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Machine learning automatically detects COVID-19 using chest CTs
in a large multicenter cohort
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Abstract
Objectives To investigate machine learning classifiers and interpretable models using chest CT for detection of COVID-19 and
differentiation from other pneumonias, interstitial lung disease (ILD) and normal CTs.
Methods Our retrospective multi-institutional study obtained 2446 chest CTs from 16 institutions (including 1161
COVID-19 patients). Training/validation/testing cohorts included 1011/50/100 COVID-19, 388/16/33 ILD, 189/16/33
other pneumonias, and 559/17/34 normal (no pathologies) CTs. A metric-based approach for the classification of
COVID-19 used interpretable features, relying on logistic regression and random forests. A deep learning–based
classifier differentiated COVID-19 via 3D features extracted directly from CT attenuation and probability distribution
of airspace opacities.
Results Most discriminative features of COVID-19 are the percentage of airspace opacity and peripheral and basal
predominant opacities, concordant with the typical characterization of COVID-19 in the literature. Unsupervised
hierarchical clustering compares feature distribution across COVID-19 and control cohorts. The metrics-based clas-
sifier achieved AUC = 0.83, sensitivity = 0.74, and specificity = 0.79 versus respectively 0.93, 0.90, and 0.83 for
the DL-based classifier. Most of ambiguity comes from non-COVID-19 pneumonia with manifestations that overlap
with COVID-19, as well as mild COVID-19 cases. Non-COVID-19 classification performance is 91% for ILD, 64%
for other pneumonias, and 94% for no pathologies, which demonstrates the robustness of our method against
different compositions of control groups.
Conclusions Our new method accurately discriminates COVID-19 from other types of pneumonia, ILD, and CTs with no
pathologies, using quantitative imaging features derived from chest CT, while balancing interpretability of results and classifi-
cation performance and, therefore, may be useful to facilitate diagnosis of COVID-19.
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Key Points
• Unsupervised clustering reveals the key tomographic features including percent airspace opacity and peripheral and basal
opacities most typical of COVID-19 relative to control groups.

•COVID-19-positive CTs were compared with COVID-19-negative chest CTs (including a balanced distribution of non-COVID-
19 pneumonia, ILD, and no pathologies). Classification accuracies for COVID-19, pneumonia, ILD, and CT scans with no
pathologies are respectively 90%, 64%, 91%, and 94%.

•Our deep learning (DL)–based classification method demonstrates an AUC of 0.93 (sensitivity 90%, specificity 83%). Machine
learning methods applied to quantitative chest CT metrics can therefore improve diagnostic accuracy in suspected COVID-19,
particularly in resource-constrained environments.
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Abbreviations
AUC Area under the curve
CO-RADS COVID-19 Reporting and Data System
COVID-19 Coronavirus Disease 2019
DICOM Digital Imaging and Communications in

Medicine
DL Deep learning
GBT Gradient boosted trees
GGO Ground glass opacity
ILD Interstitial lung disease
LR Logistic regression
PACS Picture Archiving and Communication

System
PHO Percent of high opacity
PO Percent of opacity
RF Random forest
ROC Receiver operating characteristic
RT-PCR Reverse transcript polymerase chain reaction
SARS-CoV-2 Severe Acute Respiratory Syndrome

Coronavirus 2

Introduction

Coronavirus disease 2019 or COVID-19 has caused a global
pandemic associated with an immense human toll and
healthcare burden across the world [1]. COVID-19 can man-
ifest as pneumonia, which may lead to acute hypoxemic re-
spiratory failure, the main reason for hospitalization and mor-
tality. A Fleischner Society statement supports the use of lung
imaging for differential diagnosis and management of patients
with moderate to severe clinical symptoms, especially in
resource-constrained environments [2]. The most typical pul-
monary CT imaging features of COVID-19 are multifocal
(often bilateral and peripheral predominant) airspace opaci-
ties, comprised of ground glass opacities and/or consolidation,
which may be associated with interlobular and intralobular
septal thickening [3]. A study comparing COVID-19 and oth-
er types of viral pneumonia demonstrated that distinguishing
features more typical of COVID-19 are the predominance of

ground glass opacities, peripheral distribution, and
perivascular thickening [4]. A consensus statement on
COVID-19 reporting by the Radiological Society of North
America indicates the typical appearance of COVID-19
as peripheral and bilateral distribution of ground glass
opacities with or without consolidation, and possibly with
the “reverse halo” sign [5]. Confirmatory diagnosis of
COVID-19 requires identification of the virus on nasopha-
ryngeal swabs via RT-PCR (reverse transcription polymer-
ase chain reaction), a highly specific test (>99%) but with
lower sensitivity (50–80%) [6, 7]. Given the imperfect
sensitivity of RT-PCR and potential resource constraints,
chest CT imaging has an evolving role in diagnosis of
COVID-19 and possibly prognostic value.

Recently, several groups have shown that COVID-19
can be identified on CT with variable accuracy. For
example, chest CTs in patients who were positive for
COVID-19 (RT-PCR) could be distinguished from chest
CTs in patients that tested negative with an AUC of
0.92 using machine learning [8]. While this classifica-
tion is potentially valuable, it is limited by a lack of
details on the types and distribution of findings on neg-
ative (control) cases. It is important to distinguish
COVID-19-related pulmonary disease not only from
subjects with no pathologies CTs but also from other
types of lung diseases unrelated to COVID-19, includ-
ing other infections, malignancy, interstitial lung disease
(ILD), and chronic obstructive pulmonary disease
(COPD). This is especially important as COVID-19
can manifest similarly clinically to other respiratory in-
fections such as influenza, which can lead to confusion
in triage and diagnosis. Bai et al showed that an artifi-
cial intelligence system can assist radiologists to distin-
guish COVID-19 from other types of pneumonia, with a
diagnostic sensitivity of 88% and specificity of 90% [9].
The two cohorts (COVID-19 and other pneumonia)
compared in this study are from two different countries,
limiting the generalizability of their model. Other stud-
ies showing promising results in classification do not
provide a detailed description of imaging cohorts
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acquisition protocols or data sources [10, 11]. This in-
formation is important since different institutions will
have diverse CT acquisition protocols and clinical indi-
cations for CT usage, which can affect the performance
of machine learning algorithms.

Our goals were to compute CT-derived quantitative imag-
ing metrics corresponding to the typical presentation of
COVID-19 and evaluate the discriminative power of these
metrics for the diagnosis of COVID-19, when compared to
different compositions of control groups; perform unsuper-
vised clustering of interpretable features to visualize how
COVID-19 patients differ from controls; compare the perfor-
mance of metrics-based classifiers to a deep learning–based
model. Our large training and test datasets contained chest
CTs in patients confirmed with COVID-19 and negative con-
trols from multiple institutions in North America and Europe,
making this one of the first large studies to demonstrate the
value of machine learning for differentiation of COVID-19
and non-COVID-19 utilizing data from multiple centers, in-
creasing generalizability and applicability.

Methods

Patient selection and imaging data

This retrospective study utilized data acquired from 16 differ-
ent centers in North America and Europe, af ter
anonymization, ethical review and approval at each institu-
tion. Our dataset consists of chest CTs of 1226 patients posi-
tive for COVID-19, and 1287 chest CTs of patients without
COVID-19, including other types of pneumonia (n = 240),

ILD (n = 437), and without any pathologies on chest CT
(n = 610). The flowchart for patient selection criteria is shown
in Fig. 1. All CTs in the COVID-19 cohort from North
America have been confirmed by RT-PCR. The COVID-19
cohort from Europe has been either confirmed by RT-PCR or
diagnosed based on clinical symptoms, epidemiological expo-
sure, and radiological assessment. The pneumonia cohort con-
sists of cases of patients with non-COVID-19 viral or bacterial
pneumonias, organizing pneumonia, and aspiration pneumo-
nia. The ILD cohort consists of patients with various types of
ILD such as usual interstitial pneumonia, nonspecific intersti-
tial pneumonia, and other unclassifiable interstitial diseases
with or without fibrotic features, which exhibit ground glass
opacities, reticulation, honeycombing, traction bronchiectasis,
and consolidation to different degrees. Sixty-four COVID-19
cases were excluded due to no opacities on chest CT, 84
COVID-19 cases were excluded due to had minimal opacities
(PO < 1%), one COVID-19 case was excluded due to incom-
plete inclusion of the lungs in the field-of-view, and two pneu-
monia controls were excluded due to incorrect DICOM pa-
rameters and imaging artifacts.

The dataset was divided into training (2147), validation
(99), and test (200) sets (Table 1). Model training and selec-
tion were performed based on training and validation sets. The
final performance of selected models is reported on the test
dataset (Table S1 provides a detailed breakdown of
demographic and scanning information for each cohort).

Metrics of airspace disease severity

We computed thirty-two metrics of severity based on abnor-
malities known to be associated with COVID-19, as well as

Fig. 1 Selection criteria for the COVID-19 and control cohorts in the study
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lung and lobar segmentation, using a previously developed
Deep Image-to-Image Network trained on a large cohort of
healthy and abnormal cases for lung segmentation [12]. Next,
we used a DenseUnet to identify abnormalities such as GGO
and consolidations on COVID-19 as well as control groups
[12]. Based on these segmentations, we computed severity
metrics to summarize the spatial distribution and extent of
airspace disease in both lungs. A complete and detailed de-
scription of the thirty-twometrics is provided in Table S3. Our
algorithm is fully automated and requires no manual input
(Fig. 2).

Metric-based analysis

Unsupervised feature selection and clustering

Recursive feature elimination was used to select the metrics of
severity most discriminative between COVID-19 and non-
COVID-19 classes. The k best features were selected based
on an internal validation split. Based on the selected metrics,
an unsupervised hierarchical cluster analysis was performed to
identify clusters of images that have similar features. The
pairwise Euclidean distance between two metrics was used
to compute a distance matrix, with average linkage method

used for hierarchical clustering [13], visualized as a heatmap
(Fig. 3).

Supervised COVID-19 classification

Twometrics-based classifiers were trained based on the thirty-
two computed metrics. First, we trained a random forest clas-
sifier, M1, using k-selected features based on recursive feature
elimination. Subsequently, we trained a second classifier
using logistic regression (LR), after feature transformation
based on gradient boosted trees (GBT) [14]. For training
GBT, we used 2000 estimators with max depth = 3 and 3
features for each split. The boosting fraction 0.8 was used
for fitting the individual trees. The logistic regression classifi-
er, M2, was trained with L2 regularization (C = 0.2). The class
weights were adjusted to class frequencies for the class imbal-
ance between COVID-19 and non-COVID-19 classes.

Supervised deep learning–based COVID-19 classification

A deep learning–based 3D neural network model, M3, was
trained to separate the positive class (COVID-19) vs negative
class (non-COVID-19). As input, we considered a two-
channel 3D tensor, with the first channel containing directly
the CT Hounsfield units within the lung segmentation masks
and the second channel containing the probability map of a
previously proposed opacity classifier [12]. The 3D network
uses anisotropic 3D kernels to balance resolution and speed
with deep dense blocks that gradually aggregate features
down to a binary output. The network was trained end-to-
end as a classification system using binary cross-entropy and
uses probabilistic sampling of the training data to adjust for
the imbalance in the training dataset labels. A separate valida-
tion dataset was used for final model selection before the
performance was measured on the testing set. The input 3D
tensor size is fixed (2 × 128 × 384 × 384) corresponding to the

Table 1 Data-split table by classes and categories into training,
validation, and test datasets

2 classes 4 categories Training Validation Test

Positive COVID-19 1011 50 100

Negative Pneumonia (non-COVID-19) 189 16 33

ILD 388 16 33

No pathology 559 17 34

Fig. 2 Overview of the deep learning–based COVID-19 classifier. Preprocessing consists of lung segmentation and opacities probability distribution
computation [12] followed by a 3D deep neural network trained to distinguish between the COVID-19 class and non-COVID-19 class
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lung segmentation from the CT data rescaled to a 3×1×1 mm
resolution. The first two blocks are anisotropic and consist of
convolution (kernels 1 × 3 × 3)—batch normalization—
LeakyReLU and Max-pooling (kernels 1 × 2 × 2, stride 1 ×
2 × 2). The subsequent five blocks are isotropic with convo-
lution (kernels 3 × 3 × 3)—batch normalization—LeakyReLU
andMax-pooling (kernels 2 × 2 × 2, stride 2 × 2 × 2) followed
by a final linear classifier with the input 144-dimensional.
Figure 2 depicts our 3D DL classifier.

Comparison with models from the literature
and with radiologist performance

We compared the models in this work to those published by Li
et al [10] and themodel proposed byHarmon et al [15]. Li et al
[10] investigated a deep learning method to distinguish
COVID-19 from community-acquired pneumonia and
healthy subjects using chest CT. Their proposed DL method
is based on extracting 2D features on each CT slice followed
by feature pooling across slices and a final linear classifier.
There are two main differences between the DL method pro-
posed in this article and the one proposed by Li et al [10].
First, our method is based on 3D deep learning, which better
leverages the contiguity of imaging textures along the z-axis,
and second, it uses as input the spatial distribution of opacities
within the lung parenchyma, which focuses the classifier on
the regions of abnormality. For the method of Li et al [10], we
have re-trained the model on our training dataset while for
Harmon et al [15], we have run their released model on our
testing set.

We have investigated how our method compares against
the CO-RADS scoring system [16]. CO-RADS is a categori-
cal score that quantifies the suspicion of pulmonary involve-
ment by COVID-19 and was shown to perform well in
predicting disease severity of COVID-19 patients. To under-
stand how the CO-RADS scoring system performs in our test
set ground truth, we have asked a radiologist (with over 5
years of experience) to score the 200 test cases. The radiolo-
gist was provided only with chest CT scans and not provided
with any additional information about the ground truth diag-
nosis or RT-PCR test.

Results

Six features were selected by recursive feature elimination
between features and classes in the training dataset of 1011
COVID-19 cases and 1136 controls (other pneumonia, ILD,
and no pathologies). The features are as follows:

1. Percent of ground glass opacities
2. Percent of opacity (PO) (consolidation and ground glass

opacities = airspace disease)
3. Percent of opacities in the periphery (see Appendix)
4. Percent of opacities in the rind (see Appendix)
5. Percent of opacities in the right lower lobe
6. Percent of opacities in the left lower lobe

Figure 3 demonstrates the hierarchical clustering of these
metrics, along with the ground truth diagnosis cohort mem-
bership (COVID-19, other pneumonia, ILD, and no

Fig. 3 Heat map of hierarchical clustering. This illustrates the
unsupervised hierarchical clustering of the seven metrics along with
cohort membership (COVID-19, other pneumonia, ILD, and no

pathologies) from the entire training set of 1800 cases. The metric values
are standardized and rescaled to a value between 0 and 1. a Training
dataset; b Test dataset
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pathologies CT) shown on the band on the left of heat map.
The metric values are standardized and rescaled to a value
between 0 and 1. In Fig. 3a, the clustering is performed on
the entire training set of 1800 subjects. The probability of
belonging to the COVID-19 class increases towards the bot-
tom of the heat map, which corresponds to higher values of the
metrics, i.e., more opacities (both GGO and consolidation),
and more peripheral and basal distribution. The middle of
the heatmap shows the ambiguous region, where there is an
overlap of features from different disease cohorts. Figure 3b
shows the same clustering in the test dataset for each of the

disease cohorts.While there is a cluster of COVID-19 subjects
that have characteristic features, there are also many which do
not show all characteristics. Moreover, some cases of pneu-
monia and ILD overlap with the typical features of COVID-
19.

The six selected features were used to train a random forest
classifier (M1). The performance of this classifier on a test
dataset has an AUC of 0.75 (95% CI: [0.69, 0.81]) as depicted
in Fig. 4, which shows bootstrapped ROC and AUC values,
along with their 95% confidence intervals, which were com-
puted on 1000 samples with replacement. The sensitivity and
specificity of this model are 0.86 and 0.60, respectively. The
performance is improved by training a second classifier on all
thirty-two metrics using a logistic regression model (M2). The
metrics are first transformed to a higher-dimensional space
using feature embedding with gradient boosted trees. On the
test set, this model produces an AUC of 0.83 (95% CI: [0.78,
0.89]) with a sensitivity of 0.74 and a specificity of 0.79.
While the performance improves, some of the interpretability
is lost since the features are transformed to a higher
dimension.

Our deep learning–based classifier (M3) has the best per-
formance with an AUC of 0.93 (95% CI: [0.90, 0.96]), im-
proving the sensitivity and specificity of the system to 0.90
and 0.83, respectively. The improvement is mostly due to a
reduction of false positives from the ILD and an increase of
true positives in the COVID-19 class. The optimal operating
point for all models was chosen as the point with the shortest
distance from the top left corner on the ROC computed on the
whole test dataset, without bootstrapping. The corresponding
confusion matrices for the three models are shown in Table 2.
Figure 5 illustrates examples of correctly labeled samples by
the metrics-based classifier and the DL-based classifier, on
typical CT images from COVID-19 patients. Figure S2 shows
negative examples from ILD and non-COVID-19 pneumonia
patients. Overlaid in red are the areas identified by the opacity
classifier. Figure 6 illustrates examples of cases incorrectly
labeled by both classifiers and Figure S3 shows cases that
are incorrectly labeled by the metric-based classifier but cor-
rectly labeled by the DL classifier that uses additional texture
features extracted directly from the images.

The performance of the CO-RADS scoring system is illus-
trated in Fig. 4 and Table 2. For the sake of our comparison,
we consider that CO-RADS 4-5 is a positive prediction for
COVID-19 and CO-RADS 1-3 as negative prediction. The
performance of the CO-RADS scoring system is comparable
to the metric-based classifiers.

We compared the models in this work to the models previ-
ously published by Li et al and Harmon et al on our test dataset.
The model from Li et al achieved an AUC of 0.90 (95% CI:
[0.86, 0.94]) and the model fromHarmon et al achieved an AUC
of 0.74 (95% CI: [0.67, 0.81]) on our testing set as shown in
Figure S2. The optimal operating point, which was selected as

Fig. 4 a Bootstrapped ROCs for discriminating COVID-19 from ILD,
other pneumonia, and no pathology control by the models proposed in
this study. The models M1, M2, and M3 and CO-RADS scoring [16]
were evaluated with 100 COVID-19 positive, 33 ILD, 33 other pneumo-
nia, and 34 healthy without pathologies on CTs. The 95% confidence
intervals (shown as a band) are computed by bootstrapping over 1000
samples with replacement from the predicted scores. b Bootstrapped
ROCs for our 3D DL classifier (M3), the model proposed by Li et al
[10], and the model proposed by Harmon et al [15]. For the model pro-
posed by Li et al, we trained and tested on our dataset using the code
provided by the authors. The 95% confidence intervals (shown as a band)
are computed by bootstrapping over 1000 samples with replacement from
the predicted scores
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Table 2 Metrics-based classifier confusion matrices. the models were
evaluated with 100 covid-19, 33 ILD, 33 other pneumonia, and 34 no
pathologies CT scans. The operating point was chosen as the closest point
to the top left corner on the ROC computed over the test dataset (without
bootstrapping). Note: the table shows the prediction vs ground truth for

each of the negative class categories (ILD, other pneumonia, no
pathology). M1, metrics-based random forest classifier; M2, metrics-
based logistic regression classifier; M3, Deep learning–based classifier;
CO-RADS, SCORING system [16]

Ground truth

Positive Negative

COVID-19 ILD Pneumonia (non-COVID-19) No pathology

Predicted (M1) Positive 86 21 19 0

Negative 14 12 14 34

Predicted (M2) Positive 74 11 10 0

Negative 26 22 23 34

Predicted (M3) Positive 90 3 12 2

Negative 10 30 21 32

Predicted (CO-RADS) Positive 74 8 15 0

Negative 26 19 18 34

Fig. 5 Examples of correctly classified COVID-19-positive patients from both methods. Red marks abnormalities associated with COVID-19
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the point closest to the top left corner of the ROC computed on
the whole test dataset, without bootstrapping, produced a sensi-
tivity of 0.86 and specificity of 0.80 for Li et al and a sensitivity
of 0.64 and specificity of 0.78 for Harmon et al (Fig. 4b). The
confusion matrix is shown in Table 3.

We have computed the potential impact of technical pa-
rameters of the acquisition on the sensitivity of the deep
learning-based classifier M3. The results for the parameters
where there is significant data support are illustrated in
Table S2. The table illustrates good performance (90.2%,
93.8%) for COVID-19 detection for high-resolution

Fig. 6 Examples of incorrectly classified samples by both methods: top-
row COVID-19 (false negative), middle-row ILD (false positive),
bottom-row other pneumonia (false positive). Red marks abnormalities

associated with COVID-19 (top-row), associated with ILD (middle-row),
or associated with other pneumonia (bottom-row), respectively

Table 3 Confusion matrix for the
model from Li et al and Harmon
et al. The operating point was
chosen as the closest point to the
top left corner on the ROC
computed over the test dataset
(without bootstrapping)

Ground truth

Positive Negative

COVID-19 ILD Pneumonia No pathology

Predicted (Li et al) Positive 86 6 14 0

Negative 14 27 19 34

Predicted (Harmon et al) Positive 64 14 7 1

Negative 36 19 26 33
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acquisitions (slice thickness below 3 mm) while the perfor-
mance degrades (72.7%) to lower resolution acquisitions
(slice thickness above 3 mm). Soft and hard kernel types are
evenly represented in the test data with slightly higher perfor-
mance on soft kernels (92.0%) than on hard kernels (91.2%)
which could be attributed to lower noise levels. Sensitivity
across manufacturers is on average 92.75% (+7.25/−4.15)
and illustrated in Table S2.

To understand the limitation of detecting COVID-19 on
datasets without visible airspace opacities on chest CT, we
have analyzed the performance of the deep learning–based
classifier M3 on the 64 COVID-19 datasets that were exclud-
ed from the main data selection process. The M3 classifier
predicted 33 cases as COVID-19 positive (51.6%) and 30
cases as COVID-19 negative (48.4%). This performance sug-
gests that even if there are no visible opacities, there are other
imaging features that can distinguish COVID-19 from other
diseases.

We have assessed if patients in our cohort had a co-
existence of disease patterns such as COVID-19
superimposed with ILD or emphysema. Upon review, we
have identified only 2 COVID-19-positive cases with under-
lying ILD (Figure S4) and 1 COVID-19-positive case with
underlying Emphysema. The first 2 are predicted as positive
by all three models while the third is predicted positive only
by the M3 model.

Discussion

We evaluated the ability of machine learning algorithms to
distinguish between chest CTs in patients with COVID-19
and a diverse control cohort comprising of chest CTs demon-
strating other pneumonias, ILD, and no pathology. We per-
formed an analysis based on clinically interpretable severity
metrics computed from automated segmentation of abnormal
regions in a chest CT scan, as well as using a deep learning
system. The six selected features by recursive elimination cor-
respond to reported typical COVID-19 features: multifocal
ground glass opacities and/or consolidation with basal and
peripheral distribution [5, 16, 17]. Unsupervised clustering
on selected severity metrics shows that while there are domi-
nant characteristics that can be observed in COVID-19 such as
ground glass opacities as well as peripheral and basal distri-
bution, these are not observed in all cases of COVID-19. On
the other hand, some ILD and other pneumonia patients can
exhibit similar characteristics. We found that the performance
of the system can be improved by mapping these metrics into
a higher-dimensional space prior to training a classifier, as
shown by model M2 in Fig. 3. The best classification

performance, with sensitivity/specificity of 90%/83% is
achieved by the deep learning systemM3, which is essentially
a high-dimensional, non-linear model. For reference, we have
also included the performance of the manually rated CO-
RADS scoring system by a radiologist on the same test set,
which had sensitivity/specificity of 74%/71%. The reported
performance of CO-RADS in identifying COVID-19
(positive RT-PCR) is variable in literature with Bellini et al
reporting sensitivity/specificity of 71.0%/81.0% [18], Lieveld
et al reporting sensitivity/specificity of 89.4%/87.2% [19], and
Prokop et al reporting sensitivity/specificity of 90%/82.8%
[16].

The deep learning method achieves reduced false-
positive and false-negative rates relative to the metrics-
based classifier suggesting that there might be other latent
radiological manifestations of COVID-19 that distinguish it
from ILDs or other types of pneumonia. It is worth inves-
tigating how to incorporate the common imaging features
into our 3D DL classifier as prior information. The pro-
posed AI-based method has been trained and tested on a
database of 2446 CT datasets with 1161 COVID-19 pa-
tients and 1285 datasets coming from other categories. We
also show how our method compares to the one published
by Li et al [10] and found that our method achieves a
higher AUC as well as sensitivity. Further details are pro-
vided in the supplementary section.

One limitation of this study is that our training set is biased
toward COVID-19 and normal controls, potentially affecting
discrimination of other lung pathologies. Another limitation is
that the validation set size is relatively small, which might not
capture the entire data distribution of clinical use cases for
optimal model selection. Among the strengths of this study
are the diversity of training and testing CTs used, acquired
using a variety of CT scanners, from numerous institutions
and regions, ensuring robust and generalizable results. We
also included not only normal controls but also various types
of lung pathology in the COVID-19-negative group. We have
included an analysis of the system sensitivity to main acqui-
sition parameters.

Our system provides clinical value in several aspects: it
can be used for rapid triage of positive cases, particularly
in resource-constrained environments where radiologic
expertise or RT-PCR may not be immediately available;
it could help radiologists to prioritize interpreting CTs in
patients with COVID-19 by screening out lower probabil-
ity cases. The output of our deep learning classifier is
easily reproducible and replicable, mitigating inter-reader
variability. While RT-PCR will remain the reference stan-
dard for confirmatory diagnosis of COVID-19, machine
learning methods applied to quantitative CT can perform
with high diagnostic accuracy, increasing the value of
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imaging in the diagnosis and management of this disease.
In addition, the ability of the deep learning classifier to
detect COVID-19 cases on datasets with no visible opac-
ities on CT images suggests that there are additional im-
age features beyond airspace disease that could be used to
detect COVID-19 and should be investigated in the future.
Furthermore, these algorithms could be integrated into a
surveillance effort for COVID-19, even in unsuspected
patients, in high-incidence regions, with automatic assess-
ment for evidence of COVID-19 lung disease, allowing
more rapid institution of isolation protocols. Finally, it
could potentially be applied retrospectively to large num-
bers of chest CT exams from institutional PACS systems
worldwide to uncover the dissemination of SARS-CoV-2
in communities prior to the implementation of widespread
testing efforts.

In the future, we plan to deploy and validate the algorithm
in a clinical setting and evaluate the clinical utility and diag-
nostic accuracy on prospective data, as well as to investigate
the value to predict clinical severity and prognosis of COVID-
19, as well as ancillary findings of COVID-19 such as acute
pulmonary embolism, which is associated with severe
COVID-19 [20, 21]. In addition, clinical decision models
could be improved by training a classifier that incorporates
other clinical data such as pulse oximetry and laboratory met-
rics, in addition to imaging features.
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