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Abstract
Objectives To build a machine learning (ML) model to detect extraprostatic extension (EPE) of prostate cancer (PCa), based on
radiomics features extracted from prostate MRI index lesions.
Methods Consecutive MRI exams of patients undergoing radical prostatectomy for PCa were retrospectively collected from
three institutions. Axial T2-weighted and apparent diffusion coefficient map images were annotated to obtain index lesion
volumes of interest for radiomics feature extraction. Data from one institution was used for training, feature selection (using
reproducibility, variance and pairwise correlation analyses, and a correlation-based subset evaluator), and tuning of a support
vector machine (SVM) algorithm, with stratified 10-fold cross-validation. The model was tested on the two remaining institu-
tions’ data and compared with a baseline reference and expert radiologist assessment of EPE.
Results In total, 193 patients were included. From an initial dataset of 2436 features, 2287 were excluded due to either poor
stability, low variance, or high collinearity. Among the remaining, 14 features were used to train theMLmodel, which reached an
overall accuracy of 83% in the training set. In the two external test sets, the SVM achieved an accuracy of 79% and 74%
respectively, not statistically different from that of the radiologist (81–83%, p = 0.39–1) and outperforming the baseline reference
(p = 0.001–0.02).
Conclusions AMLmodel solely based on radiomics features demonstrated high accuracy for EPE detection and good generalizability
in a multicenter setting. Paired to qualitative EPE assessment, this approach could aid radiologists in this challenging task.
Key Points
• Predicting the presence of EPE in prostate cancer patients is a challenging task for radiologists.
• A support vector machine algorithm achieved high diagnostic accuracy for EPE detection, with good generalizability when
tested on multiple external datasets.
• The performance of the algorithm was not significantly different from that of an experienced radiologist.
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Abbreviations
ADC Apparent diffusion coefficient
AUC Area under the Receiver Operating Characteristics

curve
AUPRC Area under the Precision-Recall curve
DWI Diffusion-weighted images
EPE Extraprostatic extension of disease
ICC Intercorrelation coefficient
ISUP International Society of Urological Pathology
MCC Matthew’s correlation coefficient
mpMRI Multiparametric MRI
PCa Prostate cancer
P I -
RADS

Prostate Imaging and Reporting Data System

PSA Prostate-specific antigen
ROC Receiver operating characteristics
SVM Support vector machine
T2w T2-weighted

Introduction

The diagnostic pathway for prostate cancer (PCa) is rapidly
evolving, with multiparametric MRI (mpMRI) gaining an
increasingly central role in tumor detection. Indeed, it al-
lows to identify lesions worthy of targeted biopsies, which
when paired to systematic sampling leads to a more accu-
rate and clinically relevant PCa assessment [1–3].
However, the value of mpMRI could go beyond PCa de-
tection, and a great attention is presently paid to its accu-
racy in the identification of extraprostatic extension of dis-
ease (EPE) [4]. While confirmed organ-confined disease at
mpMRI could lead to more conservative surgical ap-
proaches, mpMRI suffers from a relatively low and hetero-
geneous sensitivity that currently prevents its widespread
adoption for this task [5, 6]. This could be at least in part
due to a lack of standardization in the interpretation of the
multiple EPE signs detectable at mpMRI, although inher-
ent limitations of the technique cannot be excluded. In this
light, strategies to increase the performance of mpMRI for
PCa local staging have been recently investigated and ded-
icated scoring systems for the reporting of EPE on mpMRI
have been released, with the one named EPE grade pro-
posed by Mehralivand et al that appears to be the most
promising and awaiting validation [7–10]. Among the sev-
eral mpMRI features suspicious for EPE, this scoring sys-
tem focuses on tumor capsular contact length, capsular
bulge, and/or irregularity and frank capsular breach [9].
However, there are other recognized mpMRI signs sug-
gested by the latest release of Prostate Imaging and
Reporting Data System (PI-RADS v2.1) that radiologists
should consider in their decision making regarding EPE
prediction, such as asymmetry of the neurovascular

bundles and obliteration of the rectoprostatic angle [11].
Furthermore, the optimal tumor capsular contact threshold
for EPE prediction still needs to be defined with EPE grade
and PI-RADS v2.1 suggesting different cut-offs [9,
11–13]. Concurrently, prostate mpMRI has been one of
the many imaging modalities’ object of study in the field
of radiomics, which is a multi-step process allowing the
extraction of quantitative features from medical images
that can be used to build decision support models
[14–16]. Exploratory radiomics studies have been per-
formed to assess the feasibility of applying radiomics, in
combination with machine learning (ML) or not, for EPE
prediction on mpMRI images, with encouraging results
[17–21]. Nevertheless, their findings were limited in terms
of generalizability due to the adoption of single-center
datasets. With the present work, we aimed to evaluate the
performance of a ML algorithm powered by radiomics data
alone in the identification of EPE and compare its diagnos-
tic accuracy to that of expert radiologists, using two inde-
pendent external datasets for validation.

Materials and methods

The respective Local Institutional Review Board for each
Institution approved this retrospective study and waived the
need for written informed consent.

Patient population

This study was conducted enrolling patients from Molinette
Hospital, Turin (site 1); Mauriziano Umberto I Hospital, Turin
(site 2); and Federico II Hospital, Naples (site 3), Italy. We
retrospectively reviewed consecutive patients who underwent
prostate MRI at each site for PCa suspicion between
November 2015 and October 2018. Inclusion criteria were
the following: presence of an index lesion (PI-RADS score
≥ 3, defined according to PI-RADS guidelines, assigned by
the original reader) with bioptic confirmation of PCa presence
(defined as Gleason score ≥ 3 + 3) in the index lesion through
targeted biopsy within 3 months of MRI; treatment with RP
within 3 months of biopsy. Only patients with significant ar-
tifacts at MRI or incomplete exams (i.e., interrupted for claus-
trophobia) were excluded from subsequent analyses.
Pathology reports were analyzed to assess if EPE was identi-
fied on RP specimens at the location of the index lesion, based
on the International Society of Urological Pathology consen-
sus conference criteria [22]. Patients from site 1 were used to
train and tune the ML model while those from sites 2 and 3
were employed as distinct external test sets to validate its
performance.
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MRI acquisition

MRI examinations at sites 1 and 2 were performed on 1.5-T
scanners (Achieva and Ingenia, Philips Medical Systems). A
3-T scanner was employed in site 3 (Magnetom Trio, Siemens
Medical Solutions), using surface phase-arrayed and integrated
spine phased-array coils. None of the sites employed
endorectal coils. All acquisition protocols included axial
T2-weighted (T2w) and diffusion-weighted images (DWI),
with corresponding apparent diffusion coefficient maps
(ADC). Further details are available in the supplementary
materials.

Radiomics analysis

All axial T2w and ADC images from included patients were
manually anonymized and converted to the NIfTI format prior
to analysis, using dcm2niix [23]. Index lesion location was
provided to a genitourinary radiologist (> 5 years of experi-
ence), who performed a manual segmentation of the entire
index lesion volume on both T2w and ADC images (Fig. 1).
To assess the feature reproducibility in relation to manual
segmentation, two other readers (a radiologist and a radiology
resident) independently annotated a subset of 30 randomly
selected patients from the site 1 training set. The supplemen-
tary materials contain further details on the additional annota-
tions. These segmentations were used for intercorrelation

coefficient (ICC) calculation in one of the feature selection
steps as detailed below. Dedicated software was used for all
segmentations (ITK-SNAP, v3.8) [24].

PyRadiomics (v3.0) was employed for feature extraction
[25]. Preprocessing was performed with voxel resampling to
1 × 1 × 1 mm, whole-image gray level z-score normalization,
scaling by a 100 factor and array shift (by 300), followed by
discretization with a fixed bin width (= 5). Both original and
filtered images were used to calculate 3D shape, first order, and
texture features. In detail, the Laplacian of Gaussian filtering
with multiple sigma values (= 1, 2, 3, 4, 5) and wavelet decom-
position with all combinations of high- and low-pass filters in
the x-, y-, and z-axes were employed to highlight textural char-
acteristics of the index lesion. The supplementary materials
contain the complete settings file used for the extraction.

Feature preprocessing and selection

The scikit-learn Python3 package and the Weka data mining
software were used for the subsequent steps of the analysis
(v3.8) [26, 27]. The feature selection process was conducted
exclusively on the site 1 training dataset, to avoid any infor-
mation leak which could bias the final model. A normalization
scaler (range = 0–1) was fit on the training data and used to
transform all 3 datasets.

The first step of feature selection consisted in the exclusion
of non-reproducible features through ICC analysis of the

Fig. 1 Prostate MR images (axial
T2-weighted on the left and ADC
map on the right) from a 76-year-
old patient with a PI-RADS 5
transition zone lesion involving
the anterior fibromuscular stroma
(Gleason score 4+3 and signs of
extraprostatic extension of disease
at prostatectomy). The slices in
which the lesion was more con-
spicuous are shown respectively
before (a and b) and after (c and
d) after manual segmentation

7577Eur Radiol (2021) 31:7575–7583



results obtained by the three independent readers. Radiomics
features were extracted, using the same settings, from their
respective annotation sets (n = 30). The resulting datasets were
used to calculate the ICC value of each parameter. A two-way
random effect, single rater, absolute agreement ICC model
was employed, and a value ≥ 0.75 was considered “good
reproducibility,” the minimum requirement for inclusion in
the analysis [28]. Subsequently, a variance filter (threshold =
0.1) was applied to each feature to remove parameters with
low information content. Using pairwise correlation, features
with high collinearity (threshold > 0.8) were also excluded
from the analysis. Finally, the Weka data mining platform
(v3.9) correlation-based feature subset evaluator was used to
identify the best feature subset among the remaining.

Machine learning

A support vector machine (SVM) algorithm was employed to
develop a predictive model for EPE. Training set classes were
balanced using the Synthetic Minority Oversampling
Technique [29]. A stratified 10-fold cross-validation was used
for model tuning prior to final training on the entire site 1
dataset. The final model performance was then independently
tested on 2 external datasets (sites 2 and 3) calculating confu-
sion matrix–derived accuracy metrics and receiver operating
characteristics (ROC) curves. Brier score and calibration
curves were also obtained for each test set to evaluate predic-
tion and calibration loss. For each center included in the study,
an expert radiologist (all > 5 years of experience in prostate
MRI) performed an assessment based on the entire prostate
mpMRI exam and each case was classified as positive or
negative for EPE using previously established signs from the
PI-RADSv2.1 guidelines [30]. No PI-RADS scores were
assigned during these readings since PI-RADS scores were
not included in the ML analysis. These readings were used
to provide a comparison for the SVM’s performance.

An overview of the complete analysis pipeline is presented
in Fig. 2.

Statistical analysis

Continuous variables were tested for normality using the
Shapiro-Wilk test and are presented as mean and standard de-
viation or median and interquartile range accordingly. Ordinal
data are presented as value counts, categorical data as propor-
tions. The Kruskal-Wallis rank sum test was used to assess
differences in clinical data among the datasets, with a Dunn test
post hoc analysis if necessary. A Fisher exact test was used to
compare the distribution of EPE cases between the 3 sites.
Model accuracy (n correct predictions/total cases) in each test
set was also comparedwith a baseline reference (no information
rate, i.e., the class mode) using a binomial test and an expert
radiologist’s predictions using McNemar’s tests. A p < 0.05
was considered statistically significant, with correction for mul-
tiple comparisons when required. The statistical analysis was
performed using the R software environment [31].

Results

In total, 193 patients met the selection criteria: 104 from site 1,
43 from site 2, and 46 from Site 3. Their clinical and demo-
graphic data are reported in Table 1. No significant differences
were found among the three populations, with the exception
of PI-RADS scores of Sites 2 and 3 (p = 0.008). From their
exams, 1218 radiomics features were extracted from T2w and
ADC images (complete dataset = 2436 features). Of these,
55% (n = 675/1218) from T2w images and 73% (n = 892/
1218) from ADC maps resulted not reproducible. Among the
remaining 869 parameters, 21 (2%) presented low variance
and were also removed from the training dataset. The inter-
correlation analysis led to the exclusion of an additional 699/

Fig. 2 Image analysis and
machine learning pipeline
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848 features (82%) and the correlation-based subset evaluator
identified 14 features to be employed in training the model,
listed in the supplementary materials (Figs. 3 and 4).

The final model was an SVM classifier with a radial basis
function kernel, C = 3 and gamma = 0.01; the trained model file
is available in the supplementary materials. In the training set, an
overall accuracy (correct/overall instances) of 83%was obtained,
with a 0.83 area under the ROC curve (AUC). In the external test
sets, the SVM reached an accuracy of 79% and AUC of 0.80 in
the data from site 2 and 74% and 0.73 in site 3 (Fig. 5). The Brier
score was 0.20 and 0.21 for sites 2 and 3 data, respectively (Fig.
6). In both test sets, ML outperformed the baseline reference (p =
0.001 in site 2, p = 0.02 in site 3). Confusion matrices and

complete accuracymetrics are reported in Tables 2 and 3, respec-
tively. The radiologist achieved an accuracy of 81% and 83%
respectively in sites 2 and 3. Both did not reach statistical signif-
icance when compared to ML (p = 1 for site 2 and p = 0.39 for
site 3) (Table 4). The confusion matrices for the radiologist’s
assessment are presented in the supplementary materials.

Discussion

Our study demonstrates the potential of radiomics-powered
ML for the detection of EPE in PCa, which in turn could
improve patient management and treatment choice. There

Table 1 Patient population clinical and demographic characteristics. Continuous data are presented as a median and interquartile range, ordinal data as
value counts, and categorical data as proportions

Site 1 Site 2 Site 3

Age (years) 66 (60–72) 67 (60–69) 67 (63–71) p = 0.32

PSA (ng/ml) 7.1 (5.12–10.00) 6.93 (5.51–9.78) 8.00 (5.35-9.76) p = 0.89

ISUP grade§ 1 = 1 1 = 1 1 = 5 p = 0.21
2 = 40 2 = 21 2 = 15

3 = 43 3 = 16 3 = 8

4 = 17 4 = 4 4 = 14

5 = 3 5 = 1 5 = 5

PI-RADS score# 3 = 3 3 = 7 3 = 3 p = 0.02*
4 = 68 4 = 24 4 = 19

5 = 33 5 = 12 5 = 25

EPE (pathologically proven) 37/104 19/43 20/47 p = 0.55

PSA, prostate-specific antigen; ISUP, International Society of Urological Pathology; PI-RADS, Prostate Imaging and Reporting Data System; EPE,
extraprostatic extension of disease

*Post hoc analysis showed a significant difference exclusively between sites 2 and 3 (p = 0.008)
§ As originally assigned by the pathologist on the radical prostatectomy specimen
#Obtained from the original radiology report

Fig. 3 Hierarchically clustered heatmap of feature pairwise correlation before (a) and after (b) removal of highly colinear ones
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have been several prior investigations that have focused on
this task using a similar approach [17–21]. In our previous,
single-center exploratory study of radiomics and ML for EPE
detection, the accuracy achieved was similar (82%), although
only obtained through cross-validation in a single dataset [21].
In a prior investigation, Krishna et al had identified ADC map
first-order features, in particular entropy, as promising EPE
biomarkers (AUC 0.76) [19].More recently, Ma et al obtained
an 83% accuracy in a single institution 3T dataset, using 67
patients for testing the model [20]. Interestingly, in their study,
they reported that the radiomics approach significantly
outperformed the radiologist in EPE assessment, but exclu-
sively in terms of sensitivity and not specificity or overall
accuracy. Losnegard et al analyzed data acquired on a 1.5-T
scanner using an endorectal coil, and their random forest mod-
el achieved an AUC of 0.74 [17]. This was again very similar
to that of the radiologist (0.75) on the same data. Finally, Xu
et al were able to obtain an 82% accuracy on their test set,
using data acquired on a 3-T scanner [18]. Our results in the
training dataset are essentially in line with these previous

studies (83% accuracy; however, none of these has performed
external testing.

In the present investigation, we decided not to employ dy-
namic contrast-enhanced images (DCE) to obtain radiomics
data on which to build our predictive model. This choice was
dictated by several considerations, mainly the concern to en-
sure the widest possible applicability and generalizability of
the resulting model as well as reducing sources of variability
in our data as much as reasonably possible. Regarding the
first, biparametric prostate MRI protocols without the use of
DCE are becoming more and more common, also to accom-
modate the increasing demand forMRI exams due to its grow-
ing role in current guidelines [5, 32]. Protocols without DCE
have also shown a similar performance to full mpMRI for EPE
detection [33]. Finally, DCE has a high temporal resolution,
with the degree and speed of lesion enhancement influenced
both by technical and physiological factors, together with le-
sion nature. Therefore, it would be challenging to exclude all
sources of bias from DCE radiomics features, potentially
adding more noise to the data. Therefore, in the interest of
keeping the model as simple as possible and employable in

Fig. 5 Receiver operating characteristic curves of the support vector
machine model in the train data and both test sets

Fig. 4 Plot depicting parameter number (y-axis) reduction during the
various feature selection steps (x-axis) Fig. 6 Calibration curves of the support vector machinemodel in the train

data and both test sets

Table 2 Confusion matrices for the SVM model

Sites Ground truth

No EPE EPE

Site 2

SVM No EPE 18 3

EPE 6 16

Site 3

SVM No EPE 21 6

EPE 6 13

SVM, support vector machine; EPE, extraprostatic extension of disease
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most clinical settings, we decided to only focus on T2w and
ADC features for EPE predictive modeling.

As reproducibility of results represents one of the main
limitations of both radiomics andML, we chose a multicentric
design to have the possibility to directly assess this issue by
testing our model’s results generalizability [34, 35]. It should
also be noted that our external test sets were constituted by
exams acquired on different scanners with varying field
strength compared to the training data. Our intention was to
offer a better representation of real-world clinical practice and
a better estimation of our model’s performance. The results
are very promising, with an accuracy of 83% in the training
and 79% and 74% in the test sets and a performance compa-
rable to that of an expert radiologist in both cases (p = 1.00 and
0.39, respectively). It can be assumed that image preprocess-
ing paired with robust feature selection, including feature sta-
bility testing, has reduced overfitting on noisy data. However,
it should be noted that performance on the site 3 test set was
still somewhat lower (74%) than on site 2 (79%). A bias due to

case sampling cannot be completely excluded; i.e., more chal-
lenging cases were randomly present in one test set compared
to the other, and this could be supported by the comparison
with the radiologist’s performance on the same data. On the
other hand, we wish to highlight that site 3 had the greatest
difference in terms of MRI scanner from site 1, as it had both
another vendor and higher field strength. Both these factors
could also have contributed in varying degrees to the differ-
ence in model performance. Overall, the accuracy on the site 3
external test set can still be considered satisfactory, especially
taking into account that it was still not significantly different
from that of an expert radiologist (p = 0.39).

It is interesting to note that the AUCs obtained in the external
test sets by our model (0.73–0.80) are not far from those report-
ed for experienced radiologists interpreting MR images using
the EPE grade (0.77–0.81) [9, 10]. The EPE grade has shown a
substantial inter- and intra-reader agreement and appears rela-
tively simple to implement being based on relatively few im-
aging features [10]. However, it is still awaiting prospective
validation and requires a certain degree of expertise to be used.
It also does not solve the current limitations of mpMRI for EPE
detection [36]. Our model exclusively requires lesion segmen-
tation (a step that could also be automated) and would be easy
to implement. It can be hypothesized that including our
radiomics signature in the EPE grade scoring system might
possibly further increase its diagnostic accuracy and reliability
while supporting less experienced readers in the EPE assess-
ment. On a similar note, future investigations could assess
whether the inclusion of clinical and laboratory data, such as
patient age, PSA/PSA-derived biomarkers, or biopsy Gleason
score, may further improve our results.

Our study has some limitations that should be acknowl-
edged. Its design was retrospective, which did not allow us
to investigate more possible sources of limited radiomics

Table 3 Accuracy metrics for the
SVM model for the training (site
1) and testing (site 2 and site 3)
datasets

Sensitivity Positive
predictive value

F-
measure

MCC AUC AUPRC

Site 1

Absence of EPE 0.78 0.87 0.82 0.66 0.83 0.79

Presence of EPE 0.88 0.80 0.84 0.66 0.83 0.76

Weighted Average 0.83 0.83 0.83 0.66 0.83 0.77

Site 2

Absence of EPE 0.75 0.86 0.80 0.59 0.80 0.78

Presence of EPE 0.84 0.73 0.78 0.59 0.80 0.68

Weighted Average 0.79 0.80 0.79 0.59 0.80 0.74

Site 3

Absence of EPE 0.78 0.78 0.78 0.46 0.73 0.74

Presence of EPE 0.68 0.68 0.68 0.46 0.73 0.60

Weighted Average 0.74 0.74 0.74 0.46 0.73 0.68

EPE, extraprostatic extension of disease; MCC, Matthew’s correlation coefficient; AUC, area under the receiver
operating characteristics curve; AUPRC, area under the precision-recall curve

Table 4 Comparison of the SVM model and radiologist performances
for the McNemar test

Sites SVM

Error Correct

Site 2

Radiologist Error 4 4

Correct 5 30

Site 3

Radiologist Error 4 4

Correct 8 30

SVM, support vector machine
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feature reproducibility (e.g., scanner differences) in addition
to manual segmentation. However, we believe a retrospective
multicenter study is a necessary step after single-center expe-
riences and prior to prospective clinical trials. We had an
experienced radiologist from each study center assess the cen-
ter’s exams, which could determine some bias due to differ-
ences in performance. However, this choice was in our esti-
mation better than having a single radiologist read exams ac-
quired onMRI scanners with which he/she may not have been
familiar, which could also have negatively influenced the
outcome.

In conclusion, the combination of radiomics and ML has
confirmed their promising performance for PCa EPE detec-
tion even in a multicenter setting. This tool could aid in im-
proving patient management and be a valid support for radi-
ologists in PCa staging. The next step in its development
should be a prospective clinical trial.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00330-021-07856-3.
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