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Abstract
Objectives To develop a convolutional neural network system to jointly segment and classify a hepatic lesion selected by user
clicks in ultrasound images.
Methods In total, 4309 anonymized ultrasound images of 3873 patients with hepatic cyst (n = 1214), hemangioma (n = 1220),
metastasis (n = 1001), or hepatocellular carcinoma (HCC) (n = 874) were collected and annotated. The images were divided into
3909 training and 400 test images. Our network is composed of one shared encoder and two inference branches used for
segmentation and classification and takes the concatenation of an input image and two Euclidean distance maps of foreground
and background clicks provided by a user as input. The performance of hepatic lesion segmentation was evaluated based on the
Jaccard index (JI), and the performance of classification was based on accuracy, sensitivity, specificity, and the area under the
receiver operating characteristic curve (AUROC).
Results We achieved performance improvements by jointly conducting segmentation and classification. In the segmentation only
system, the mean JI was 68.5%. In the classification only system, the accuracy of classifying four types of hepatic lesions was
79.8%. The mean JI and classification accuracy were 68.5% and 82.2%, respectively, for the proposed joint system. The optimal
sensitivity and specificity and the AUROC of classifying benign and malignant hepatic lesions of the joint system were 95.0%,
86.0%, and 0.970, respectively. The respective sensitivity, specificity, and the AUROC for classifying four hepatic lesions of the
joint system were 86.7%, 89.7%, and 0.947.
Conclusions The proposed joint system exhibited fair performance compared to segmentation only and classification only systems.
Key Points
• The joint segmentation and classification system using deep learning accurately segmented and classified hepatic lesions
selected by user clicks in US examination.

• The joint segmentation and classification system for hepatic lesions in US images exhibited higher performance than segmen-
tation only and classification only systems.

• The joint segmentation and classification system could assist radiologists with minimal experience in US imaging by charac-
terizing hepatic lesions.
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Abbreviations
AUROC Area under the receiver operating characteristic

curve
CNN Convolutional neural network
FCN Fully convolutional network
HCC Hepatocellular carcinoma
JI Jaccard index
ROI Region-of-interest
US Ultrasound

Introduction

Ultrasound (US) is a widespread first-line imaging mo-
dality used in the diagnosis of liver diseases given its
low cost, nonionizing characteristics, portable features,
and ability for real-time image acquisition and display.
Many focal liver lesions are detected incidentally during
the first evaluation or follow-up for a primary neoplasm
or during surveillance for chronic liver diseases and
cirrhosis; however, characterizing the incidental focal
hepatic lesions by US imaging is challenging and occa-
sionally shows low sensitivity in the detection of solid
lesions due to low contrast between the lesion and the
surrounding liver. In addition, large interobserver vari-
ability is noted based on the level of operator experi-
ence. The confusion created by overlapping US features
of hepatic focal lesions is also a factor that limits inter-
pretation [1–3]. To overcome these limitations, many
computer-aided systems for hepatic lesion segmentation
and classification, including deep learning, have been
developed [4].

Fully automatic segmentation of existing tumors in
US images has been considered difficult due to US
imaging limitations, such as speckle noise, low contrast
between tumors and surrounding tissues, and varied
morphology and echogenicity according to scan direc-
tion [5]. In 2016, Xu et al [6] developed a semiauto-
matic segmentation system based on deep learning,
which requires user clicks to segment a specific object
in a given image. Despite its original target domain of
natural images, this system is also adaptable to clinical
images. Deep learning–based systems for lesion classifi-
cation in US images have also been thoroughly investi-
gated [7–12]. Most of the previous approaches take the
region-of-interest (ROI), which is manually drawn by a
radiologist, as input; however, manual segmentation is
tedious and time-consuming, which limits usability in
clinical practice [4, 5]. A possible solution involves
cascading the segmentation and classification systems,

where an ROI automatically extracted by the segmenta-
tion system is fed into the classification system.
Although the segmentation and classification tasks can
be performed separately, they may be related to each
other and thus produce mutual benefits when performed
simultaneously. Specifically, the segmentation could
provide an ROI for classification, and the classification
could provide any cues, such as desired shapes based
on the lesion types, for segmentation. Therefore, the
purpose of this study is to develop a convolutional neu-
ral network (CNN) system to jointly segment and clas-
sify a hepatic lesion selected by user clicks in US
examination.

Materials and methods

This study was performed with approval from our Institutional
Review Board. The requirement for informed consent was
waived given the retrospective nature of the data analysis
and the use of fully anonymized US images.

Dataset development

For developing the dataset, we used 4309 US images with focal
hepatic lesions from 3873 patients (1993 men, 1880 women;
mean age, 61.0 years ± 11.6; age range, 14–94 years). US
examinations were performed between January 2004 and
February 2018 at a single institution. In terms of the lesion types
contained in the images, 1214 images with hepatic cysts (mean
size 16.8 ± 14.9 mm), 1220 images with hemangioma (mean
size 17.4 ± 14.5 mm), 1001 images with metastasis (mean size
26.2 ± 15.7 mm), and 874 images with HCC (mean size 23.3 ±
14.7 mm) were included in this study. US data of benign le-
sions, such as hepatic cysts and hemangiomas, were obtained
from patients who were referred to the Department of
Radiology at our institution for screening for CLD or other
diffuse liver diseases. These cysts and hemangiomas were di-
agnosed by typical findings in follow-up CT and MRI images.
US data of malignant lesions, including metastasis and HCC,
were obtained from patients who underwent liver resection or
percutaneous liver biopsy for focal hepatic lesions performed
within 6 months after US examination. All US images of the
focal hepatic lesions regardless of the scanning plane (such as
subcostal or intercoastal scan) were collected as grayscale im-
ages on the picture archiving and communication system. One
representative image with maximum size as measured in the
longest dimension of each focal hepatic lesion was used.
Manual segmentation of the hepatic lesions was performed by
two radiologists (J.Y.L. with 24 years of clinical experience in
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abdominal US, and H.W.R. with 5 years of clinical experience
in abdominal US). These images were used as the reference
standard for the lesion segmentation task. For each lesion type,
the images were sorted according to the lesion area and divided
into 10 groups of equal size (Appendix 1). To include lesions of
various sizes in the test set, 10 images were randomly selected
from each group for every lesion type, which resulted in 400
images in total. The training set was composed of the remaining
3909 images (Fig. 1). As a constraint, the images of one patient
could not be in different sets.

US examinations

US examinations were performed using Siemens Acuson
Sequoia, S2000, and S3000 (Siemens AG); Samsung RS
80A ultrasound system (Samsung Medison); LOGIQ E9 ul-
trasound system (GE Healthcare); and iU22 or EPIQ (Philips

Medical systems). The patients underwent US examination
after fasting for at least 6 h. Conventional B-mode sonography
using a convex probe was performed.

Developing a joint segmentation and classification
system

We adapted a semiautomatic segmentation method proposed
in [6] for hepatic lesion segmentation. The method takes the
concatenation of an input image and two Euclidean distance
maps of foreground and background user clicks as inputs and
a foreground probability map as shown in Fig. 2a as the out-
put. Therefore, we needed to obtain foreground and back-
ground clicks for each image to train the system. Because
obtaining these clicks from real users is difficult, we instead
used simulated user inputs that are automatically generated by
following several rules. For foreground clicks, we randomly
selected 1–5 pixels within a lesion (Fig. 3a). For background
clicks, 0–10 pixels are randomly selected from the back-
ground pixels which are within a certain distance range to
the lesion (Fig. 3b). Zero pixels are recorded when a user does
not provide any background clicks. Using this method, we
generated 15 click sequences for each foreground and back-
ground per image. Euclidean distance maps, which represent
the minimumEuclidean distance of each pixel to a given set of
user clicks, are computed and used as the actual input for the
network. An image filled with 255 pixels is used as the back-
ground Euclidean distance map if no background click is
provided.

Fig. 2 Network architecture for the proposed method. a The
segmentation only system, which takes a three-channel image composed
of a grayscale input image and two Euclidean distance maps of fore-
ground and background clicks provided by a user as input. b The classi-
fication only system, which takes a local image patch surrounding a

lesion of interest as input. c The joint segmentation and classification
system, which takes the same input of the segmentation system and pro-
duces segmentation and classification predictions simultaneously. Conv,
convolution layer; BN, batch normalization; ReLU, rectified linear unit;
FC, fully connected layer; Concat, concatenation

Fig. 1 Study design. Note. HCC, hepatocellular carcinoma
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We used a network architecture (Fig. 2a) adapted from that
reported in [13] instead of the fully convolutional networks
(FCNs) [14] that were originally used in [6]. The architecture
uses bilinear interpolations instead of deconvolution layers for
upsampling and has a smaller number of learnable parameters
compared to the FCNs, which implies that our network is less
prone to overfitting.We added batch normalization layers [15]
to our network to further stabilize the network training. The
proposed joint segmentation and classification system is im-
plemented by augmenting the segmentation network with an
additional classification branch (Fig. 2c). The classification
branch, which is composed of several fully connected layers,
predicts the lesion type selected by user clicks from the fea-
tures of the shared convolutional layers. We also implemented
the classification only system (Fig. 2b) to compare the perfor-
mance to that of the joint system to demonstrate any benefit.
The system is based on the VGG-16 network [16] with batch
normalization [15] and has a structure when the segmentation
branch is eliminated from the joint system. We used ideal
local image patches centered on a lesion, which are twice
the size of the lesion, during training and testing. We used
the pixelwise focal loss and α-balanced focal loss for training
the segmentation and classification systems, respectively [17].
The sum of two losses was used for the joint system. To train
the joint network, we used a stochastic gradient descent opti-
mizer with 0.9 momentum and a weight decay of 5 × 10−4.
During the training of 150,000 iterations, the learning rates of
5 × 10−4 and 5 × 10−5 were used for the first and second
halves, respectively. For data augmentation, we used horizon-
tal image flipping, image scaling, and random brightness/
contrast adjustment. The same hyperparameters were used
when training the segmentation only network. For training

the classification only network, the learning rates of 10−3

and 10−4 were used for the first and second halves of the
whole iterations of 40,000, respectively. For better generali-
zation, the early convolutional layers of all the networks were
initialized using the other network trained with breast US im-
ages. Because the trained joint system operates with point-
type user input, such as clicks, we could have diverse modes
in testing. For example, a user scribble can be translated into a
set of clicks that could be used for testing. In this study, we
used two clinically useful test modes, which are separately
based on one click and two clicks. In the one-click mode, a
user selects only one pixel within a lesion. On the other hand,
a user draws a bounding box surrounding a lesion by placing
the top-left and bottom-right corners of it in the two-click
mode (Fig. 3c). To test the two-click mode, we again generate
five different bounding boxes for each test image by simula-
tion. The top-left and bottom-right corners are sampled with a
certain degree of positional error from the tight box of a lesion.
The box is enlarged a little to ensure that it includes the lesion.
Finally, the bounding box is transformed to five clicks, includ-
ing one foreground click at the center of it and four back-
ground clicks at the corners, when it is used (Fig. 3d).

We used TensorFlow [18] to implement all the networks.
The experiments were performed in an environment with Intel
Core i7-7700K at 4.2-GHz CPU, 32-GB RAM, and Nvidia
GeForce GTX 1080Ti (11 GB VRAM).

Statistical analysis

The segmentation results of the segmentation only system and
the joint segmentation and classification system were evaluat-
ed against the reference standard and assessed using the

Fig. 3 Schematic description of
user inputs. The dark gray region
represents a lesion of interest, and
the shaded region is a set of
background pixels that are within
a certain distance range to the
lesion. a An example of
foreground user clicks (blue dots).
bAn example of background user
clicks (red crosses). cAn example
of bounding box user input (green
rectangle), which can be used for
testing. d Transformation from
the bounding box (c) to user
clicks, including one foreground
and four background clicks
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Jaccard index (JI) per image. The JI is calculated as the area of
the intersection divided by the area of the union between the
reference standard and segmentation result [19, 20]. While we
present the performance of the two-click mode as our main
result, we also provide the results of using a single click for
comparison between the two modes. The classification perfor-
mances of the classification only system and joint systemwere
evaluated using accuracy and the area under the receiver op-
erating characteristic curve (AUC). In terms of the classifica-
tion, we conducted two experiments to predict benignity and
malignancy and categorize the four types of hepatic lesions
(hepatic cyst, hemangioma, metastasis, and HCC). We used
five different user inputs for each test image to consider the
different styles of user input.

Results

Segmentation performance

We achieved a mean JI of 68.5% for the segmentation only
system in the two-click mode. Compared with this, the joint
segmentation and classification system achieved a mean JI of
70.0% when trained with the binary classification task (p <
0.001) and exhibited a comparable result (68.5%) when
trained with the four-class classification task (p = 0.95)
(Table 1). The comparable performance between the segmen-
tation only system and the joint system was observed regard-
less of the size and type of hepatic lesions (Appendix 2).
Nevertheless, the segmentation results of the joint system
showed a tendency to better differentiate the lesion boundaries
compared to the segmentation only system (Fig. 4). The mean
JI of the joint systemmarkedly decreased to 37.4% in the one-
click mode. Although the system still produced accurate seg-
mentations for lesions with clear margins and high contrast, it
generated ambiguous and inaccurate boundaries for lesions
with unclear margins, large size, and heterogeneous
echogenicity (Fig. 5).

Classification performance

The classification accuracies of the classification only system
were 89.8% and 79.8% for the binary and four-class

classification tasks, respectively. Compared with this, the joint
system achieved 90.4% (p = 0.48) and 82.2% (p = 0.01) for
the respective tasks (Table 2). The joint system performed
favorably against the classification only system across most
of the lesion sizes. In terms of the lesion type, the largest
increase of accuracy was observed in metastatic lesions
(Appendix 3). In terms of ROC analysis, the AUC of the joint
system for the binary class classification task was significantly
higher than that of the classification only system (0.970,
0.944, p = 0.020). The AUC of the joint system for the four-
class classification task was also significantly higher than that
of the classification only system (0.947, 0.926, p = 0.040). For
the binary classification task, the optimal sensitivity and spec-
ificity on the ROC curve of the joint system obtained by cal-
culating Youden’s index [21] were 95.0% and 86.0%, respec-
tively. For the four-class classification, the system yielded a
sensitivity of 86.7% and a specificity of 89.7% (Fig. 6,
Table 2). The confusion matrix of the four-class classification
using the joint system showed that the accuracy for a cyst is
the highest, whereas that of HCC is the lowest among all the
lesion types (Table 3).

The mean execution time per image of the joint systemwas
73 ms with a NVIDIA GeForce GTX 1080Ti GPU card. The
respective execution times for the segmentation only system
and the classification only system were 73 ms and 10 ms. We
note that an image patch should be cropped from a segmenta-
tion result before feeding into the classification system, which
requires additional processing time, but is not required for the
joint system.

Discussion

We proposed a joint segmentation and classification system
for hepatic lesions on US images based on user clicks. The
system exhibits satisfactory performance in terms of segmen-
tation (mean JI, 70.0% when trained with the binary classifi-
cation and 68.5% when trained with the four-class classifica-
tion) and classification (accuracy, 90.4% for the binary clas-
sification and 82.2% for the four-class classification). We ex-
pected that performing those two tasks jointly would improve
the performance of each task compared to solving each task
separately. While we decreased the execution time by

Table 1 Segmentation performance of the proposed systems

Systems Training classification task Segmentation (mean JI, %) p

Segmentation only - 68.5 ± 10.3

Joint segmentation and classification Benign/malignant 70.0 ± 10.9 < 0.001

Cyst/hemangioma/metastasis/HCC 68.5 ± 12.2 0.95

Two-click user inputs were used for the segmentation only system and the joint system

Note. JI, Jaccard index; HCC, hepatocellular carcinoma
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combining the systems of each task, we also improved the
performance for each task.

Hepatic tumor segmentation has long been an important
topic, especially in the context of deep learning. Gruber et al
developed a sequential network for liver and tumor segmen-
tation in CT images, and a mean JI of 79.2% was reported for
tumor segmentation [22]. Vorontsov et al reported per-lesion
Dice similarity coefficients of 0.62 – 0.78 for segmentation of
colorectal liver metastasis in CT images using a user-
correction method. The Dice similarity coefficients were
0.14 – 0.68 without user correction [23]. Compared to the
previous studies using CT images, our proposed system ex-
hibited reasonable segmentation performance in US images
(mean JI of 68.5 – 70.0%). Interestingly, while the method
in [23] showed inaccurate segmentation for small lesions, the
proposed system showed reasonable segmentation quality

even for small lesions. This finding might be due to inherent
differences between US and CT. In this study, we used two
kinds of simulated user input, which were one-click and two-
click mode. Two-click mode showed better segmentation per-
formance (mean JI of 68.5%) compared with one-click mode
(mean JI of 37.4%), especially for lesions with unclear mar-
gins, large size, and heterogeneous echogenicity. Considering
the role of US in screening for malignancy such as HCC or
metastasis, often demonstrating those features, two-click
mode seems to be more suitable for clinical practice.

Most previous studies on hepatic tumor segmentation in
US images were based on semiautomatic approaches due to
the difficulty arising from speckles, shadows, and missing
boundaries of US data [5]. Cvancarova et al used the active
contour model or snakes to segment hepatic lesions in US
images [24, 25]. In this model, segmentation is performed

Fig. 4 Examples of hepatic lesion segmentation using two clicks. Left: manual segmentation by a radiologist. Middle: result of the segmentation only
system. Right: result of the joint segmentation and classification system. a–c cyst, d–f hemangioma, g–i metastasis, j–l hepatocellular carcinoma
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by transforming a snake, which is given by a user, to minimize
the energy. When the energy is minimized, balance is
achieved between the tension and rigidity of the snake and
the degree of fitting to object boundaries. Egger et al proposed
a graph-based semiautomatic approach, where the graph is
constructed on a circular template placed by a user [26]. In
this study, we adapted the semiautomatic segmentation meth-
od of [6] for US images, which requires a few user clicks. We
used simulated user inputs that reflect different styles of real

user input. Learning the user input together with an image
enables the network to understand users’ intentions. Because
the proposed method performs the segmentation by a trained
end-to-end network and does not require complex optimiza-
tion procedures, it works faster than the previous methods.
While the execution times of the previous studies were a few
seconds [25, 26], the mean execution time of our system was
less than 0.1 s.

Fig. 5 Examples of segmentation results of the joint segmentation and classification system using one or two clicks. Left: manual segmentation by a
radiologist.Middle: result using one click. Right: result using two clicks (bounding box). a–c cyst, d–f HCC

Table 2 Classification performance of the proposed systems

Classification
task

Benign/malignant Cyst/hemangioma/metastasis/HCC

Classification only Joint segmentation and
classification

p Classification only Joint segmentation and
classification

p

AUROC 0.944 (0.919, 0.964) 0.970 (0.956, 0.982) 0.020 0.926 (0.905, 0.943) 0.947 (0.929, 0.963) 0.040

Sensitivity (%) 91.5 (87.0, 95.5) 95.0 (86.9, 98.1) 0.008 82.3 (79.7, 89.2) 86.7 (82.8, 91.4) < 0.001

Specificity (%) 89.0 (84.5, 93.5) 86.0 (81.7, 94.1) 0.029 89.7 (83.0, 92.3) 89.7 (85.1, 93.3) 0.27

Accuracy (%) 89.8 (86.8, 92.8) 90.4 (87.6, 93.0) 0.48 79.8 (75.8, 83.5) 82.2 (78.7, 85.9) 0.01

Two-click user inputs were used

Note. Data are 95% confidence interval in parentheses. HCC, hepatocellular carcinoma; AUROC, area under the receiver operating characteristic curve
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Although US is a widely used modality for screening
hepatic lesions, it has limitations in terms of diagnostic
accuracy of lesions due to its operator-dependent nature,
and overlapping sonographic findings of solid hepatic le-
sions [27]. In clinical practice, US is considered a first-
line modality that needs further examinations such as CT
or MRI [28]. Human performance of differentiating

benign and malignant focal hepatic lesions using only
B-mode US images was reported to have high sensitivity
(100%), but low specificity (18.9–30.2%) and AUC
(0.665–0.706) [29]. Therefore, many studies have been
conducted for hepatic lesion classification using deep
learning. The system developed by Schmauch et al [30]
reported a mean AUC of 0.916 in characterizing five

Table 3 Confusion matrix of hepatic lesion classification using the joint segmentation and classification system

Results from the joint segmentation and classification system Accuracy (%)

Cyst Hemangioma Metastasis HCC

Cyst (n=500) 472 15 5 8 94.4

Hemangioma (n=500) 1 413 46 40 82.6

Metastasis (n=500) 0 46 423 31 84.6

HCC (n=500) 0 37 127 336 67.2

Total 82.2

Two-click user inputs were used.

Note. HCC, hepatocellular carcinoma

a b c

d e f

Fig. 6 Receiver operating characteristic curves of the classification
performance of the classification only system and the joint
segmentation and classification system. Two-click user inputs were used
for the joint system. a Classification between benign and malignant le-
sions. b–f Classification of the four types of hepatic lesions, including

average (b), cyst (c), hemangioma (Hem.) (d), metastasis (Meta.) (e), and
hepatocellular carcinoma (HCC) (f). AUC, area under the receiver oper-
ating characteristic curve; Cls-only, classification only system; Joint, joint
segmentation and classification system
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types of hepatic lesions, including hemangioma, metasta-
sis, HCC, cyst, and focal nodular hyperplasia. Hassan
et al [31] developed a system classifying four types of
focal hepatic lesions, including cyst, hemangioma, HCC,
and normal liver parenchyma. The system exhibited good
results in terms of accuracy (93.90 – 98.60%), sensitivity
(95.70 – 98.30%), and specificity (92.60 – 98.90%). Our
proposed system demonstrated higher specificity (86.0%)
and AUROC (0.970), but slightly lower sensitivity
(95.0%) in differentiating benign and malignant lesions
than performance by radiologists in a previous study
[29]. These results suggest that our proposed system
could be used as a complementary tool for the radiolo-
gists. The AUC achieved by our system in characterizing
focal hepatic lesions was 0.947, which was higher than
the AUC obtained with the classification only system by
Schmauch et al [30]. Our proposed system demonstrated
slightly lower accuracy (82.2%), sensitivity (86.7%), and
specificity (89.7%) compared with the performance of the
system developed by Hassan et al [31]; however, we in-
cluded many metastases cases with heterogeneous
echogenicity and ill-defined or irregular borders, which
were not included in the previous study by Hassan et al.
Both previous studies reported relatively lower accuracy
for solid lesions compared with cysts [30, 31]. This ten-
dency is consistent with our results. The reduced accuracy
for solid hepatic characterization could be related to over-
lapping and nonspecific US findings of those tumors. In
our study, the classification performance of the joint sys-
tem was higher than that of the classification only system
in both binary and four-class classification tasks. We con-
jecture that the extracted features for the segmentation
task, which is conducted jointly in the system, could help
the classification task.

This study has several limitations. Although our dataset
includes images obtained using diverse types of USmachines,
it does not include all different types of machines available in
clinical practice; thus, the results may not be applied to US
machines not included in this study. In addition, the relatively
small numbers of metastases and HCC images in this study
might affect the results.

In conclusion, the proposed joint segmentation and classi-
fication system for hepatic lesions in US images exhibited
higher performance than the segmentation only and classifi-
cation only systems. The proposed system could assist radiol-
ogists with minimal experience in US imaging by character-
izing hepatic lesions.
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