collected data from consecutive female
patients who underwent CEM from November 2017 to
February 2020. The inclusion criteria were as follows: (1)
patients with suspected breast lesions after physical examina-
tion, mammography screening, or ultrasound; (2) patients
who were referred for CEM as part of diagnostic imaging;
and (3) patients with pathological results of the lesions. We
excluded patients (1) with missing data; (2) with a history of
breast surgery, breast radiotherapy, chemotherapy, or hor-
mone treatment within 6 months prior to CEM examination;
and (3) with poor image quality. According to the American
Joint Committee on Cancer (AJCC) Cancer Staging Manual
(Eighth Edition), lobular carcinoma in situ is a benign entity.
Therefore, we excluded it in the subsequent analysis (n = 1).
The patient inclusion and exclusion criteria are shown in
Figure 1. The Institutional Review Board and Ethics
Committee approved this study. The requirement for written
informed consent was waived.

CEM examination

All CEM examinations were performed using the Senographe
Essential mammography system (GE Healthcare). First, all
patients received an intravenous injection of the contrast ma-
terial (Iohexol, 350 mg I/mL) at a dose of 1.5 mL/kg and at a
rate of 3 mL/s. A 20-mL saline bolus was administered im-
mediately before and after contrast injection. Two minutes
after contrast injection, images were obtained in the following
order: craniocaudal (CC) and mediolateral oblique (MLO)
views of the suspicious breast and then CC and MLO views
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of the less suspicious breast. For each mammographic projec-
tion, a pair of high-energy (HE) and low-energy (LE) expo-
sures were consecutively performed to obtain HE and LE
images, and a dual-energy subtraction (DES) image was gen-
erated automatically with the mammography unit by using a
dual-energy weighted logarithmic subtraction technique.

CEM image evaluation

All CEM images were reviewed by two radiologists (reader 1: 4
years of experience in breast imaging; reader 2: 10 years of
experience in breast imaging). They were informed of the loca-
tion of each lesion but were blinded to the clinical and patho-
logical information of the patients. They evaluated the basic
characteristics of the patients, including breast density, lesion
enhancement degree, and degree of background parenchymal
enhancement with reference to the Breast Imaging Reporting
and Data System (BI-RADS) lexicons for mammography and
MRI [33], considering that these indexes may affect the perfor-
mance of the radiomics analysis. In the case of a discrepancy,
the final decision was made in consensus. The largest diameters
of the lesions were measured independently by the two radiol-
ogists in CC view images. The mean values were calculated as
the final lesion sizes. The diagnostic performance of the human
readers in the use of CEM images is provided in Appendix E1.

Reference standard

The standard of reference was the histopathologic diagnosis
obtained by biopsy or surgery within 1 month after CEM

examination. Malignant cases were defined as lesions that
contained any invasive components or ductal carcinoma in
situ. Benign cases were defined as lesions that did not contain
any invasive components or carcinoma in situ. The definitions
of molecular subtypes of malignant lesions are provided in
Appendix E2.

Image segmentation

The image segmentation process included lesion segmenta-
tion and perilesional region segmentation. All segmentation
steps were performed in the CC and MLO views of the HE,
LE, and DES images. The detailed lesion delineation methods
are listed in Appendix E3. The diagram and examples of the
image segmentation scheme are shown in Figure 2.

First, radiologist 1 (3 years of experience in breast imaging)
reviewed the CEM images and indicated the location of each
lesion with reference to the pathological report. Then, based
on the information, radiologist 2 (5 years of experience) man-
ually delineated the contours of the lesions by using ITK-
SNAP (version 3.6; www.itksnap.org) software [34]. All the
contours were reviewed and agreed upon by radiologist 3 (8
years of experience).

Annular perilesional regions (not containing the lesion ar-
ea) of 1 mm, 3 mm, and 5 mmwere obtained automatically by
dilating the delineated lesion contours using Spectral
Mammography Kit (SMK) software (version 1.2.0, GE
Healthcare). A morphologic dilation operation was performed
to capture the perilesional region [35]. If the contours of
perilesional regions were beyond the parenchyma of the breast
after expansion, the portion beyond the parenchymawas man-
ually removed.

In addition, we defined another three regions of interest
(ROIs), which include both the lesion area and the surround-
ing perilesional area (1mm, 3mm, and 5mm) within the same
ROI.

Finally, for each lesion in each image, a total of seven
ROIs, namely, lesion ROI (L), annular perilesional ROIs of
1, 3, and 5 mm (P1, P3, and P5), lesion + perilesional ROIs of
1, 3, and 5 mm (LP1, LP3, and LP5), were generated to extract
radiomics features.

Radiomics feature extraction

Before radiomics feature extraction, image preprocessing, in-
cluding image resampling and gray level discretization, was
performed. The image preprocessing and radiomics feature
extraction procedures were conducted by using SMK soft-
ware. All voxel sizes of all images were resampled to the same
size of 0.2 mm × 0.2 mm. The image gray level was
discretized to a scale of 0 to 255. For each ROI in each image,
a total of 680 features, including 18 first-order features, 14
shape features, 24 Gray-level co-occurrence matrix (GLCM)

Figure 1 Patient inclusion and exclusion criteria. CEM = contrast-
enhanced mammography; LCIS = lobular carcinoma in situ
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features, 16 Gray-level size zone matrix (GLSZM) features,
16 Gray-level run length matrix (GLRLM) features, and 592
wavelet features, were extracted. Since there were a total of 6
images for each ROI (HE-CC, HE-MLO, LE-CC, LE-MLO,
DES-CC, and DES-MLO), a total of 4,080 radiomics features
were extracted from each ROI (L, P1, P3, P5, LP1, LP3, and
LP5).

Intraobserver and interobserver agreement

The intraclass correlation coefficient (ICC) was used to eval-
uate the reproducibility of manual radiomics feature extrac-
tion. Three months later, two radiologists (radiologist 2 and
radiologist 3) randomly selected 30 patients and repeated the
segmentation process. The intraobserver and interobserver
ICCs were calculated. The radiomics features with ICCs great-
er than 0.75 were considered to have good agreement and
were retained for the following feature selection procedure.

Feature selection and radiomics model construction

A total of seven radiomics models were constructed to differ-
entiate malignant lesions from benign lesions by using the
feature datasets from the seven ROIs (Figure 3). Each dataset
was divided into training and testing sets at a ratio of 1:1 using
the stratified random sampling method based on age. The
training set was further divided into training and validation
subsets. Each of the three sets was independent, without any
overlap [36]. The training subset was used to build the models
and the training algorithm was tuned and validated on the
validation subset [37]. The testing set, which was not involved
in model construction or parameter tuning, was used to assess
the performance of the model.

Least absolute shrinkage and selection operator (LASSO)
regression [38] with 10-fold cross-validation was used to de-
termine the best subsets of predictive features and to construct
the radiomics models based on the features derived from each
ROI. The radiomics signature score was calculated for each

lesion by using a linear combination of the values of the se-
lected features weighted by their respective coefficients. Areas
under the receiver operating characteristic (ROC) curve
(AUCs) with 95% confidence intervals (CIs) were used to
evaluate the performance of all the models. The DeLong test
[39] was used to compare the AUCs of different models.
Specifically, we constructed an additional logistic model
(model 8) by combining the predicted probabilities calculated
from the model constructed using the features from the lesion
ROI (model 1) and the model constructed using the features
from the annular perilesional ROI that showed the highest
AUC value (one of models 2–4) to explore whether the clas-
sification performance could be improved.

To illustrate the stability and robustness of the perfor-
mance of the models, all data were randomly re-split into
training and testing sets at a ratio of 1:1 100 times. The
same model construction procedure as previously men-
tioned was used each time of splitting to construct
radiomics models for each ROI. Therefore, 100 AUC
values for each radiomics model were obtained for evalu-
ation, and the mean values ± standard deviations (SDs) of
the 100 AUCs were calculated.

Statistical analysis

All statistical analyses were performed using R (version 3.6.2;
www.r-project.org). LASSO regression and ROC curve
analyses were conducted using the glmnet and pROC
packages. Aside from the radiomics analysis, the chi-square
test or Fisher’s exact test was used to compare the differences
in categorical variables, whereas the two-sample t test was
utilized to compare the differences in continuous variables.
The Wilcoxon rank-sum test with Bonferroni correction and
the Kruskal-Wallis rank-sum test were used to compare the
mean AUCs of each kind of ROI in the re-splitting analysis. A
two-sided p value of less than 0.05 was considered statistically
significant.

Figure 2 (2a–2g) Schematic illustration of the lesion and perilesional
regions of interest (ROIs) and (2A–2G) examples of the image segmen-
tation scheme. The lesion shown in the dual-energy subtraction (DES)
images of contrast-enhanced mammography (CEM) was pathologically
proven to be invasive ductal carcinoma (grade II). The radiomics features
were extracted from the seven ROIs. (2a, 2A) Lesion ROI (L). (2b, 2B)

Annular perilesional ROI of 1 mm (P1). (2c, 2C) Annular perilesional
ROI of 3 mm (P3). (2d, 2D) Annular perilesional ROI of 5 mm (P5). (2e,
2E) Lesion + perilesional ROI of 1 mm (LP1). (2f, 2F) Lesion +
perilesional ROI of 3 mm (LP3). (2g, 2G) Lesion + perilesional ROI of
5 mm (LP5)
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Results

Patient and lesion characteristics

A total of 190 patients with 223 breast lesions (benign lesions:
101/223, 45.3%; malignant lesions: 122/223, 54.7%) were
included in the study. The basic patient and lesion character-
istics are provided in Table 1. The median age was 48 years
(range, 23–70 years). The median lesion size was 20.5 mm
(range, 7.0–109.0 mm). In both the training and testing sets,
age, lesion size, lesion enhancement degree, and degree of
background parenchymal enhancement were significantly dif-
ferent between the benign and malignant groups (all p < 0.05).
Details on the histopathological results of the lesions are
shown in Table 2.

Performance of the radiomics models

The intraobserver ICC calculated based on the features ex-
tracted twice by the same radiologist (radiologist 2) ranged
from 0.788 to 0.923. The interobserver ICC of feature extrac-
tion obtained by the two radiologists (radiologist 2 and radi-
ologist 3) ranged from 0.770 to 0.901. The results showed
good reproducibility of manual radiomics feature extraction.

The performance metrics of the classification models con-
structed by the radiomics features extracted from the seven
ROIs (Figure 2) are shown in Figure 4 and Table 3. The
selected radiomics features and their coefficients are shown
in Appendix E4.

The performance of the models constructed by the features
from either the lesion ROI (Table 3: model 1) or the annular

perilesional ROI (Table 3: models 2–4) was good, with all
AUCs greater than 0.900 in the testing set. Among all the
models, model 3 constructed by the features from the annular
perilesional ROI of 3 mm achieved the highest AUCs in both
the training and testing sets (AUC = 0.990 in the training set;
AUC = 0.930 in the testing set), followed by model 2 con-
structed by the features from the annular perilesional ROI of
1 mm (AUC = 0.986 in the training set; AUC = 0.929 in the
testing set). In the testing set, the performance of model 1
constructed by the features from the lesion ROI and model 4
constructed by the features from the annular perilesional ROI
of 5 mm was similar (AUCs = 0.909 and 0.910 for model 1
and model 4, respectively).

However, all the models constructed by the features from
the lesion + perilesional ROI (Table 3: models 5–7) did not
show satisfactory performance, with all AUCs lower than
0.900 in the testing set (AUC = 0.871, 0.867 and 0.883 for
models 5–7, respectively).

In Figure 5, model 8 constructed by combining model 1 (L)
and model 3 (P3) achieved significantly higher AUCs in the
testing set (AUC = 0.940, all p < 0.05).

After re-splitting the whole dataset 100 times, the mean
AUC values for all models were obtained and are shown in
Figure 6 and Table 4. Among the 7 models constructed by
radiomics features from the original 7 ROIs (Table 4: models
1–7), model 3 (P3) still yielded the best overall performance in
the testing set (mean AUC = 0.940 ± 0.018), followed by
model 2 (P1), model 1 (L), and model 4 (P5), with mean
AUCs of 0.936 ± 0.019, 0.930 ± 0.021, and 0.929 ± 0.018,
respectively. After combining model 1 (L) and model 3 (P3),
model 8 obtained the highest mean AUC value of 0.967 ±

Figure 3 Seven radiomics
models were constructed by using
the feature datasets from the
seven regions of interest (ROIs).
Model 1 (L): lesion ROI. Model 2
(P1): annular perilesional ROI of
1 mm. Model 3 (P3): annular
perilesional ROI of 3 mm. Model
4 (P5): annular perilesional ROI
of 5 mm. Model 5 (LP1): lesion +
perilesional ROI of 1 mm. Model
6 (LP3): lesion + perilesional ROI
of 3 mm. Model 7 (LP5): lesion +
perilesional ROI of 5 mm. HE =
high-energy; LE = low-energy;
DES = dual-energy subtraction;
CC = craniocaudal; MLO =
mediolateral oblique
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0.013 in the testing set. Similarly, models 5–7 (LP1, LP3, and
LP5) showed the lowest mean AUCs, with all mean AUCs
lower than 0.910.

Discussion

Our study obtained three main results. First, annular
perilesional radiomics analysis of CEM images is useful for
diagnosing BCs, and an annular perilesional region of 3mm in
CEM images may provide the most valuable information
(Table 4: models 2–4). Second, adding annular perilesional
information to the radiomics model built on the lesion infor-
mation may improve the diagnostic performance (Table 4:
model 8). Third, when the lesion and perilesional regions were
delineated in the same ROI, the models consistently failed to
achieve satisfactory diagnostic performance (Table 4: models
5–7).

In recent years, the area surrounding the lesion has attracted
increasing interest in radiological studies of BC [25–32], but
most studies have focused on MRI or ultrasound images.

Some radiomics analyses of CEM images have focused on
the tumor itself [13–18, 40–43]. Therefore, it remains unclear
what kind of role perilesional radiomics features in CEM im-
ages may play in the diagnosis of BCs.

It is known that biological changes in the microenviron-
ment of BCs, such as lymphovascular invasion [44, 45], lym-
phocytic infiltration [22], collagen deposition [46], and
peritumoral edema [47], play an important role in the growth,
proliferation, and invasion of tumors [48, 49]. Benign and
malignant lesions differ in the properties of their cellular mi-
croenvironment. Therefore, the image features of the tissues
immediately surrounding BC lesions and other benign lesions
may be different. However, the contribution of the microen-
vironment is not considered in routine radiological diagnostic
examinations.

In our study, the model constructed by the features from
the annular perilesional region of 3 mm showed good over-
all classification performance (mean AUC = 0.940). For
the differentiation of benign and malignant breast lesions,
Zhou et al [25] used a deep learning method and achieved
the highest diagnostic accuracy of 89% in the testing set

Table 1 Patient and lesion characteristics

Characteristics Total
(n = 223)

Training dataset (n = 112) Testing dataset (n = 111)

Benign
(n = 52)

Malignant
(n = 60)

p value Benign
(n = 49)

Malignant
(n = 62)

p value

Age, years* 47.4 ± 10.1 44.2 ± 8.5 50.5 ± 7.9 0.0004 42.0 ± 10.7 51.3 ± 10.1 < 0.0001

Lesion size, mm* 24.8 ± 15.8 20.5 ± 14.4 30.3 ± 19.5 0.0002 18.7 ± 13.6 28.1 ± 11.6 < 0.0001

Breast density 0.4593 0.2899

Category a 7/223 (3.1%) 2/52 (3.8%) 1/60 (1.7%) 1/49 (2.0%) 3/62 (4.8%)

Category b 48/223 (21.5%) 9/52 (17.3%) 15/60 (25.0%) 7/49 (14.3%) 17/62 (27.4%)

Category c 109/223 (48.9%) 25/52 (48.1%) 32/60 (53.3%) 25/49 (51.0%) 27/62 (45.5%)

Category d 59/223 (26.5%) 16/52 (30.8%) 12/60 (20.0%) 16/49 (32.7%) 15/62 (24.2%)

Lesion enhancement degree < 0.0001 < 0.0001

Minimal 18/223 (8.1%) 6/52 (11.5%) 0/60 (0.0%) 11/49 (22.4%) 1/62 (1.6%)

Mild 78/223 (35.0%) 26/52 (50.0%) 13/60 (21.7%) 24/49 (49.0%) 15/62 (24.2%)

Moderate 43/223 (19.3%) 6/52 (11.5%) 14/60 (23.3%) 4/49 (8.2%) 19/62 (30.6%)

Marked 84/223 (37.7%) 14/52 (26.9%) 33/60 (55.0%) 10/49 (20.4%) 27/62 (43.5%)

Degree of BPE 0.0492 0.0289

Minimal 74/223 (33.2%) 14/52 (26.9%) 21/60 (35.0%) 15/49 (30.6%) 24/62 (38.7%)

Mild 70/223 (31.4%) 12/52 (23.1%) 22/60 (36.7%) 11/49 (22.4%) 25/62 (40.3%)

Moderate 44/223 (19.7%) 14/52 (26.9%) 12/60 (20.0%) 10/49 (20.4%) 8/62 (12.9%)

Marked 35/223 (15.7%) 12/52 (23.1%) 5/60 (8.3%) 13/49 (26.5%) 5/62 (8.1%)

*Data are shown as the mean values ± standard deviations. Other data are shown as proportions with percentages in parentheses

The chi-square test or Fisher’s exact test was used to compare the differences in breast density, lesion enhancement degree, and degree of BPE, whereas
the two-sample t test was used to compare the differences in age and lesion size. A p value of less than 0.05 was considered statistically significant

BPE background parenchymal enhancement
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when taking proximal peritumor tissue into consideration,
which was higher than that of using a tumor ROI alone.
Zhou et al suggested that the stiffness of the tissue sur-
rounding malignant breast lesions was higher than that of
benign lesions [50]. In our study, after combining the

intralesional and annular perilesional radiomics features,
the diagnostic performance improved. This is probably be-
cause integrating the two kinds of information can reveal
the characteristics of the lesions more comprehensively.
We also proved that the radiomics features should be sep-
arately extracted from the intralesional and annular
perilesional areas instead of placing the two regions within
the same ROI.

The definitions and segmentation methods of the
perilesional region are not exactly the same among different
studies. Shin et al [51] employed a shell-based method and
found that the apparent diffusion coefficient (ADC) values of
the proximal peritumoral stroma (1.18 to 3.54 mm) can dis-
criminate between low-risk and non-low-risk BCs. Fan et al
[52, 53] applied a similar segmentation method to predict
molecular subtypes and differentiate between low and high
Ki-67 BC groups. Braman et al [31, 32] used a circular
peritumoral region to estimate the response to neoadjuvant
therapy. In our study, the annular expansion method of the
perilesional area was similar. Other studies used a rectangular
perilesional ROI [25, 26], delineated the peritumoral edema
area [54], or employed an isotropic volumetric expansion
method [55].

Zhou et al [25] reported that the AUCs decreased with
increasing perilesional range in the diagnosis of BCs. Our
study also showed that the annular perilesional region of
5 mm did not show satisfactory diagnostic performance com-
pared to the annular perilesional region of 3 mm (mean AUC
= 0.940 vs. 0.929). This is probably because as the area around
the lesion expands, more potential normal breast tissue was
included and may therefore reduce the diagnostic efficacy of
the proximal perilesional area immediately surrounding the
lesion. However, Kim et al [56] found that the Ktrans measured
in normal-appearing fibroglandular tissue can be used to dis-
tinguish between malignant and nonmalignant groups. Li et al
[57] also found that the normal parenchyma may provide use-

Table 2 Histopathological results of the lesions

Lesion types Total

Histological types of benign lesions 101/101 (100.0)

Fibroadenoma 41/101 (40.6)

Adenosis 37/101 (36.6)

Intraductal papilloma 15/101 (14.9)

Inflammation 5/101 (5.0)

Phyllodes tumor 2/101 (2.0)

Tubular adenoma 1/101 (1.0)

Histological types of malignant lesions 122/122 (100.0)

Invasive ductal carcinoma 106/122 (86.9)

Ductal carcinoma in situ 6/122 (4.9)

Invasive lobular carcinoma 3/122 (2.5)

Papillary carcinoma 3/122 (2.5)

Mucinous adenocarcinoma 2/122 (1.6)

Metaplastic carcinoma 1/122 (0.8)

Paget's disease 1/122 (0.8)

Molecular subtypes of malignant lesions* 122/122 (100.0)

Luminal A 33/122 (27.0)

Luminal B/HER2-negative 34/122 (27.9)

Luminal B/HER2-positive 15/122 (12.3)

HER2-positive 19/122 (15.6)

Triple-negative 18/122 (14.8)

Unknown 3/122 (2.5)

Data are shown as proportions with percentages in parentheses

*The definitions of molecular subtypes of malignant lesions are provided
in Appendix E2

HER2 human epidermal growth factor receptor 2

Table 3 The performance of the
radiomics models Radiomics models AUC (95% CI)

Training set Testing set

Model 1: lesion (L) 0.979 (0.959, 0.998) 0.909 (0.857, 0.961)

Model 2: annular perilesional ROI of 1 mm (P1) 0.986 (0.971, 1.000) 0.929 (0.881, 0.978)

Model 3: annular perilesional ROI of 3 mm (P3) 0.990 (0.976, 1.000) 0.930 (0.882, 0.977)

Model 4: annular perilesional ROI of 5 mm (P5) 0.984 (0.965, 1.000) 0.910 (0.852, 0.968)

Model 5: lesion + perilesional ROI of 1 mm (LP1) 0.980 (0.962, 0.998) 0.871 (0.806, 0.936)

Model 6: lesion + perilesional ROI of 3 mm (LP3) 0.940 (0.899, 0.980) 0.867 (0.801, 0.933)

Model 7: lesion + perilesional ROI of 5 mm (LP5) 0.939 (0.894, 0.985) 0.883 (0.820, 0.947)

AUC area under the receiver operating characteristic curve, CI confidence interval
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ful information in a prediction model of BCs. In our study, the
diagnostic performance of the annular perilesional ROI of
1 mm was also lower than that of the annular perilesional

ROI of 3 mm (mean AUC = 0.940 vs. 0.936). This is probably
because although this area immediately surrounds the lesion,
it is too small to contain sufficient information to predict BCs.
There is no established consensus on the definition of the
cutoff distance to distinguish the lesion-related perilesional
area from normal breast tissue. Therefore, whether the 3 mm
area around the lesion is most suitable for the diagnosis of BCs
still needs to be verified by a larger sample. Only one study
systematically explored the performance of different
peritumoral region sizes in predicting sentinel lymph node
(SLN) status in BCs and found that a peritumoral region of
2–4mmmay better predict SLNmetastasis [58]. Furthermore,
the suitable perilesional area range may also be related to the
mean size of the lesions in this study. Delineating the
perilesional area in proportion to the size of the lesion may
also be a feasible segmentation method.

CEM radiomics features have been investigated before.
Studies have found that the radiomics features within the tu-
mor can contribute to the diagnosis [13–18] and characteriza-
tion [40, 41, 43] of BCs or the prediction of axillary lymph
node metastasis [42]. Considering that different types of BCs
have diverse tumor microenvironments and prognoses, it
would be interesting to investigate whether the peritumoral
radiomics features in CEM images have predictive value in
these aspects.

There are several limitations of our study. First, this retro-
spective study had a relatively small dataset. Therefore, we re-
split the dataset 100 times to illustrate the stability and robust-
ness of themodel performance. Although the results are prom-
ising, a larger, prospective study cohort is needed to further

Figure 4 Areas under the receiver
operating characteristic curve
(AUCs) with 95% confidence in-
tervals (CIs) of the seven
radiomics models in the testing
set. Model 1 (L): lesion ROI.
Model 2 (P1): annular
perilesional ROI of 1 mm. Model
3 (P3): annular perilesional ROI
of 3 mm. Model 4 (P5): annular
perilesional ROI of 5 mm. Model
5 (LP1): lesion + perilesional ROI
of 1 mm. Model 6 (LP3): lesion +
perilesional ROI of 3 mm. Model
7 (LP5): lesion + perilesional ROI
of 5 mm

Figure 5 The receiver operating characteristic (ROC) curves. The blue
curve represents the ROC curve of the model (model 1) constructed by
using the radiomics features extracted from the lesion region of interest
(ROI). The green curve represents the ROC curve of the model (model 3)
constructed by using the radiomics features extracted from the annular
perilesional ROI of 3 mm. The red curve represents the ROC curve of the
combined model (model 8) constructed by combining the predicted prob-
abilities calculated from model 1 and model 3
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validate the prediction efficiency of the models. Second, we
acknowledge a higher prevalence of malignant lesions in our
study (54.7%), which implies potential patient selection bias.
However, a balanced dataset is also important for developing
radiomics classification models. Third, although the
perilesional region was generated automatically by the
postprocessing workstation, the lesion contours were delineat-
ed manually in this study. An automated or semiautomated
segmentation method may have better reproducibility. In this
study, we calculated the intraobserver and interobserver ICCs,
and the results were favorable, which indicates acceptable
reproducibility for manual segmentation. Fourth, due to the

inherent characteristics of the CEM technique, we extracted
two-dimensional radiomics features, which may have lost
some lesion information compared to three-dimensional fea-
tures. However, the results showed that two-dimensional-
based features can also demonstrate good performance in clas-
sifying breast lesions.

In conclusion, our study found that an annular
perilesional region of 3 mm in CEM images is useful to
differentiate benign and malignant breast lesions. Adding
annular perilesional information to the radiomics model
built on the lesion information may improve the diagnostic
performance.

Table 4 Mean area under the receiver operating characteristic curve (AUC) values of the radiomics models

Training set Testing set

Radiomics models Mean ± SD Median (Q1, Q3) Mean ± SD Median (Q1, Q3)

Model 1: lesion (L) 0.980 ± 0.014 0.982 (0.972,0.992) 0.930 ± 0.021 0.932 (0.919,0.946)

Model 2: annular perilesional ROI of 1 mm (P1) 0.982 ± 0.014 0.985 (0.972,0.992) 0.936 ± 0.019 0.934 (0.927,0.948)

Model 3: annular perilesional ROI of 3 mm (P3) 0.982 ± 0.013 0.984 (0.973,0.993) 0.940 ± 0.018 0.941 (0.927,0.953)

Model 4: annular perilesional ROI of 5 mm (P5) 0.979 ± 0.015 0.981 (0.969,0.992) 0.929 ± 0.018 0.930 (0.918,0.943)

Model 5: lesion + perilesional ROI of 1 mm (LP1) 0.973 ± 0.021 0.977 (0.963,0.988) 0.902 ± 0.031 0.908 (0.891,0.921)

Model 6: lesion + perilesional ROI of 3 mm (LP3) 0.962 ± 0.024 0.964 (0.950,0.980) 0.892 ± 0.028 0.897 (0.872,0.910)

Model 7: lesion + perilesional ROI of 5 mm (LP5) 0.963 ± 0.023 0.967 (0.950,0.979) 0.901 ± 0.023 0.899 (0.885,0.917)

Model 8*: model 1 + model 3 0.988 ± 0.011 0.989 (0.981,0.999) 0.963 ± 0.013 0.967 (0.957,0.973)

*Model 8 was constructed by combining the predicted probabilities calculated from model 1 and model 3

SD standard deviation

Figure 6 Boxplots of the mean area under the receiver operating
characteristic curve (AUC) values of the eight radiomics models in the
testing set. Model 1 (L): lesion ROI. Model 2 (P1): annular perilesional
ROI of 1 mm. Model 3 (P3): annular perilesional ROI of 3 mm. Model 4
(P5): annular perilesional ROI of 5 mm. Model 5 (LP1): lesion +

perilesional ROI of 1 mm. Model 6 (LP3): lesion + perilesional ROI of
3 mm. Model 7 (LP5): lesion + perilesional ROI of 5 mm. The combined
model (model 8) was constructed by combining the predicted probabili-
ties calculated from model 1 and model 3
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