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AI detection of mild COVID-19 pneumonia from chest CT scans
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Abstract
Objectives An artificial intelligence model was adopted to identify mild COVID-19 pneumonia from computed tomography
(CT) volumes, and its diagnostic performance was then evaluated.
Methods In this retrospective multicenter study, an atrous convolution-based deep learning model was established for the
computer-assisted diagnosis of mild COVID-19 pneumonia. The dataset included 2087 chest CT exams collected from four
hospitals between 1 January 2019 and 31 May 2020. The true positive rate, true negative rate, receiver operating characteristic
curve, area under the curve (AUC) and convolutional feature map were used to evaluate the model.
Results The proposed deep learning model was trained on 1538 patients and tested on an independent testing cohort of 549
patients. The overall sensitivity was 91.5% (195/213; p < 0.001, 95% CI: 89.2–93.9%), the overall specificity was 90.5% (304/
336; p < 0.001, 95% CI: 88.0–92.9%) and the general AUC value was 0.955 (p < 0.001).
Conclusions A deep learning model can accurately detect COVID-19 and serve as an important supplement to the COVID-19
reverse transcription–polymerase chain reaction (RT-PCR) test.
Key Points
• The implementation of a deep learning model to identify mild COVID-19 pneumonia was confirmed to be effective and feasible.
• The strategy of using a binary code instead of the region of interest label to identify mild COVID-19 pneumonia was verified.
• This AI model can assist in the early screening of COVID-19 without interfering with normal clinical examinations.
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Abbreviations
AUC Area under the curve
CAD Computer-assisted diagnosis
CAP Community-acquired pneumonia
COVID-19 Coronavirus disease 2019
IgG Immunoglobulin G
IgM Immunoglobulin M
ROC Receiver operating characteristic
RT-PCR Reverse transcription–polymerase chain

reaction
SSAC Sparse separable atrous convolution

Introduction

Coronavirus disease 2019 (COVID-19) can cause a fatal acute
respiratory distress syndrome and has spread worldwide
[1–5]. The main diagnostic methods for COVID-19 include
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the IgG/IgM antibody test, the reverse transcription–
polymerase chain reaction (RT-PCR) test and a chest comput-
ed tomography (CT) exam [6–9]. At present, the RT-PCR test
has been used widely to screen COVID-19 close contacts and
presumptive patients [6]. However, the RT-PCR test is not
sufficiently sensitive [7], and the test results are influenced
by the experimental environment, kit quality and sampling
skills in the actual examination [10]. Meanwhile, the limited
supply of RT-PCR reagents has also brought about unprece-
dented challenges in preventing the spread of the disease.

Chest CT scans are a critical component in the diagnosis of
suspected COVID-19 patients [6, 11–16]. For example, Tao
et al [6] analysed 1014 cases and demonstrated that the sensi-
tivity of a chest CT exam was 88%. Another study of 51
COVID-19 patients showed that the chest CT scan identified
50 cases successfully [7]. Compared with the RT-PCR test, a
chest CT scan provides more standard and intuitive informa-
tion, and it could serve as an important supplement to the RT-
PCR test [13, 16]. However, since there are a large number of
COVID-19 close contacts who need to be scanned, expanding
the use of chest CT for rapid scanning is likely to be
constrained by a shortage of radiologists. Automatic analysis
of chest CT images using a computer-assisted diagnosis
(CAD) model is proposed as a solution to this issue [17–19].
Recently, as one of the core artificial intelligence (AI) tech-
nologies, deep learning has achieved significant accuracy in
automatic detection of many lung diseases [20–24].
Therefore, studies have begun to explore adopting a deep
learning–based medical image analysis model to assist in the
diagnosis of COVID-19 [25–29], such as an AI-based
COVID-19 detection model [25] and the EfficientNet B4 rec-
ognition model [26], and these efforts have made certain
progress.

However, the existing models still have shortcomings.
First, the existing models for COVID-19 recognition require
the extraction of the lung region [25] or suspicious slices [29]
from the CT volume, thus greatly reducing the utility of the
model. Second, for the severe or critical ill COVID-19 pa-
tients, the lesions are relatively obvious and easily recognised
by the radiologists or CAD models. However, it has been
reported that about 80% of the infected people were
COVID-19 cases with mild pneumonia, and have only small
lesions in the CT volumes [3]. The existing models have lim-
ited ability to detect and locate these small lesions [26, 29].
Third, in clinical examination, there are somemild COVID-19
pneumonia cases with CT findings for whom the initial RT-
PCR results were negative. Whether a deep learning model
can correctly identify these cases has not yet been reported.
Due to the large proportion of the mild COVID-19 pneumonia
cases in early screening, AI models which can accomplish the
above tasks are needed urgently.

In this study, we developed a deep learning model to iden-
tify mild COVID-19 pneumonia. The model adopted the

recent atrous convolution-based technology [30–33], which
has a strong ability for detail feature extraction. By assigning
simple binary labels, the proposed model can largely reduce
the manual intervention needed and assist in the rapid screen-
ing of presumptive COVID-19 patients.

Materials and methods

Patients

We used chest CT scans from four hospitals, and Table 1
shows the basic information of the hospitals and patients.
The study was approved by the ethics committees of all the
participating hospitals, and the data were analysed anony-
mously. The samples included 2946 3D volumetric chest CT
exams from 2575 patients with a diagnosis of COVID-19
pneumonia, community-acquired pneumonia (CAP) and
non-pneumonia (NP). All the data were collected between 1
January 2019 and 31May 2020. The inclusion criteria were as
follows: (1) CT volumes with a layer thickness ≤ 5 mm; (2)
patients with clinical signs of mild pneumonia but no signs of
severe pneumonia: SpO2 ≥ 90% on room air, have clinical
symptoms (fever, cough, dyspnoea, fast breathing) and CT
findings (small patchy shadow, interstitial changes, ground
glass opacity and infiltration), or close contacts only have
CT findings, and this inclusion criteria is only applicable to
the COVID-19 and CAP cases [5]; (3) NP and mild CAP
patients treated before 1 December 2019 or NP, mild CAP
and mild COVID-19 pneumonia patients after 1 December
2019 who had received an RT-PCR test; (4) patient’s initial
CT scan (repeated examinations were removed). After apply-
ing the inclusion criteria, 2087 chest CT scans remained, with
each CT scan corresponding to a unique patient. In total, 568
(27%) were mild COVID-19 pneumonia cases, 763 (37%)

Table 1 Descriptive statistics for the multi-center chest CT exam data

Center 1 Center 2 Center 3 Center 4

Total population 591 495 452 549

Female (percentage) 325 (55%) 246 (50%) 237 (52%) 269 (49%)

Age, mean, years
(SD)

50 (17) 49 (19) 45 (16) 46 (19)

COVID-19 patients 355 - - 213

Mild CAP 127 290 165 174

NP 109 205 287 162

Center 1: The Huangpi People’s Hospital of Jianghan University, Wuhan;
Center 2: Zhejiang Provincial People’s Hospital; Center 3: Physical
Examination Center of Cancer Hospital of the University of Chinese
Academy of Sciences (Zhejiang Cancer Hospital); Center 4: Tongji Hospital,
TongjiMedical College, HuazhongUniversity of Science and Technology; SD
standard deviation;CAP community-acquired pneumonia;NP non-pneumonia
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were NP patients and 756 (36%) were mild CAP patients, and
the average age of the patients was 47 ± 18 years. Among the
213 COVID-19 cases from the Tongji Hospital, 81 (38%)
presented the features of mild pneumonia on CT examination,
but the initial RT-PCR test was negative (75 cases were pos-
itive in the second test and 6 cases were confirmed positive by
the third test). Of the 355 COVID-19 cases from the Huangpi
People’s Hospital of Jianghan University, 137 (39%) showed
the features of mild pneumonia on CT examination, but the
initial RT-PCR test was negative (116 cases were positive in
the second test and 21 cases were confirmed positive by the
third test).

Image acquisition

The CT scans of all the enrolled patients were performed on
CT scanners manufactured by the General Electric Company
(GE) and Siemens. The patients were scanned in a head-first
supine position with their arms raised and placed beside their
ears. All of the patients underwent CT scanning without the
administration of contrast material. The parameters of the CT
scans were as follows: tube energy 120 kV; reference tube
current 110–260 mAs; pitch 0.81–1.22 mm; each volume
contained 93–564 slices with a varying slice thickness from
1 to 5 mm; median CTDIvol 2.9 mGy (IQR 1.8–4.2). To avoid
center effect, all samples were reconstructed with the soft re-
construction kernel and 5 mm slice thickness, and the matrix
was 512×512.

Image labelling and pre-processing

Instead of pre-extraction of lung shapes or suspicious slices to
accomplish the identification task, our dataset was labelled in
a binary fashion according to the following rules: samples that
were both RT-PCR positive and CT imaging–conformed
COVID-19 were labelled as 1; samples that were negative in
RT-PCR testing or the cases that occurred before 30
November 2019 were labelled as 0. All identifying patient
information was removed to protect privacy.

Algorithms

In previous work, by introducing sparse constrained atrous
convolution to the traditional ResNet [31, 34], we built a
cross-layer sparse atrous convolution network (CSAC-Net)
which performed well in official tests of pattern analysis, sta-
tistical modelling, computational learning and visual object
classification (PASCAL VOC) dataset1. In the current study,
we extended the above model to a three-dimensional version,

thereby establishing a 3D CSAC-Net for the CT imaging–
based diagnosis of COVID-19 cases with mild pneumonia.
The overall structure of the proposed model is shown in Fig.
1, and it included 39 layers of 3D convolution, 10 layers of 3D
atrous convolution, 3 layers of 3D max pooling in baseline, 5
layers of 3D max pooling in cross-layer subnets and 3 layers
of full connection. As is shown in Fig. 1, a cross-layer 3D
atrous convolution structure was designed between each two
residual modules. The feature maps from the cross-layer
subnets were merged into the output of baseline as the basis
of full connection layer. Details of the parameter settings and
equations for the network are shown in Supplementary
Materials 2. Although we adopted three cross-layers in this
paper, for larger-scale data, repeatedly increasing the number
of this structure to seek better recognition performance could
be considered. We also compared the performance of our 3D
CSAC-Net with baseline 3D ResNet [34], support vector ma-
chine (SVM) [35] and random forest (RF) [36] methods with
common parameter settings (see Supplementary Materials 3).

Model training and testing

All the 1538 (74%) patients from the first three centers were
used to train the model, while the 549 (26%) patients from the
fourth center were treated as the independent testing cohort to
verify the performance. Image enhancement methods were
used during training, including 0.9 to 1.1 times random scal-
ing, horizontal reversal, vertical reversal and −15° to 15° ran-
dom rotation. The size of the training batch was 10, the gra-
dient descent strategy was based on an Adam optimiser and
the initial learning rate was 10−3. The final model was trained
for 75 epochs under the above super-parameters.

Performance evaluation

The trained deep learning model was evaluated with the 549-
patient independent testing set to assess its sensitivity and
specificity in identification. We calculated the true positive
rate and the true negative rate of the model with different
thresholds and used the receiver operating characteristic
(ROC) curve with a 95% confidence interval (CI) and the
corresponding area under the curve (AUC) to evaluate the
model’s performance. Several typical COVID-19, CAP and
NP samples were selected to generate heatmaps.

Statistical analysis and software

The software used to develop the DCNN model was based on
the Ubuntu 16.04 operating system and included TensorFlow
1.9, Keras 2.1.4 and the open-source programme Python 3.6.5
(The Python Software Foundation). The training was conduct-
ed on an Intel Core I7-7740X CPU 4.30 GHz with an
NVIDIA GeForce TITAN Xp GPU. All statistical analyses

1 Our previous CSAC-Net was submitted to PASCAL VOC server on 9
February 2020 and ranked first in the object classification task
(Supplementary Materials 1).
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were performed using the Python packages statsmodels,
pymc, pylab, sklearn and seaborn.

Results

The detailed distributions of the training set and independent
testing set are shown in Table 2. To better evaluate the model,
we divided the independent testing set into three subsets.
Subset S1 was the mild COVID-19 pneumonia cases, S2
was the NP cases and S3 was the mild CAP cases. The first
panel in Fig. 2 shows the ROC curves for the three conditions.
The black curve is the overall ROC curve for distinguishing
mild COVID-19 pneumonia cases from the rest of the
patients (S1 vs S2 + S3). The sensitivity was 91.5% (195/
213; p < 0.001, 95% CI: 89.2–93.9%), the overall specificity
was 90.5% (304/336; p < 0.001, 95%CI: 88.0–92.9%) and the
AUC value was 0.955 (p < 0.001). The yellow curve
shows the ROC curve for distinguishing between the mild
COVID-19 pneumonia cases and NP patients (S1 vs S2).
The sensitivity was 93.0% (198/213; p < 0.001, 95%

CI: 90.4–95.6%), the specificity was 93.2% (151/162;
p < 0.001, 95% CI: 90.7–95.8%) and the corresponding
AUC value was 0.971 (p < 0.001). The green curve shows
the ROC for distinguishing the mild COVID-19 pneumonia
cases from the mild CAP patients (S1 vs S3). The sensitivity
was 90.6% (193/213; p < 0.001, 95% CI: 87.9–93.3%),
the specificity was 87.4% (152/174; p < 0.001, 95% CI:
84.0–90.7%) and the AUC value was 0.940 (p <0.001).

The second panel in Fig. 2 shows a comparison between
different methods to identify COVID-19 cases in patients
with either positive or negative results in the initial RT-PCR
test. The sensitivity and specificity of our method for the
initial RT-PCR positive COVID-19 cases were 92.4% (122/
132; p < 0.001, 95% CI: 90.0–94.8%) and 90.8% (305/336;
p < 0.001, 95%CI: 88.2–93.4%), respectively, and the AUC
value was 0.957. For the initial RT-PCR negative COVID-
19 cases, the sensitivity and specificity were 90.1% (73/
81; p < 0.001, 95% CI: 87.2–93.0%) and 90.5% (304/336;
p < 0.001, 95%CI: 87.7–93.3%), respectively, and the AUC
value was 0.951. And the p value between the identification
of cases with positive and negative initial RT-PCR test

3D SSAC

Block × 2 Block × 2 Block × 2

Max pooling

Fully connection

3D Conv + BN

Map stacking

3D atrous Conv + BN + ReLU

3D Conv + BN + ReLU

Training dataset

CT images Labels

3D CSAC-Net

Model training

Input Output

ReLU

CT images

CT images CT images

ResultsNew patients

Probability Probability

a

b

c

Fig. 1 Graphical summary of the
utilized deep learning method: (a)
the training set and binary labels,
(b) the general framework of the
3D CSAC-Net, (c) the testing set
with new patients and the model
output
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equals to 3.6 × 10−4 which is less than 0.001, indicating no
statistical difference. The ROC curve of the 3D-ResNet, RF
and SVMmethods is also shown in Fig. 2. The results of the
SVM method were slightly better than the RF method, and
their respective AUCs were between 0.670 and 0.764, while
the performance of deep learning methods was superior to
that of traditional methods, with AUC values between 0.910
and 0.957.

Table 3 compares the identification results of the AI model
under different thresholds with two junior radiologists (lessTa
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Fig. 2 Receiver operating characteristic (ROC) curves: the first panel is
the ROC curve of our model for distinguishing mild COVID-19 pneu-
monia from both mild CAP and NP cases, where S1 is the 213 mild
COVID-19 pneumonia scans, S2 is the 162 NP scans and S3 is the 174
mild CAP scans; the second panel shows a comparison of using the 3D
ResNet, RF, SVM, and our method to identify mild COVID-19 pneumo-
nia cases with both positive and negative results in initial RT-PCR test,
where IRP means the COVID-19 cases with initial RT-PCR positive
results and IRN represents the COVID-19 cases with initial RT-PCR
negative results.
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than 5 years of experience) and two senior radiologists (more
than 10 years of experience). As was shown, the recognition
performance of the AI model was better than that of manual
interpretation, and the model achieved better performance
when setting the threshold value to 0.5. Moreover, compared
with the average 196 seconds for manual identification, the
average processing time of our model for each chest CT vol-
ume in the test set was 0.66 s, indicating a high detection
efficiency. We also calculated the sensitivity of detection of
those COVID-19 cases which obtained a negative result in the
initial RT-PCR test.

Figure 3 shows slices of the original chest CT images and
the corresponding heatmaps, and these heatmaps were extract-
ed from the last 3D max pooling layer. Figure 3a to c are the
original chest CT slices of the COVID-19 patients. The model
recognised mild COVID-19 pneumonia accurately, and many
high-weight features were extracted from the lesion areas (Fig.
3d to f). For non-COVID-19 patients, the weights of the fea-
ture maps (Fig. 3j to l) were significantly lower, even when
some lesions were present. Figure 4 shows several typical
misdiagnosed samples. Figure 4a is a misdiagnosed COVID-
19 case, and Fig. 4b and c are typical mild CAP patients that
were misidentified as COVID-19. As can be seen, these sam-
ples were challenging, and by analysing the corresponding
heatmaps, we believe that the misdiagnoses of COVID-19
were mainly due to the insignificant lesions, while the false
positive sample was caused by the great similarity in
convolutional features.

Discussion

An effective AI model, 3D CSAC-Net, was developed to
identify mild COVID-19 pneumonia and mark the corre-
sponding lesion areas. To the best of our knowledge, this is
the first multi-center study that has adopted an AI model
which does not require pre-extraction of ROI or suspicious
slices to identify mild COVID-19 pneumonia. And it is also
the first report on the use of AI to identify mild COVID-19
pneumonia cases with negative results in initial RT-PCR. The
experimental results using the independent testing set showed
a sensitivity, specificity and AUC value of 91.5%, 90.5% and
0.955, respectively. Since the RT-PCR test is not sufficiently
sensitive, using AI to process CT images to screen close con-
tacts or presumptive patients would be an important
supplement.

At present, AI models that can accurately detect
COVID-19 are urgently needed, and the following prob-
lems need to be taken into account: (1) compared with the
critical ill COVID-19 patients whose lesions are obvious
in chest CT scans and relatively easy to diagnose through
IgG/IgM testing [37, 38], most of the infected people
have only small lesions in the CT volumes [3, 39], so it
is necessary to develop AI models which can accurately
identify these small lesions in the early screen; (2) com-
plex pre-processing and manual interventions need to be
reduced as much as possible to increase the usability of
the model; and (3) in addition to recognising the COVID-

Table 3 Identification results of the radiologists and AI model with fixed threshold

Thresholds or radiologists TPR (%) TPR of multiple
RT-PCR (%)

TNR (%) TP (total 213) TP of multiple
RT-PCR (total 81)

TN (total 336)

Identification results of radiologists

JR1 66.2% 64.2% 75.6% 141 52 254

JR2 63.8% 65.4% 73.2% 136 53 246

SR1 77.5% 76.5% 81.3% 165 62 273

SR2 74.2% 71.6% 80.1% 158 58 269

Identification results of the AI model

0.10 100.0% 100.0% 8.3% 213 81 28

0.20 98.6% 98.8% 30.1% 210 80 101

0.30 98.1% 97.5% 54.2% 209 79 182

0.40 97.2% 97.5% 74.4% 207 79 250

0.50 92.0% 90.1% 90.2% 196 73 303

0.60 72.8% 70.4% 95.8% 155 57 322

0.70 50.7% 51.9% 98.2% 108 42 330

0.80 32.4% 34.6% 99.4% 69 28 334

0.90 9.4% 11.1% 100.0% 20 9 336

JR junior radiologist, SR senior radiologist, TPR true positive rate, TNR ture negative rate, TP true positive cases, TN true negative cases, TPR of multiple
RT-PCR TPR of the cases which were negative in initial RT-PCR test and conformed positive by multiple RT-PCR tests, TP of multiple RT-PCR the
number of true positive cases which were negative in initial RT-PCR test and conformed positive by multiple RT-PCR tests
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Fig. 3 Comparison of the
heatmaps for different types of
cases: a to c are the CT slices of
three mild pneumonia COVID-19
cases, where a and b obtained
negative results in initial RT-PCR
(sample a was confirmed positive
by the second test, b was con-
firmed positive by the third test),
d to f are the corresponding
heatmaps for a to c, g is the slice
of a non-pneumonia case, h and i
are CT slices for two mild CAP
cases, j to l are the corresponding
heatmaps for g to i

Fig. 4 Feature heatmaps of some
misdiagnosed cases: a is the CT
slice for a misdiagnosed case of
COVID-19; b and c are two
misdiagnosed CAP cases, d to f
are the corresponding heatmaps
for a to c
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19 cases, the feature heatmaps of the AI model should
locate the lesions. However, the previous models have
limited ability to solve these problems, and the recogni-
tion bias is more obvious when the lesions are small (see
Fig. 3 in [25], Fig. 5 in [26] and Fig. 4 in [29]). Recently,
many efforts have been devoted to these problems
[40–43]. And in this study, to address the first and second
issues listed above, we designed a 3D deep learning mod-
el that uses the simple binary labels to identify mild
COVID-19 pneumonia and greatly reduces the manual
intervention. The labels are used in the training stage on-
ly, and the normalised CT images can be input into the
model directly in practical application. To address the
third issue, our proposed model uses the recent atrous
convolution method, which has superior detailed feature
extraction abilities (see Fig. 3d–f), and that is of great
help to radiologists.

There are still some limitations to this study. First, al-
though all the cases of COVID-19 included in the studywere
confirmed viaRT-PCR testing, theCAPandNPpatient sam-
ples from before 30 November 2019 were not tested by RT-
PCR. Considering that the virus outbreak was first detected
in December 2019, we treated the CAP andNP patients prior
to 30November 2019 as non-COVID-19 patients by default.
Second, due to the self-learning and black box properties of
deep learning itself, the specific connotations of high-weight
regions of convolutional feature maps still need to be ex-
plored. Third, to reduce the complexity of integrating the
model into computer-assisted diagnostic systems or remote
diagnostic systems, our study did not identify the category of
CAP. Since many AI models have been proposed to identify
different types of CAP [44, 45], we plan to combine our deep
learning network with CAP recognition methods and opti-
mise ourmodel further in the future. Fourth, in this study, we
reconstructed all data to uniform 5 mm slice thickness to
reduce center effect. However, the center effect could not
be completely avoided, especially when compared with oth-
er models, because these models might be trained and tested
on completely different data sets.

In summary, a deep learning model based on atrous con-
volution was designed to identify mild COVID-19 pneumonia
and mark the corresponding lesion areas. A total of 2087 chest
CT scans from four hospitals were studied. The experimental
results showed that both the sensitivity and specificity were
greater than 90%, and the general AUC value was 0.955,
indicating clinical applicability. The comparative study also
have shown that the performance of our model was superior to
the identification of traditional methods and radiologists, es-
pecially for those mild COVID-19 pneumonia cases which
obtained negative results in the initial RT-PCR test. The pro-
posed model is expected to be an efficient and economic

method for assisting in the early screening of COVID-19with-
out interfering in normal clinical examinations.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00330-021-07797-x.
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