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Abstract
Objectives To perform a systematic review of design and reporting of imaging studies applying convolutional neural network
models for radiological cancer diagnosis.
Methods A comprehensive search of PUBMED, EMBASE, MEDLINE and SCOPUS was performed for published studies
applying convolutional neural network models to radiological cancer diagnosis from January 1, 2016, to August 1, 2020. Two
independent reviewers measured compliance with the Checklist for Artificial Intelligence in Medical Imaging (CLAIM).
Compliance was defined as the proportion of applicable CLAIM items satisfied.
Results One hundred eighty-six of 655 screened studies were included. Many studies did not meet the criteria for current design
and reporting guidelines. Twenty-seven percent of studies documented eligibility criteria for their data (50/186, 95% CI 21–
34%), 31% reported demographics for their study population (58/186, 95% CI 25–39%) and 49% of studies assessed model
performance on test data partitions (91/186, 95% CI 42–57%). Median CLAIM compliance was 0.40 (IQR 0.33–0.49).
Compliance correlated positively with publication year (ρ = 0.15, p = .04) and journal H-index (ρ = 0.27, p < .001). Clinical
journals demonstrated higher mean compliance than technical journals (0.44 vs. 0.37, p < .001).
Conclusions Our findings highlight opportunities for improved design and reporting of convolutional neural network research for
radiological cancer diagnosis.
Key Points
• Imaging studies applying convolutional neural networks (CNNs) for cancer diagnosis frequently omit key clinical information
including eligibility criteria and population demographics.

• Fewer than half of imaging studies assessed model performance on explicitly unobserved test data partitions.
•Design and reporting standards have improved in CNN research for radiological cancer diagnosis, though many opportunities
remain for further progress.
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Introduction

Recent years have seen an increase in the volume of artificial
intelligence (AI) research in the field of cancer imaging,
prompting calls for appropriately rigorous design and apprais-
al standards [1–6]. Evaluation of AI research requires a skillset
which is distinct from those of classical medical statistics and
epidemiology. The problems of high dimensionality,
overfitting and model generalisation are central challenges in
AI modelling [7–10]. These phenomena potentially compro-
mise the generalisation of AI models to the reality of clinical
practice [11]. However, the reliability of these models may be
estimated and maximised through rigorous experimental de-
sign and reporting [1, 12].

EQUATOR was founded to improve the quality of scien-
tific research through standardisation of reporting guidelines
[13, 14]. Established EQUATOR guidelines such as STARD
[15], STROBE [16] and CONSORT [17] were not designed
specifically to address the challenges of AI research. AI-
focused guidelines have recently been developed including
CLAIM [18], SPIRIT-AI [19], MI-CLAIM [20] and, prospec-
tively, STARD-AI [21]. These are welcome measures as AI
remains at an early phase of clinical implementation for diag-
nostic tasks. Although each set of reporting standards ad-
dresses a specific task, a high degree of overlap exists between
these guidelines, reflecting the fundamental importance of
many of the criteria.

CLAIM aims to promote clear, transparent and reproduc-
ible scientific communication about the application of AI to
medical imaging and provides a framework to assure high-
quality scientific reporting. Current conformity to these stan-
dards has not been formally quantified to date. Consequently,
a need exists for a contemporary evaluation of design and
reporting standards in the domain of cancer imaging AI
research.

Following ImageNet 2012 [22], convolutional neural net-
work (CNN) models have been adapted to various biomedical
tasks. The approach is now the industry standard in AI appli-
cations for diagnostic radiology [23, 24]. In this study, we aim
to quantify explicit satisfaction of the CLAIM criteria in recent
studies applying CNNs to cancer imaging. We examine the
adequacy of data and ground truth collection, model evalua-
tion, result reporting, model interpretation, benchmarking and
transparency in the field. We identify key areas for improve-
ment in the design and reporting of CNN research in the field
of diagnostic cancer imaging.

Materials and methods

Inclusion criteria

1. The article evaluates a CNNmodel for radiological cancer
diagnosis in humans.

2. The model receives a radiological image as its sole input.
3. The article was published in a peer-reviewed journal be-

tween January 1, 2016, and August 1, 2020.
4. The article is published in the English language.

Exclusion criteria

1. The model addresses a non-diagnostic task such as pre-
processing, segmentation or genotyping.

2. The model receives non-radiological images such as his-
topathology, dermoscopy, endoscopy or retinoscopy.

3. The article presents experiments on animal or synthetic
data.

4. The article primarily addresses economic aspects of mod-
el implementation.

5. The article is published in a low-impact journal.
6. The article is unavailable in full-text format.

Search

PubMed, EMBASE, MEDLINE and SCOPUS databases
were searched systematically for original articles from
January 1, 2016, to August 14, 2020, for articles meeting
our inclusion and exclusion criteria. Search queries for each
database are included in the supplementary material. The
search was performed on August 14, 2020. No other sources
were used to identify articles. Screening and decisions regard-
ing inclusion based on the full text were performed indepen-
dently by 2 reviewers (R.O.S., A.S., clinical fellows with 3
years and 1 year of experience of AI research, respectively)
and disagreements resolved by consensus. A senior reviewer
(V.G.) was available to provide a final decision on unresolved
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Table 1 List of the data items evaluated. Items are derived from the
CLAIM guidance. CLAIM items with multiple conditions are divided
into sub-items, denoted as alphabetical suffixes. Compliant values are

all values considered satisfactory for that item. Exemptions indicate
types of study which are not required to satisfy an item

Item Criterion Values Compliant
values

Exemptions

1 Title or abstract specified application of
convolutional neural network model

0. Not specified
1. Specified

1 None

2 Abstract included summary of study design,
methods, results and conclusions

0. Not included
1. Included

1 None

3 Introduction provided scientific and clinical
background with role for model

0. Not provided
1. Provided

1 None

4a Study objectives 0. Not provided
1. Provided

1 None

4b Study hypotheses 0. Not documented
1. Documented

1 None

5 Indicated prospective or retrospective study
timeframe

0. Not documented
R. Retrospective
P. Prospective
RP. Both retrospective and prospective

R, P, RP None

6 Study goal 0. Not documented
1. Documented

1 None

7a Data source 0. Not documented
L. Local data collection
P. Public data
LP. Both local and public data

L, P, LP None

7b Data collection institutions 0. Not documented
SC. Single-centre data
MC. Multi-centre data

SC, MC None

7c Imaging equipment vendors 0. Not documented
SV. Single vendor
MV. Multiple vendors

SV, MV None

7d Image acquisition parameters 0. Not documented
1. Documented

1 None

7e Institutional review board approval 0. Not documented
1. Documented

1 None

7f Participant consent 0. Not documented
1. Documented

1 None

8 Eligibility criteria 0. Not documented
1. Documented

1 None

9 Image pre-processing 0. Not documented
P. Pre-processing documented
PM. Reproducible pre-processing method doc-

umented
NP. Documented that pre-processing not

employed

PM, NP None

10 Data subsetting 0. Not documented
C. Image cropping documented
CM. Reproducible image cropping method

documented
NC. Documented that cropping not employed

CM, NC None

11 Model predictors and outcomes 0. Not defined
1. Not defined

1 None

12 Data de-identification 0. Not documented
A. Anonymisation documented
AM. Reproducible anonymisation method

documented

AM None

13 Missing data handling strategy 0. Not documented
E. Missing data excluded from analysis
I. Missing data included in analysis

E, I None

14 Reference standard definition 0. Not defined
1. Defined either explicitly or by reference to a

Common Data Element such as the
American College of Radiology Image
Reporting and Data Systems.

1 None
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Table 1 (continued)

Item Criterion Values Compliant
values

Exemptions

15a Reference standard rationale 0. Not documented
1. Documented

1 None

15b Definitive ground truth 0. No definitive ground truth
P. Histopathology
DI. Definitive imaging modality
FU. Case follow-up
PFU. Histopathology and case follow-up
PDI. Histopathology and definitive imaging

modality

P, DI, FU, PFU,
PDI

None

16a Manual image annotation 0. Not documented
UR. Radiologist with unspecified expertise
SR. Radiologist with relevant subspecialist

expertise
OC. Other clinician

SR None

16b Histopathology annotation 0. Not documented
SP. Pathologist with relevant subspecialist

expertise

SP Histopathology not
employed

17 Image annotation tools and software 0. Not documented
1. Documented

1 None

18 Annotator variability 0. Not documented
V. Variability statistics documented
M. Aggregation method documented
VM. Variability statistics and aggregation

method documented

VM None

19a Sample size 0. Not documented
1. Documented number of images in dataset

1 None

19b Provided power calculation 0. Not documented
1. Documented

1 None

19c Distinct study participants 0. Not documented
{N}. N = number of study participants

{N} None

20 Data partitions and their proportions 0. Not documented
1. Documented

1 None

21 Partition disjunction 0. Not documented
1. Documented partition disjunction at patient

level

1 Validation studies

22a Provided reproducible model description 0. Not documented
1. Documented

1 Validation studies

22b Provided source code 0. Not documented
1. Documented

1 Validation studies

23 Modelling software 0. Not documented
S. Documented software
SV. Documented software and version

SV Validation studies

24 Parameter initialisation method 0. Not documented
R. Random initialisation
T. Transfer learning
RT. Both random initialisation and transfer

learning employed

R Validation studies

25a Provided reproducible data augmentation
strategy or specified used of
unaugmented data

0. Not documented
A. Documented data augmentation
AM. Reproducible data augmentation method
NA. No data augmentation

AM, NA Validation studies

25b Loss function 0. Not documented
1. Documented

1 Validation studies

25c Optimisation method 0. Not documented
1. Documented

1 Validation studies

25d Learning rate settings 0. Not documented
1. Documented

1 Validation studies

25e Stopping protocol for model training 0. Not documented
1. Documented

1 Validation studies

25f Batch size 0. Not documented
1. Documented

1 Validation studies
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Table 1 (continued)

Item Criterion Values Compliant
values

Exemptions

26 Model selection 0. Not documented
1. Documented model selection criterion,

specifying k if k-fold cross validation
employed

1 Validation studies

27 If model ensembling applied,
provided ensembling method

0. Not documented
E. Ensembling documented
EM. Documented reproducible ensembling

method

EM Ensembling not
employed

28 Metrics 0. Not documented
M. Defined performance metrics
MR. Defined performancemetrics and provided

rationale

MR None

29 Significance 0. Not documented
S. Model significance documented
SM. Model significance documented with

reproducible methodology

SM None

30 Robustness 0. Not documented
1. Documented model robustness to variation in

experimental conditions such as sample size,
noise and imaging equipment

1 None

31 Model interpretation 0. Not documented
I. Interpreted model
IM. Interpreted model with validated

methodology

IM None

32 Test data description 0. Not described
I. Employed internal test data
E. Described test data from different institution

I, E None

33 Case-flow diagram 0. Not documented
1. Documented

1 None

34 Demographics and clinical
characteristics

0. Documented
D. Documented aggregate statistics
DP. Documented statistics for each data

partition

DP None

35a Test performance 0. Model performance assessed on data
observed during training

V. Model performance assessed on data
observed during model selection

T. Model performance assessed on data which
was unobserved during training and model
selection

T None

35b Human diagnostic performance
benchmarking

0. No human performance benchmark
UR. Benchmarked against radiologist with

unspecified expertise
SR. Benchmarked against radiologist with

relevant subspecialist expertise
OC. Benchmarked against other clinicians

SR None

35c Computational diagnostic
performance benchmarking

0. No computational benchmark
1. Benchmarked against other computational

methods

1 None

36 Diagnostic performance with
measure of precision

0. Diagnostic performance reported without
measure of precision

1. Diagnostic performance reported with
confidence interval or standard error

1 None

37 Failure analysis 0. Not discussed
1. Discussed misclassified cases or model errors

1 None

38 Study limitations 0. Not discussed
1. Discussed

1 None

39 Clinical implications of study findings 0. Not discussed
1. Discussed

1 None

40 Study registration number 0. Not documented
1. Documented

1 None
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disagreements. Duplicated articles were removed. Articles
were not screened with the QUADAS tool [25], as it shares
several items with the CLAIM guideline. Exclusion of
QUADAS-incompliant articles would have biased subsequent
estimations of CLAIM compliance.

Data extraction

Data items were defined to measure compliance with CLAIM
proposal and previously published proposals [1, 18]. Complex
items with multiple conditions were subdivided as appropri-
ate. Data items are listed in Table 1. First author, journal,
publication year, modality and body system were also extract-
ed. Studies which served to validate existing models were
exempt from all items pertaining to model development.
Studies not employing model ensembling were exempt from
item 27.

Articles were read and annotated by R.O.S. and A.S.,
and disagreements were resolved by consensus. Articles
were read in random order, using a fixed sequence gener-
ated in R [26]. Journal H-index was extracted from the
Scimago journal rankings database [27]. Journals were
categorised as either “clinical” or “technical” according to
the journal name—names containing any term related to
computer science, artificial intelligence or machine learn-
ing were assigned the “technical” category. The remaining
journals were assigned the “clinical” category.

Data analysis

Statistical analysis was conducted using R version 3.5.3 [26]
and RStudio version 1.1.463 [28]. For each item, the proportion
of compliant studies was measured, excluding those with ap-
plicable exemptions. For items with ≥ 3 response categories,
proportions were also measured for each category. Ninety-five
percent confidence intervals (95% CI) were estimated around
binary proportions using the method of Clopper and Pearson
[29] and around multinomial proportions using the method of
Sison and Glaz [30, 31]. Following adherence assessment rec-
ommendations [32], an overall CLAIM compliance score was

defined per article by the proportion of applicable items satis-
fied. Items and subitems were weighted equally.

CLAIM compliance ¼ number of items satisfied

number of items applicable

Temporal change in CLAIM compliance was evaluated by
two-sided test of Spearman rank correlation between CLAIM
score and year of publication. Association between journal
impact factor and compliance was evaluated with a two-
sided test of Spearman rank correlation between journal H-
index and CLAIM score. The difference in mean CLAIM
compliance between clinical and technical journals was eval-
uated with a two-sided t test. All code and data required to
support the findings of this research are available from the
corresponding author upon request. As a methodological re-
view assessing study reporting, this study was not eligible for
registration with the PROSPERO database.

Results

Search

Six hundred fifty-five articles were identified in the primary
database search, of which 267 were duplicates. One hundred
twenty articles were excluded during title screen, and 82 arti-
cles were excluded during abstract screening. One hundred
eighty-six articles were included in the final analysis. A flow
diagram for the literature search process is provided in Fig. 1.
The dataset included articles from 106 journals. Fifty-four
clinical journals and 44 technical journals were included.
Assigned journal categories are provided in Supplementary
Table 1. The distributions of article publication year, body
system and modality for are provided in Fig. 2.

Title, abstract and introduction

Compliance for items 1–13 is shown in Fig. 3. Ninety-one
percent of studies identified their model as a convolutional
neural network (170/186, 95% CI 86–95%) and 70%

Table 1 (continued)

Item Criterion Values Compliant
values

Exemptions

41 Study protocol 0. Not documented
1. Provided access to the full study protocol

1 None

42 Funding 0. Not documented
F. Funding source documented
FR. Funding source and role documented
NF. Stated no funding received

FR, NF None
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presented a structured abstract (131/186, 95% CI 63–77%).
Ninety-eight percent included scientific and clinical back-
ground (183/186, 95% CI 95–100%). Although 92% of stud-
ies stated objectives (171/186, 95% CI 87–95%), only 4%
included explicit hypotheses (8/186, 95% CI 2–8%).

Study design

Thirty-three percent of studies documented a retrospective
or prospective timeframe (62/186, 95% CI 27–41%). Of
these, 87% were retrospective (54/62, 95% CI 81–95%),

Fig. 1 Flow diagram of literature search process
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10% were prospective (6/62, 95% CI 3–18%) and 3%
used both retrospective and prospective data (2/62, 95%
CI 0–11%). Twenty-five percent of studies specified a
goal (47/186, 95% CI 19–32%).

Data

Ninety-four percent of studies documented their data sources
(174/186, 95% CI 89–97%). Of these, 45% used publicly
available datasets only (79/174, 95% CI 38–53%), 49% used
local data only (85/174, 95% CI 41–57%) and 6% combined
public datasets with locally collected data (10/174, 95% CI 0–
14%). Seventy-two percent of studies documented the centres
from which the data was sourced (134/185, 95% CI 65–79%).
Of these, 50% used data from multiple centres (67/135, 95%
CI 41–58%). Fifty-one percent of studies detailed the imaging
equipment used (94/186, 95% CI 43–58%). Of these, 53%
employed equipment from multiple vendors (50/94, 95% CI
43–64%). Image acquisition parameters were documented in
37% of studies (69/186, 95% CI 30–44%). Amongst studies
which collected local data, 83% documented institutional re-
view board approval (79/95, 95% CI 74–90%) and 26% doc-
umented participant consent (25/95, 95% CI 18–36%). In
studies of publicly available data, 9% documented institution-
al review board approval (7/79, 95% CI 4–17%) and 8% doc-
umented participant consent (6/79, 95% CI 3–16%). Twenty-
seven percent of studies documented eligibility criteria for
their data (50/186, 95% CI 21–34%).

Pre-processing was documented in 69% of studies (128/
186, 95% CI 62–75%), though only 53% provided a repro-
ducible methodology (98/186, 95% CI 46–60%). Data
subsetting was applied in 42% of studies (78/186, 95% CI
35–49%), of which 95% included methods (74/78, 95% CI
87–99%). As per our inclusion criteria, all studies employed
convolutional neural network models, which define predictor
features autonomously. We also required an outcome in the
domain of radiological cancer diagnosis. Therefore, relevant
data elements were defined in 100% of included studies (186/
186, 95% CI 98–100%). Nineteen percent of studies
performing local data collection documented data
anonymisation (18/95, 95% CI 12–28%), though only 3%
detailed the methodology (3/95, 95% CI 0–11%). Eighty-
four percent of studies performing local data collection docu-
mented data anonymisation, institutional review board ap-
proval or both (80/95, 95% CI 75–91%). Three percent of
studies of publicly available data documented data
anonymisation (3/91, 95% CI 1–9%), and none detailed the
methodology. Missing data procedures were documented in
17% of studies (31/186, 95% CI 12–23%). Case exclusion
was the only strategy employed to manage missing data in
these studies (31/31, 95% CI 89–100%).

Ground truth

Compliance for items 14–27 is shown in Fig. 4. Twenty-five
percent of studies defined the reference standard or used a

Fig. 2 Distribution of included articles. Left: study publication year. Middle: body system imaged. Right: imaging modality employed
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Common Data Element such as the American College of
Radiology Reporting and Data Systems (46/186, 95% CI
19–32%). Three percent of studies provided rationale for the
reference standard (5/186, 95% CI 1–6%). However, 50%
employed definitive clinical standards such as histopathology,
case follow-up or definitive imaging modalities (93/186, 95%
CI 43–57%). Of these, 77% used histopathology (72/93, 95%
CI 70–86%), 15% used histopathology in combination with
follow-up imaging (14/93, 95% CI 8–23%) and 2% used his-
topathology in combination with definitive imaging (2/93,
95% CI 0–10%). Four percent used follow-up only (14/93,
95% CI 8–23%), and 1% used definitive imaging only
(1/93, 95% CI 0–9%).

Forty percent of studies documented image annotation by a
radiologist with relevant subspecialist expertise (75/186, 95%
CI 33–48%). A further 32% documented annotation by a ra-
diologist with unspecified expertise (60/186, 95% CI 25–
40%) and 4% used other clinicians (8/186, 95% CI 0–12%).

Of the studies which utilised histopathological ground truth,
8% specified annotation by a pathologist with relevant sub-
specialist experience (7/88, 95% CI 3–16%). Twelve percent
of studies documented the software tools used for image an-
notation (22/186, 95%CI 8–17%). Eighteen percent of studies
provided inter-rater or intra-rater variability statistics (34/186,
95% CI 13–25%), and 27% provided their aggregation strat-
egy (50/186, 95% CI 21–34%), though only 16% provided
both (30/186, 95% CI 11–22%).

Data partitions

Eighty-seven percent of studies reported the number of images
modelled (161/186, 95% CI 81–91%), though only 1% pro-
vided a power calculation (1/186, 95% CI 0–3%). Seventy-
two percent specified the number of study participants in their
dataset (133/186, 95% CI 64–78%). Of these, a median of 367
participants were included (IQR 172–1000). Seven studies

Fig. 3 Compliance with CLAIM items 1–13. Compliance rate is defined as the proportion of articles subject to that item which satisfy it. Exemptions are
provided in Table 1. Point estimates and 95% confidence intervals are reported
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served only to validate existing models and were exempted
from criteria pertaining to model development and data
partitioning. Seventy-six percent of modelling studies defined
data partitions and their proportions (136/179, 95% CI 69–
82%), though 32% specified the level of partition disjunction
(58/179, 95% CI 26–40%).

Model

Sixty-six percent of modelling studies provided a detailed
model description (119/179, 95% CI 59–73%) and 20% of
modelling studies provided access to source code (35/179,
95% CI 14–26%). Sixty-eight percent documented the devel-
opment software (122/179, 95% CI 61–75%), though only
41% included the software version (74/179, 95% CI 34–
49%). Sixty-eight percent ofmodelling studies reportedmodel
initialisation parameters (122/179, 95% CI 61–75%). Of
these, 52% employed transfer learning (93/179, 95% CI 44–
59%) and 3% compared transfer learning with random
initialisation (4/124, 95% CI 1–8%).

Training

Sixty-five percent of modelling studies reported data augmen-
tation (117/179, 95% CI 58–72%), though only 54% docu-
mented reproducible methodology (96/179, 95% CI 46–
61%). Sixty-one percent of modelling studies documented
the optimisation algorithm (109/179, 95% CI 53–68%), 61%
documented learning rate (110/179, 95% CI 54–69%), 44%
documented loss function (78/179, 95%CI 36–51%) and 52%
documented batch size (93/179, 95% CI 44–59%). Model
selection strategies were documented in 69% of modelling
studies (123/179, 95% CI 61–75%). Of 30 studies which
employed model ensembling, 93% reported their aggregation
methodology (28/30, 95% CI 78–99%).

Evaluation

Compliance with CLAIM items 28–42 is shown in Fig. 5.
Fifty-five percent of studies defined performance metrics
(103/186, 95% CI 48–63%) and 36% provided some rationale

Fig. 4 Compliance with CLAIM items 14–27. Compliance rate is defined as the proportion of articles subject to that item which satisfy it. Exemptions
are provided in Table 1. Point estimates and 95% confidence intervals are reported
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for these (67/186, 95% CI 29–43%). Statistical significance of
results was reported with methodology in 61% of studies
(114/186, 95% CI 54–68%) and without methodology in
97% (181/186, 95% CI 94–99%). Twelve percent of studies
evaluated model robustness (22/186, 95% CI 8–17%).
Although 25% of studies attempted some interpretation of
the model (47/186, 95% CI 19–32%), only 9% provided val-
idated methodology for their procedure (17/186, 95% CI 5–
14%).

Forty-nine percent of studies assessed model performance
on test data which was explicitly disjunct from training and
validation data (91/186, 95% CI 42–57%). Forty-five percent
of studies mentioned only two data partitions (83/186, 95% CI
38–53%); their reported results may have represented valida-
tion rather than test performance. A further 6% failed to doc-
ument any data partitions (12/186, 95% CI 0–14%); their re-
ported results may have represented training performance.
Forty-one percent of studies benchmarked models against oth-
er computational methods (77/186, 95% CI 34–49%).
Seventeen percent of studies benchmarked their model against

radiologists with relevant subspecialist expertise (31/186,
95% CI 11–23%). Five percent of studies benchmarked their
model against radiologists without specifying expertise
(9/186, 95% CI 0–11%) and 1% employed other clinicians
(1/186, 95% CI 0–7%).

Results

Case flow diagrams were provided in 8% of studies (14/186,
95%CI 4–12%). Thirty-one percent of studies reported demo-
graphic and clinical characteristics of their population (58/
186, 95% CI 25–38%). However, only 10% described sepa-
rate distributions for each data partition (18/186, 95% CI 6–
15%). Fifteen percent of studies reported performance metrics
on test data from another institution (28/186, 95% CI 8–23%).
Thirty-four percent used test data from the same institution
(63/186, 95% CI 27–41%). Diagnostic accuracy was reported
with confidence intervals in 40% of studies (75/186, 95% CI
33–48%). Twenty-four percent of studies discussed
misclassified examples (44/186, 95% CI 18–30%).

Fig. 5 Compliance with CLAIM items 28–42. Compliance rate is defined as the proportion of articles subject to that item which satisfy it. Exemptions
are provided in Table 1. Point estimates and 95% confidence intervals are reported
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Discussion

Forty-six percent of studies discussed limitations (85/186,
95% CI 38–53%) and 37% clinical implications of their find-
ings (69/186, 95% CI 30–44%).

Other information

Study registration numbers were provided in 7% of studies
(13/186, 95% CI 3.8–11.7%), and study protocols in 1%
(2/186, 95% CI 0.1–3.8%). Funding was documented in
65% of studies (121/186, 95% CI 57.7–71.9%) though only
3% included the role of the funding institution (6/186, 95% CI
0.0–10.9%). A further 6% of studies stated that they did not
receive funding (12/186, 95% CI 0.0–14.1%). Compliance for
items 1–42 is provided in Supplementary Table 3.

Overall CLAIM compliance

Median CLAIM compliance was 0.40 (IQR 0.33–0.49).
Compliance correlated positively with publication year (ρ =
0.15, p = .04) and journal H-index (ρ = 0.27, p < .001).
Clinical journals demonstrated higher mean compliance than
technical journals (0.44 vs. 0.37, p < .001). Compliance dis-
tribution is visualised with respect to publication year, journal
H-index and journal category in Fig. 6.

Discussion

Radiological AI is undergoing a development phase, reflected
in growing annual publication volume and recognition by clin-
ical researchers [33–37]. To safely harness the potential of new
methodologies, clinicians have called for realistic, reproducible
and ethical research practices [1, 38–44]. The CLAIMguidance
sets stringent standards for research in this domain, amalgam-
ating the technical requirements of the statistical learning field
[9, 45] with the practicalities of clinical research [1, 2, 15, 46].
We observed improvements in documentation standards im-
proved over time, a finding concurrent with previous reviews
of AI research [43, 45]. Compliance was highest in impactful
clinical journals, demonstrating the value of design and
reporting practices at peer review.

A key opportunity for improvement is model testing, ad-
dressed by items 20, 21, 32 and 35. Documentation should spec-
ify three disjoint data partitions for CNN modelling (which may
be resampled with cross-validation or bootstrapping). Training
data is used for model learning, validation data for model selec-
tion and test data to assess performance of a finalised model [47,
48]. Half of studies documented two or less partitions—in these
cases, results may have represented validation or even training
performance. Where data partitions were not disjoint on per-
patient basis, data leakage may have occurred despite partitioned
model testing. These scenarios bias generalisability metrics

Fig. 6 Left: CLAIM compliance over time. Compliance was defined per
article by the proportion of applicable items satisfied. Boxplot centrelines
indicate median annual compliance. Hinges indicate first and third
quartiles. Whiskers indicate maxima and minima. Middle: CLAIM
compliance and journal H-index for each article. Right: CLAIM

compliance in clinical journals and technical journals. Journals were
categorised as either “clinical” or “technical” according to the journal
name—names containing any term related to computer science, artificial
intelligence or machine learning were assigned the “technical” category.
The remaining journals were assigned the “clinical” category
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optimistically. Some multi-centre studies partitioned data at the
patient level rather than the institutional level, missing an oppor-
tunity to evaluate inter-institution generalisability.

Evidently, CLAIM has also introduced requirements which
depart from current norms. Few studies satisfied item 12,
which requires the documentation of data anonymisation
methods, an issue which has developed with image recogni-
tion capabilities [41, 49, 50]. This requirement may have pre-
viously been relaxed for studies of publicly available data or
those which documented institutional review board approval,
as either case suggests previous certification of data gover-
nance procedures. The spirit of the CLAIM guidance is obvi-
ation of such assumptions with clear documentation, promot-
ing a culture of research transparency. In many such cases, the
burden of improved compliance is minimal, mandating only
the documentation of additional information.

Our findings concur with previous reviews of design and
reporting standards in both clinical and general-purpose AI
research. A review of studies benchmarking AI against radi-
ologists identified deficient documentation of data availabili-
ty, source code, eligibility and study setting [38]. Reviews of
TRIPOD adherence in multivariate diagnostic modelling
found deficient model assessment and data description [12,
51, 52]. Reviews of reproducibility in AI research have report-
ed insufficient documentation of data availability, source
code, protocols and study registration [43, 45, 53].Many com-
mentators have advocated for transparency in clinical AI re-
search [19, 38, 40, 42, 43, 53, 54].

We note several limitations to this systematic review. First,
as scope was limited to studies published in English, findings
were susceptible to language bias. Second, although reporting
standards were directly measurable, items relating to study
design were only measurable if reported. Consequently, de-
sign compliance may have been underestimated in poorly re-
ported studies. This is a general limitation of reviews in this
field. Third, articles were read sequentially and therefore
readers were potentially susceptible to anchoring bias. The
effect of anchoring on the trend and subgroup analyses was
minimised by randomisation of the reading order.

Conclusions

Design and reporting standards have improved in CNN re-
search for radiological cancer diagnosis, though many oppor-
tunities remain for further progress. The CLAIM guidance
sets a high standard for this developing field, consolidating
clinical and technical research requirements to enhance the
quality of evidence. Our data supports the need for integration
of CLAIM guidance into the design and reporting of CNN
studies for radiological cancer diagnosis.
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