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Abstract
Objectives To develop and evaluate machine learning models using baseline and restaging computed tomography (CT) for
predicting and early detecting pathological downstaging (pDS) with neoadjuvant chemotherapy in advanced gastric cancer
(AGC).
Methods We collected 292 AGC patients who received neoadjuvant chemotherapy. They were classified into (a) primary cohort
(206 patients with 3–4 cycles chemotherapy) for model development and internal validation, (b) testing cohort I (46 patients with
3–4 cycles chemotherapy) for evaluating models’ predictive ability before and after the complete course, and (c) testing cohort II
(n = 40) for model evaluation on its performance at early treatment.We extracted 1,231 radiomics features from venous phase CT
at baseline and restaging.We selected radiomics models based on 28 cross-combination models and measured the areas under the
curve (AUC). Our prediction radiomics (PR) model is designed to predict pDS outcomes using baseline CT. Detection radiomics
(DR) model is applied to restaging CT for early pDS detection.
Results PR model achieved promising outcomes in two testing cohorts (AUC 0.750, p = .009 and AUC 0.889, p = .000). DR
model also showed a good predictive ability (AUC 0.922, p = .000 and AUC 0.850, p = .000), outperforming the commonly used
RECIST method (NRI 39.5% and NRI 35.4%). Furthermore, the improved DRmodel with averaging outcome scores of PR and
DR models showed boosted results in two testing cohorts (AUC 0.961, p = .000 and AUC 0.921, p = .000).
Conclusions CT-based radiomics models perform well on prediction and early detection tasks of pDS and can potentially assist
surgical decision-making in AGC patients.
Key Points
• Baseline contrast-enhanced computed tomography (CECT)-based radiomics features were predictive of pathological
downstaging, allowing accurate identification of non-responders before therapy.

• Restaging CECT-based radiomics features were predictive to achieve pDS after and even at an early stage of neoadjuvant
chemotherapy.

• Combination of baseline and restaging CECT-based radiomics features was promising for early detection and preoperative
evaluation of pathological downstaging of AGC.
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AGC Advanced gastric cancer
AUC Area under the curve
CECT Contrast-enhanced CT
CT Computed tomography
CV Cross-validation
DG Distal gastrectomy
DR Detection radiomics model
GC Gastric cancer
GLCM Gray-level co-occurrence matrix
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GLRLM Gray-level run length matrix
GLSZM Gray-level size zone matrix
pDS Pathological downstaging
PG Proximal gastrectomy
PR Prediction radiomics model
RECIST Response evaluation criteria in solid tumors
ROC Receiver operating characteristic
ROI Region of interest
TG Total gastrectomy
VOI Volume of interest
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Introduction

Advanced gastric cancer (AGC) stands for 50–80% of all
cases of gastric cancer (GC) [1]. The major amount of tumors
(35–51%) fail to achieve pathological downstaging (pDS) af-
ter neoadjuvant chemotherapy and tumor progression was
commonly observed (15%) [2, 3]. Therefore, early and accu-
rate patient stratification would be helpful to select good can-
didates for neoadjuvant treatment of AGC patients.

Computed tomography (CT) is routinely used for tumor
monitoring over the course of treatment [4]. Baseline
contrast-enhanced CT (CECT) is the preferred imaging exam-
ination to diagnose the TNM stage for gastric cancer before
neoadjuvant chemotherapy in clinical practice. Restaging
CECT evaluates tumor downstaging after neoadjuvant che-
motherapy [4]. However, patients at the same stage on base-
line CT can display diverse chemosensitivities. Low sensitiv-
ity (37–50%) of tumor size-based measurement [5] and inac-
curacy (37–57%) of tumor restaging [6] by visual assessment
are reported.

Radiomics [7] defines quantitative imaging feature extrac-
tion that facilitates exploration of radiological heterogeneity.
CT-based radiomics analysis was useful in stage prediction
and therapeutic selection for AGC patients [8–10], as well as
in predicting response to chemotherapy [9, 10]. For example,
pre-treatment CT texture analysis can provide information re-
garding the response rate to neoadjuvant therapy for GC [9].
Radiomics analysis shows differences between responders
and non-responders to chemotherapy [10]. However, for
AGC patients with neoadjuvant chemotherapy, accurate pre-
diction of pDS is yet to be elucidated. Furthermore, the value
of CT-based radiomics for early detection of achieving pDS, a
critical biomarker for timely treatment decision-making, has
not been explicitly addressed.

In this study, we seek to develop CT radiomics models for
prediction and early detection of pDS to neoadjuvant chemo-
therapy in AGC. Specifically, our first goal is to examine the
radiomics value using baseline CECT for predicting pDS

before neoadjuvant chemotherapy. Our second goal is to as-
sess restaging CECT for early detection of pDS after the start
of chemotherapy.

Materials and methods

Patient enrollment and population

We collected 469 histologically confirmed GC patients (clin-
ical stage cT3/4N0/+M0 on admission) who received chemo-
therapy and followed by surgery in Jinling Hospital between
Jan. 2012 and Dec. 2016 (Fig. 1). The inclusion criterion was
patients with histologically confirmed gastric cancer and ab-
sence of distant metastases on admission, who underwent 1–4
cycles of neoadjuvant chemotherapy followed by gastrectomy
with lymph node dissection at our institution or had distant
metastasis after chemotherapy. The exclusion criteria were as
follows: (1) an interval of more than 1 month between CT
imaging and surgery; (2) neither gastrectomy nor tumor dis-
tant metastasis was recorded after neoadjuvant chemotherapy;
(3) recurrent gastric cancer or having other malignant tumors
before neoadjuvant chemotherapy; (4) incomplete pathologi-
cal data; (5) poor CT image quality. Then two experienced
radiologists (Q.M.X. and C.S.Z., with 4 and 9 years of expe-
rience in gastric CT imaging, respectively) evaluated the im-
age artifacts and the degree of the gastric filling (Figure S1) on
each baseline or restaging CT image to ensure image quality
for image segmentation and feature extraction (Fig. 1, the last
step in the exclusion criteria). Table S1 displays the image
quality evaluation criterion and the number of patients in each
grade. Finally, 292 patients with 241 baseline CT (primary
cohort, n = 159; testing cohort I, n = 39; testing cohort II, n
= 43) and 247 restaging CT (primary cohort, n = 161; testing
cohort I, n = 40; testing cohort II, n = 46) were used for
radiomics analysis. The institutional review board approved
this retrospective investigation and was in line with the Health
Insurance Portability and Accountability Act. The need for
informed patient consent was waived.

Study design

We split the cohort into three subsets: one primary cohort and
two testing cohorts (Fig. 1). Patients in the primary cohort (n =
206, Jan. 2012–Dec. 2015) and testing cohort I (n = 40, from
Jan. 2016–Dec. 2016) received a complete course of neoadju-
vant chemotherapy (with 3–4 cycles) and followed by sur-
gery. Patients in testing cohort II (n = 46, from Jan. 2012–
Dec. 2016) underwent early trial of dissection due to cessation
of chemotherapy (with 1–2 cycles). We used the primary co-
hort for radiomics models’ development and internal valida-
tion, while testing cohort I was for evaluating models’ predic-
tive ability before and after the complete course, and testing
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cohort II was especially for assessingmodel performance at an
early stage of the treatment course. The prediction radiomics
(PR) model built upon the baseline CT (taken on admission)
aimed at prediction of pDS before therapy (Fig. 2). The detec-
tion radiomics (DR) model based on the restaging CT (done
post-chemotherapy) was for early detection of pDS after the
start of neoadjuvant chemotherapy (Fig. 2).We also compared
the ability of the DR model with clinical routine RECIST
(Response Evaluation Criteria in Solid Tumors) method [11]
in two testing cohorts.

CT image acquisition parameters

Patients took the baseline CT scans within 1 week before
chemotherapy and underwent the restaging CT examination
within the 3-week interval between neoadjuvant chemothera-
py and surgery. Scanning was performed by using Siemens

Somatom Definition dual-source spiral CT (SOMATOM
Definition, SOMATOM Definition Flash; Siemens
Healthcare). Patients were entreated to fast from solid food
for at least 6 h before CT examination, then drank 600–1000
ml water and were injected with 10 mg of anisodamine in
order to make sure that the stomach wall was stretched.
Also, the patients were asked to hold their breath during the
scanning to prevent respiratory artifacts. All patients were in
the supine position and the scanning range is from the phrenic
tip to the lower edge of the symphysis pubis, covering the
upper or the entire abdomen. Following the unenhanced
scan, iodinated contrast agent (ioversol, 300 mgl/ml, GE
Healthcare) was injected intravenously by using a high-
pressure syringe (Ulrich, Medical). The infusion volume
was 1.5 ml/kg and the flow rate of 3–4 ml/s. The arte-
rial phase series was obtained with a post-injection de-
lay of 30 s, and the venous phase with a post-injection

Fig. 1 Workflow of the proposed study. Note: N, number; GC, gastric cancer; CT, computed tomography; pDS, pathological downstaging; PR,
prediction radiomics model; DR, detection radiomics model

Fig. 2 Illustration of the proposed
study in the position of GC
neoadjuvant chemotherapy
timeline. (a) and (b) are portal
venous phase baseline and
restaging CT images of a female
patient, at 47 years old with AGC.
The segmented tumor contours
were outlined by blue curves.
Note: AGC, advanced gastric
cancer; CT, computed
tomography; pDS, pathological
downstaging; PR, prediction
radiomics model; DR, detection
radiomics model
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delay of 60 s. The delay scan was conducted if neces-
sary with a 180-s delay.

The parameters for abdomen CT were as follows: 120 kVp
tube voltage, 230 mA tube current, 1/1.5 mm section thick-
ness, 35–50 cm field of view, 512 × 512 matrix, 0.5 s rotation
time, and 1.2 pitch. The value of the convolution kernel is
B31f (SOMATOM Definition)/I30f (SOMATOM Definition
Flash, using an iterative algorithm), and the collimation is 64 ×
0.6mm/128 × 0.6mm. CT acquisition was performed as a
spiral data set and the imaging review was with 1 or 1.5 mm
contiguous axial reconstruction.

CT-based radiomics analysis

Image segmentation

Radiologists (Q.M.X. and C.S.Z.) made independent image
segmentation without accessing any clinical information of
patients. One junior radiologist (Q.M.X.) manually segmented
the tumor region on portal venous phase baseline and
restaging CT imaging studies slice by slice as the region of
interest (ROI) using the software for sophisticated image post-
process (Dr. Wise TM Software http://label.deepwise.com/).
One senior radiologist (C.S.Z.) reassessed and ensured the
segmentation quality until reaching consensus.

Radiomics features extraction

We extracted radiomics features from tumor VOI using the
python package pyradiomics (Version 2.2.0) [12]. We applied
the Wavelet filter and Laplace of Gaussian filter [13] with

different sigma values to the original CT images to enhance
the discrimination of radiomics features. Specifically,Wavelet
filter applied a high or a low pass filter in each dimension of
signal; thus, we achieved 8 decompositions per level; Laplace
of Gaussian filter emphasized coarser texture with higher sig-
ma and finer texture with lower sigma. Then we resampled all
the images with a new pixel spacing of 1.0 mm in all three
dimensions, to exclude the disturbance caused by various
scales by the interpolator of sitkBSpline in python package
SimpleITK [14]. Finally, we extracted 1231 pre-defined fea-
tures from both original and filtered images above, consisting
of 6 classes, including first order statistics, shape-based, gray-
level co-occurrence matrix (GLCM), gray-level run length
matrix (GLRLM), gray-level size zone matrix (GLSZM),
and gray-level dependence matrix (GLDM) (Table S2).

Model development

We developed four machine learning prediction models
[15–18] and applied seven feature selection methods
[19–25] for comparison in the primary cohort (n = 206). We
used the nested cross-validation for both the PR model and
DR model to find the best hyperparameters and optimize the
number of features (Fig. 3) (Detail in Supplementary
Appendix 1). Firstly, the whole dataset was divided randomly
50 times using stratified sampling in the outer loop, in which
10% of the dataset was used as a test set and the other 90%
was used as a training set, forming 50 groups. In the inner
loop, nine-fold cross-validation was applied to the training
set to find the hyperparameters that help build the best model
with highest average performance on the validation sets. Then

Fig. 3 Illustration of the nested
cross-validation structure. Note:
AUC, area under the curve; CV,
cross-validation
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this model was evaluated on the dependent test set in the outer
loop to optimize the number of features. Therefore, we got an
average score of 50 test sets and a model combining the pre-
diction of all those 50 models built above in the end. Four
classification models were tried in order to find the best mod-
el, including random forest, logistic regression, linear SVC,
and K neighbors classifier. At the same time, feature selection
methods were tried for model building, including F-test, mu-
tual-information, recursive feature elimination, Pearson corre-
lation coefficient, Wilcoxon rank-sum test, L1-based feature
selection with linear SVC, L1-based feature selection with
logistic regression. For each feature selection method above,
different numbers of feby models were tried. The average area
under the receiver operating characteristic curves (AUCs) of
models on testing sets in nested CV structure was used to
estimate models’ performance. Finally, we calculated the av-
erage of these two scores and got a merged result of the PR
and DR model to improve the detection ability of models.

Radiomics models’ validation and comparison with
the clinical conventional method

Two testing cohorts were used for validation of each predic-
tion task (Figs. 1 and 2). Testing cohort I (n = 40) was for
assessing the evaluation performance of the radiomics model
after 3–4 cycles’ chemotherapy. While testing cohort II (n =
46) was used for evaluating models’ ability of early detection
of achieving pDS (Figure S2).

We made a comparison between the DR model and con-
ventional RECIST method which is based on reduction of the
diameter of tumor for evaluation of response to chemotherapy
in both two external validation cohorts. The criterion of
RECIST on CT images was stated in Supplementary
Appendix 2.

Protocols of treatment

The SEEOX regimen (n = 186, 63.7%) and SOX regimen (n =
106, 36.3%) were used for neoadjuvant chemotherapy in
AGC patients. Both treatment courses consisted of 3 cycles
(each, 2-week administration and 1-week withdrawal) and
followed by surgery within 3 weeks. However, we found that
12 patients demanded one more cycle due to non-respond or
other reasons. Also, we had 46 patients who took less than 3
cycles mainly because of intolerability (details of the
treatment protocols were in Supplementary Appendix 3).

Ascertainment of pDS

We separated patients into two clinical groups for ascertain-
ment of pDS: pDS (Figure S3) and non-pDS (Figure S4) by
comparing pre-chemotherapy cTNM stage (where c means
clinical) [26, 27] and post-chemotherapy ypTNM stage

(where y means after neoadjuvant therapy and p means path-
ologic stage) [28]. The two radiologists (Q.M.X. and C.S.Z.)
evaluated the cTNM stage on baseline CT by consensus, and
we obtained the ypTNM stage from surgical records. The pDS
was defined as the tumor pathologically confirmed reducing
stage after the neoadjuvant chemotherapy and the
unresectable factor was removed, while non-pDS means the
tumor stage was not changed, tumor progression, or remaining
unresectable after the treatment. Supplementary Appendix 4
describes the criterion of evaluation of CT-based cTNM stage
and resectability of tumor (Figure S5).

Statistical analysis

We used SPSS v15.0 (SPSS Inc.) and MedCalc statistical
software for statistical analysis. The AUC value and its 95%
IC, sensitivity, specificity, and accuracy were listed to assess
the model performance. We used the Delong test to calculate
the 95% confidence interval (CI) for each AUC value and the
net reclassification improvement (NRI) index between the
radiomics model and clinical method. The receiver operating
characteristic (ROC) curve showed the performance of
models by potting the true positive rate (sensitivity) against
the false positive rate (1-sensitivity). Chi-square test and
Fisher’s exact test were to compare categorical data. A group
difference was considered to be significant if the two-sided p
value is less than 0.05.

Results

Patient characteristics

The cohort has 218 (74.7%)men and 74 (25.3%)women, with
a median age of 61 years (interquartile range, 39.0–61.0
years). The median age among men was 61 years (interquar-
tile range, 53.0–67.0 years) and the median age among wom-
en was 57 years (interquartile range, 47.8–64.0 years). No
statistical difference in age was found between men and wom-
en in this cohort. Differentiation state was significantly asso-
ciated with chemosensitivity (Table 1). Before neoadjuvant
chemotherapy, 60 patients (20.5%) had clinical stage
(cStage) II, 220 (75.4%) had cStage III, and 12 (4.1%) had
cStage IV. After the treatment, 40 (14.7%) had ypT0N0-3M0
(ypTNM refers to the post-chemotherapy pathologic stage of
tumor), 34 (11.6%) had ypStage I, 85 (29.1%) had ypStage II,
127 (43.5%) had ypStage III, and 8 (2.7%) had cStage IV
(Table 2). In total, 108 patients (37.0%) had pDS
(Figure S2) while 184 patients (63.0%) had non-pDS
(Figure S3). No significant differences were among the three
cohorts in chemotherapy response (p = .863). Among these
patients, 47 were diagnosed as difficult to be resected
(Figure S4) due to tumor infiltration of or lymph nodes fused
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and wrapped adjacent structures (left gastric artery, n = 27;
hepatoduodenal ligament, n = 3; pancreas, n = 6; liver, n = 8;
duodenum, n = 2; transverse colon, n = 1).

Performance of radiomics models

We systematically examined twenty-eight combinations of
feature selection and classification methods based on
restaging CT in the primary cohort (161 restaging CECT
scans) (Figure S6). Table S3 showed superior prediction out-
comes withmeanAUC ranged from 0.765 to 0.919.We found
that there were three cross-combination machine learning
methods achieving high AUC (> 0.900), of which were (a)
the feature selection method of Wilcoxon and classifier of
linear SVC, (b) the feature selection method of F-test and
classifier of linear SVC, and (c) the feature selection method
of F-test and classifier of logistic regression. Among these
three models, the optimal model consisted of the feature se-
lector of Wilcoxon and classifier of linear SVC.

Based on this optimal combination, our PR radiomics mod-
el (trained on 159 baseline CECT) was predictive (AUC
0.779, 95% CI: 0.774, 0.784) using 67 radiomics features
(Figure S5a). Also, our DR model (trained on 161 restaging
CECT) showed a promising result (AUC 0.919, 95% CI:
0.900, 0.939) using 92 radiomics features (Figure S5b).

Radiomics models’ validation and comparison with
the clinical method

Our PRmodel presented a good predictive ability of achieving
pDS before therapy on testing cohort I (AUC 0.750, ACC
0.769) and testing cohort II (AUC 0.889, ACC 0.837) (39
and 43 baseline CECT, respectively) with high specificity
(0.958 and 0.966) (Table 3). The DR model also had a good
diagnostic value (AUC 0.922, ACC 0.897, and AUC 0.850,
ACC 0.860) of pDS in both testing cohorts (40 and 46
restaging CT, respectively) (Table 3). This model
outperformed the clinical RECIST method (NRI = 39.5%, Z
= 2.04, p < .05 and NRI = 35.4%, Z = 1.63, p < 0.05).

Table 1 Characteristics of patients in the primary cohort and two testing cohorts

Variables Primary cohort (n = 206) Testing cohort I (n = 40) Testing cohort II (n = 46)

pDS Non-pDS p value DS Non-DS p value DS Non-DS p value

Gender .723 .215 1.000

Male 59 (28.6) 96 (46.6) 9 (22.5) 18 (45.0) 12 (26.1) 24 (52.2)

Female 18 ( 8.7) 33 (16.1) 7 (17.5) 6 (15.0) 3 (6.5) 7 (15.2)

Age .737 .272 .267

≥ 65 25 (12.1) 39 (18.9) 2 (5.0) 7 (17.5) 4 (8.7) 8 (17.4)

< 65 52 (25.3) 90 (43.7) 14 (35.0) 17 (42.5) 11 (23.9) 23 (50.0)

Primary tumor site .773 .595 .794

Fundus 30 (14.6) 46 (22.3) 4 (10.0) 9 (22.5) 4 (8.7) 9 (19.6)

Body 12 (5.8) 24 (10.7) 3 (7.5) 6 (15.0) 7 (15.2) 11 (23.9)

Antrum 35 (17.0) 59 (28.5) 9 (22.5) 9 (22.5) 4 (8.7) 11 (23.9)

Differentiation .001 .048 .049

Well 7 (3.4) 2 (0.1) 1 (2.5) 0 (0.0) 2 (4.3) 1 (0.2)

Moderately 30 (14.6) 32 (15.5) 7 (17.5) 6 (15) 5 (10.9) 5 (10.9)

Poorly 39 (18.9) 96 (46.5) 6 (15.0) 20 (50.0) 6 (13.0) 27 (58.7)

Chemotherapy .856 .332 .249

SEEOX 57 (27.7) 94 (45.6) 11 (27.5) 12 (30.0) 7 (15.2) 20 (43.5)

SOX 20 (9.7) 35 (17.0) 5 (12.5) 12 (30.0) 8 (17.4) 11 (23.9)

Gastrectomy* .232 .062 .438

PG 4 (2.1) 1 (0.5) 1 (2.7) 0 (0.0) 3 (6.5) 2 (4.4)

TG 47 (24.6) 70 (36.6) 6 (16.2) 15 (40.5) 11 (23.9) 26 (56.5)

DG 26 (13.6) 43 (22.5) 9 (24.3) 6 (16.2) 1 (2.2) 3 (6.5)

Note: Data are numerators, with percentages in parentheses. p value is derived from the univariable association analyses between each of the clinical
characteristic variables and treatment response after neoadjuvant chemotherapy. pDS, pathological downstaging; SEEOX, oxaliplatin, etoposide,
epirubicin, and S-1; SOX, s1 and oxaliplatin; PG, proximal gastrectomy; TG, total gastrectomy; DG, distal gastrectomy. *Patients who did not receive
radical surgery were not included
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Specifically, this DR radiomics model was more accurate and
sensitive than the clinical method using RECIST (ACC 0.897
and 0.775, SEN 0.867 and 0.625) when diagnosing pDS after

the treatment in testing cohort I. Meanwhile, the DR model
also performed well for early detection of pDS in testing co-
hort II, while the RECIST showed no diagnostic value (AUC
0.617, 95% CI: 0.462–0.757, p = 0.0557). Furthermore, the
discrimination of pDS was increased in the improved DR
model using the average scores of outcomes of PR and DR
models in both testing cohorts (AUC 0.961, ACC 0.897, and
AUC 0.921, ACC 0.907). Figure 4 shows the four receiver
operating characteristic (ROC) curves for PR, DR, improved
DR models, and RECIST method. Also Fig. 5 lists the
radiomics features with the top six weights in PR and DR
models. Radiomics calculation formulas were listed in
Supplementary Appendix 5.

Discussion

Our prediction radiomics (PR) model and detection radiomics
(DR) model using baseline and restaging contrast-enhanced
CT (CECT) performed strongly on prediction and early detec-
tion of pathological downstaging (pDS) for advanced gastric
cancer (AGC). The two models revealed potential risk factors
and current benefits of neoadjuvant chemotherapy, which can
potentially assist surgical decision-making.

Our PR model performs patient stratification on ad-
mission to reduce additional toxicity of inefficient treat-
ment for non-respond patients [2, 3]. Our improved DR
radiomics model provides early detection of response
after each cycle of the chemotherapy course, allowing
timely surgical decision for those responsive candidates
who achieve pDS. Such model preoperatively distin-
guishes non-responders after complete course of chemo-
therapy to avoid improper surgical treatment. Notably,
our models made correct predictions for (a) patients
(pDS n = 9, non-pDS n = 3) who had initially deemed
irrectable tumors; (b) patients (pDS n = 4) that ceased
chemotherapy at halfway due to toxicity and underwent
early trials of dissection, and were found already

Table 2 The TNM stage of patients before and after neoadjuvant
chemotherapy

Primary cohort Testing cohort I Testing cohort II

cTNM stage

cT3N0M0 23 (11.2) 2 (5.0) 1 (2.2)

cT3N+M0 58 (28.2) 11 (27.5) 7 (15.2)

cT4aN0M0 28 (13.6) 4 (10.0) 2 (4.3)

cT4aN+M0 90 (43.7) 20 (50.0) 34 (73.9)

cT4bN+M0 7 (3.3) 3 (7.5) 2 (4.3)

ypTNM stage

ypT0N0M0 19 (9.2) 4 (10.0) 1 (2.2)

ypT0N1M0 10 (4.9) 1 (2.5) 0 (0.0)

ypT0N2M0 1 (0.5) 1 (2.5) 0 (0.0)

ypT0N3M0 2 (1.0) 1 (2.5) 0 (0.0)

ypT1N0M0 10 (4.9) 0 (0.0) 4 (8.7)

ypT1N1M0 1 (0.5) 0 (0.0) 0 (0.0)

ypT1N2M0 2 (1.0) 2 (1.0) 0 (0.0)

ypT1N3M0 1 (0.5) 0 (0.0) 1 (2.2)

ypT2N0M0 10 (4.9) 4 (1.9) 5 (10.9)

ypT2N1M0 7 (3.4) 1 (0.5) 1 (2.2)

ypT2N2M0 10 (4.9) 2 (1.0) 3 (6.5)

ypT2N3M0 4 (1.9) 0 (0.0) 0 (0.0)

ypT3N2M0 5 (2.4) 0 (0.0) 0 (0.0)

ypT4aN0M0 38 (18.4) 5 (2.4) 8 (17.4)

ypT4aN1M0 25 (12.1) 3 (1.4) 7 (15.2)

ypT4aN2M0 23 (11.2) 6 (2.9) 7 (15.2)

ypT4aN3M0 29 (14.1) 6 (2.9) 8 (17.4)

ypT4b 4 (1.9) 1 (0.4) 1 (2.2)

M1 post-treatment 5 (2.4) 3 (1.5) 0 (0.0)

Note: Data are numerators, with percentages in parentheses. The cTNM
stage refers to the pre-chemotherapy clinical stage of tumor; the ypTNM
stage refers to the post-chemotherapy pathologic stage of tumor

Table 3 Performance of the PR, DR, and improved DR models in two testing cohorts

Testing cohort I Testing cohort II

PR RESCIT DR Improved DR PR RECIST DR Improved DR

AUC 0.750 0.750 0.922 0.961 0.889 0.617 0.850 0.921

(0.579–0.921) (0.588–0.873) (0.799–0.985) (0.898–1) (0.756–1) (0.462–0.757) (0.799–0.985) (0.835–1)

p value 0.009* 0.001* 0.000* 0.000* 0.000* 0.056 0.000* 0.000*

SEN 0.467 0.625 0.867 0.733 0.571 0.266 0.857 0.786

SPE 0.958 0.875 0.917 1 0.966 0.968 0.862 0.966

ACC 0.769 0.775 0.897 0.900 0.837 0.739 0.860 0.907

Note: *p value < .05. PR, prediction radiomics; DR, detection radiomics; AUC, area under the curve; SEN, sensitivity; ACC, accuracy
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achieved pDS; and (c) patients (non-pDS n = 3) con-
firmed to have inoperable disease at improper surgery, a
known trigger for metastasis requiring palliative man-
agement [29]. In our radiomics findings, wavelet-based
and energy-based features achieved the highest feature
weights as confirmed in previous reports [15, 30, 31].

These features provide detailed information on sight his-
tologic changes in tumor [7, 8] including decreased tu-
mor cell density, fibrosis, mucus lakes, and chronic in-
flammatory infiltrates [32]. Furthermore, our DR model
outperformed the CT-based Response Evaluation
Criteria in Solid Tumors (RECIST) method, which is

Fig. 4 Receiver operating characteristic curves for the prediction, detection, the improved detection radiomics models, and the RECIST method in (a)
testing cohort I and (b) testing cohort II, respectively. Note: RECIST, Response Evaluation Criteria in Solid Tumors

Fig. 5 Radiomics features with
the top six weights in (a) the
prediction and (b) detection
radiomics model, respectively
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in line with the commonly used endoscopic assessment
for AGC patients [33]. This indicated that the CT
radiomics may potentially surpass endoscopy or CT
gastrography as a useful method for response evaluation
of AGC.

Our study has limitations. First, our cohort contained
fewer patients achieving pDS (58.7%); the imbalance of
groups may influence the performance of predictive
models. Second, images with low-quality scores were
excluded by the evaluation process of CT images qual-
ity, which might result in potential image selection bias.
Third, despite the examination of CT images analyzed
by consensus between two reviewers, inter-variability
still existed that requires additional assessment. Finally,
although testing cohorts were conducted to improve re-
liability, our research is based on retrospective analysis
and further prospective multi-center studies with more
cases stratified would be helpful to validate our
findings.

In conclusion, we demonstrated that CT-based
radiomics models using baseline and restaging CECT
offer predictive value for pDS before, during, and at
the end of neoadjuvant chemotherapy, which can poten-
tially support clinical decision-making for AGC patients.
Future studies will be warranted to explore the general-
ized utility of our models and translate our findings into
clinical practice.
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