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Abstract
Objectives To evaluate image quality and reconstruction times of a commercial deep learning reconstruction algorithm (DLR)
compared to hybrid-iterative reconstruction (Hybrid-IR) and model-based iterative reconstruction (MBIR) algorithms for cere-
bral non-contrast CT (NCCT).
Methods Cerebral NCCT acquisitions of 50 consecutive patients were reconstructed using DLR, Hybrid-IR and MBIR with a
clinical CT system. Image quality, in terms of six subjective characteristics (noise, sharpness, grey-white matter differentiation,
artefacts, natural appearance and overall image quality), was scored by five observers. As objective metrics of image quality, the
noise magnitude and signal-difference-to-noise ratio (SDNR) of the grey and white matter were calculated. Mean values for the
image quality characteristics scored by the observers were estimated using a general linear model to account for multiple readers.
The estimated means for the reconstructionmethods were pairwise compared. Calculated measures were compared using paired t
tests.
Results For all image quality characteristics, DLR images were scored significantly higher than MBIR images. Compared to
Hybrid-IR, perceived noise and grey-white matter differentiation were better with DLR, while no difference was detected for
other image quality characteristics. Noise magnitude was lower for DLR compared to Hybrid-IR and MBIR (5.6, 6.4 and 6.2,
respectively) and SDNR higher (2.4, 1.9 and 2.0, respectively). Reconstruction times were 27 s, 44 s and 176 s for Hybrid-IR,
DLR and MBIR respectively.
Conclusions With a slight increase in reconstruction time, DLR results in lower noise and improved tissue differentiation
compared to Hybrid-IR. Image quality of MBIR is significantly lower compared to DLR with much longer reconstruction times.
Key Points
•Deep learning reconstruction of cerebral non-contrast CT results in lower noise and improved tissue differentiation compared
to hybrid-iterative reconstruction.

• Deep learning reconstruction of cerebral non-contrast CT results in better image quality in all aspects evaluated compared to
model-based iterative reconstruction.

• Deep learning reconstruction only needs a slight increase in reconstruction time compared to hybrid-iterative reconstruction,
while model-based iterative reconstruction requires considerably longer processing time.
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Abbreviations
CSF Cerebro-spinal fluid
CTDI Computed tomography dose index
DLR Deep learning reconstruction
FBP Filtered back-projection
GLM General linear method
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MBIR Model-based iterative reconstruction
MDCT Multi-detector CT
NCCT Non-contrast CT
SD Standard deviation
SDNR Signal-difference-to-noise ratio

Introduction

An important factor determining image quality in computed
tomography (CT) is the reconstruction algorithm. Until a de-
cade ago, reconstruction was always performed using filtered
back projection (FBP). This technique results in good image
quality and is computationally very fast, but suffers from noise
in low dose situations and is prone to artefacts [1]. These
issues can be tackled using iterative reconstruction techniques.
An iterative reconstruction technique was presented as early
as in 1970 [2], but computing power limitations hindered their
widespread implementation in clinical practice. It took until
2009 before the first so-called hybrid-iterative reconstruction
(Hybrid-IR) methods required a low enough computing time
that it allowed for widespread clinical implementation [3].
These algorithms are still based on FBP, but iteratively filter
in both image and/or projection domains, resulting in both
lower noise and artefacts in the reconstruction [4].

In 2011, the first full model-based iterative reconstruction
(MBIR) obtained FDA clearance [3]. This reconstruction
method reduces artefacts and noise even further than
Hybrid-IR algorithms [5, 6]. However, their drawbacks in-
clude a higher computing power requirement, resulting in long
reconstruction times, and that the reconstructed images have a
plastic-like, blotchy image appearance [3, 6–8]. These factors
have resulted in MBIR algorithms having a limited impact in
the clinical realm.

In 2018, a new reconstruction method based on deep learn-
ing was introduced. Deep learning is used in many areas in
radiology [10]. This deep learning–based reconstruction
(DLR; AiCE, Canon Medical Systems Corporation) aims to
reduce noise and artefacts to the same extent as MBIR, but
with only a small increase in reconstruction time compared to
Hybrid-IR techniques, while also resulting in a more natural,
less plastic-like and blotchy, appearance thanMBIR. As Fig. 1
shows, this DLR was trained on images, reconstructed from
high-dose acquisitions using MBIR that is set to maximise
image quality, but that takes a long time to compute.
Hybrid-IR images acquired using different dose conditions
were used as input. In clinical practice, the trained deep learn-
ing model is applied to Hybrid-IR images [9].

A small number of studies were published reporting on the
image quality of this DLR technique applied to abdominal CT
using patient and phantom images. These studies showed low-
er noise and higher image quality scores for DLR compared to

Hybrid-IR and MBIR in both ultra-high resolution CT and
conventional multi-detector CT (MDCT) [9, 11–13].

In cerebral non-contrast CT (NCCT), noise hinders the
visibility of the low contrast between grey and white matter,
making the promise of noise reduction with DLR of particular
interest to achieve an increase in the diagnostic performance
of cerebral NCCT, e.g., for improved detection of intracranial
haemorrhage and of early signs of ischemia.

Therefore, the objective of this work is to evaluate the
image quality and reconstruction times of DLR in comparison
to Hybrid-IR andMBIR for cerebral NCCT. Our hypothesis is
that the image quality resulting from DLR is comparable or
superior to that from Hybrid-IR and MBIR, with a shorter
image reconstruction time than that of MBIR.

Methods and materials

An observer study was performed to assess and compare per-
ceived image quality, and objective analysis was undertaken
to quantitatively compare image signal and noise characteris-
tics. This retrospective study was approved by the regional
ethics committee (file number CMO 2016-3045, project
19051), which waived the requirement for patient informed
consent after de-identification of all patient information from
the study data.

Study design and study population

Cerebral NCCT scans in a consecutive cohort of 50 patients
that underwent NCCT between 14 June 2019 and 7
September 2019 for various clinical indications were collect-
ed. Two scans were incorrectly labelled and appeared to be
contrast scans and were excluded. Of the remaining 48 pa-
tients, 28 were male, the age range was 19–86 years with a
median age of 66 years. During clinical interpretation, intra-
cranial haemorrhage was found in 19 patients, 13 patients had
signs of infarct, and a tumour was noted in 4 patients. Seven
patients had a ventricular shunt in place, four patients had a
coiled aneurysm, two had an intracranial pressure monitor,
and one had a stereotactic frame.

CT acquisition and reconstruction

All acquisitions were performed on a 320 row-detector CT
scanner (Aquilion One PRISM edition, Canon Medical
Systems Corporation). Patients were scanned using different
scan modes and techniques, as listed in Table 1.

All acquisitions were reconstructed using three reconstruc-
tion techniques: Hybrid-IR (AIDR 3D Enhanced, brain-kernel
FC26), MBIR (FIRST Brain Standard), and DLR (AiCE
Brain LCD). All reconstructions had a slice thickness of
0.5 mm, and the same field of view.
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Observer study and quantitative measurements

The image quality of the 48 reconstructed NCCTs was evalu-
ated by four experienced radiologists and one final-year resi-
dent specialising in neuroradiology. Noise magnitude, sharp-
ness, natural appearance, artefacts, grey-white matter differen-
tiation and overall perceived image quality were scored using
a 5-point Likert scale, as detailed in Table 2. The assessments
were performed on a workstation with calibrated diagnostic
screens (Barco MDNC-3321) in a radiology reading room
with dimmed lighting. The observers were blinded to the re-
construction technique and images were presented in a ran-
dom order. The order of the cases and reconstruction tech-
niques differed for each observer.

Three ROIs were placed in each of the reconstructed vol-
umes by an imaging scientist with 22 years of experience in x-

ray imaging (L.O.), supervised by a neuro-radiologist (E.S.),
encompassing different structures: cerebro-spinal fluid (CSF)
within the lateral ventricle, centrum semiovale (white matter)
and putamen (grey matter). The oval-shaped ROIs contained
between 311 and 475 pixels. The standard deviation in the
CSF (SDCSF) was determined as a measure of noise magni-
tude, and the signal-difference-to-noise ratio (SDNR) of the
grey and white matter was calculated using (HUputamen –
HUcentrum semiovale)/SDCSF, where HU is the mean of the
Hounsfield Units in the voxels in the respective ROIs. Since
the posterior fossa has more bony structures and therefore
might bemore prone to artefacts, the SD in the fourth ventricle
was also measured, to determine if different values would be
found compared to the measurement in the lateral ventricle.

In order to obtain a measure of the reconstruction duration,
the total reconstruction time for each reconstruction method

Fig. 1 Training and application of the deep learning reconstruction
(DLR) algorithm. During training, the convolutional neural network
(CNN) is trained to replicate an MBIR image with the reconstruction

settings set to maximise image quality, given an input Hybrid-IR image
(above). In the reconstruction process, the trained network is applied to
Hybrid-IR images (below)

Table 1 Parameters used for the
non-contrast brain CT
acquisitions

Parameter Helical mode
(n = 35)

Sequential mode
(n = 11)

Volume mode
(n = 2)

Tube voltage (kVp) 120 120 120

Effective tube current time product (mAs) 360 350 140/2251

Rotation time (s) 0.75 1.0 0.5/0.751

Collimation (mm) 0.5 × 40 0.5 × 80 0.5 × 320

Pitch 0.625 n.a. n.a.

CTDIvol (mGy) 52.7 43.2/34.22 16.1/25.51

1 In total, two patients were scanned using volume mode. One with a lower mAs and rotation time than the other
2 One patient was scanned using the large field-of-view instead of the default medium field-of-view, resulting in a
lower CTDIvol
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was measured manually for the first 15 acquisitions. Since the
reconstructions were performed on the CT system, the report-
ed reconstruction times are representative of those that can be
expected in clinical practice.

Statistical analysis

Mean values for the scored parameters in the observer study
were estimated using a general linear model (GLM) to account
for multiple readers. The full factorial GLM was built using
reconstruction method and reader as factors. The estimated
means for the reconstruction methods per parameter were
pairwise compared and Bonferroni correction was used to
adjust for multiple comparisons. Quantitative measures for
the different reconstruction methods were compared using
paired t tests.

Subgroup analysis was performed evaluating image quality
of NCCT scanned in sequential and helical modes. The same
method as described above was used, but a factor containing
the acquisition type was added to the GLM. In order to see if
artefacts appear differently across the three reconstruction
methods, another subgroup analysis was performed using on-
ly scans of patients having foreign bodies.

Results

Observer study

Figure 2 shows stacked bar graphs for the observer ratings of
each image quality characteristic across all cases and ob-
servers. In MBIR, a maximum of 20% of the ratings was
scored as 4 or 5, while for DLR at least 50% achieved these
ratings. The differences in ratings for DLR and Hybrid-IR are
less distinct and vary across image quality characteristics. The
estimated marginal means for each reconstruction method
resulting from the GLM are shown in Table 3. For all image
quality characteristics, DLR scores were significantly better
compared to MBIR, while compared to Hybrid-IR perceived
noise and grey-white differentiation were preferred with DLR.
An example slice reconstructed with the three different recon-
struction algorithms is provided in Fig. 3. The image noise is
notably lower for DLR as compared to Hybrid-IR and MBIR,
resulting in better differentiation between grey and white mat-
ter. Table 4 shows the results found when analysing the scans
of only the patients having a foreign body. The scores did not
show any significant differences in the observer preferences
than those found for the entire case set.

The ratings of the different observers are shown in Fig. S1
(supplementary online material) using stack bar graphs per
observer and per image quality characteristic. Dichotomising
the scores per image quality characteristic between “DLR per-
forms equal or better” and “DLR performs worse” whenTa
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comparing DLR to the other reconstruction techniques results
in a maximum 10% deviation from themean for each observer
compared to the overall mean across observers, except for the

mean score of one observer when assessing the grey-white
matter differentiation (15%), for one observer evaluating
sharpness (− 31%), and two observers when evaluating

Table 3 Summary of results of the observer study and quantitative
measurements. For the observer study, estimated marginal means for
every quality parameter, reconstruction algorithm and significance

versus DLR are given, with 95% confidence intervals in brackets. For
the quantitative measurements, mean and standard deviation are shown

Hybrid-IR MBIR DLR DLR vs. Hybrid-IR DLR vs. MBIR

Perceived ratings

Noise 3.21 [3.12–3.30] 2.78 [2.69–2.87] 3.55 [3.46–3.64] p < 0.001 p < 0.001

Sharpness 3.55 [3.45–3.65] 2.84 [2.74–2.94] 3.62 [3.52–3.72] p = 0.947 p < 0.001

Natural appearance 3.63 [3.54–3.73] 2.87 [2.78–2.96] 3.54 [3.45–3.63] p = 0.446 p < 0.001

Grey-white matter differentiation 3.40 [3.31–3.50] 2.85 [2.75–2.95] 3.59 [3.49–3.69] p = 0.027 p < 0.001

Artefacts 3.45 [3.35–3.54] 2.86 [2.76–2.96] 3.40 [3.30–3.49] p = 1.000 p < 0.001

Overall perceived image quality 3.53 [3.44–3.63] 2.87 [2.28–2.96] 3.67 [3.57–3.76] p = 0.154 p < 0.001

Quantitative analysis

Standard deviation in lateral ventricle 6.4 ± 1.1 6.2 ± 0.7 5.6 ± 1.0 p < 0.001 p < 0.001

Signal-difference-to-noise-ratio 1.9 ± 0.6 2.0 ± 0.6 2.4 ± 0.7 p < 0.001 p < 0.001

Standard deviation in fourth ventricle* 6.3 ± 1.5 6.2 ± 0.7 5.3 ± 1.0 p < 0.001 p < 0.001

Reconstruction time

Average reconstruction time [s] 27 176 44

*Two patients were excluded from these measurements as the fourth ventricle was filled with blood

Fig. 2 Stacked bar graph with
ratings for subjective image
quality criteria across all cases
and observers (5-point scale; 1 =
impairing diagnostic
performance, 5 = better than
current standard)
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natural appearance (36% and 31%). These four larger differ-
ences were found in the comparison between DLR and
Hybrid-IR. Table 5 shows that all image quality characteristics
were scored higher for NCCTs scanned in sequential mode in
comparison to helical mode. Using this model, which includes
acquisition technique, the reconstruction method remains a
significant factor (p < 0.001), while the interaction between
reconstruction method and acquisition technique was non-
significant (p = 0.21).

Quantitative measurements

The positions of the ROIs in the CSF within the lateral ventricle,
centrum semiovale and putamen are shown in Fig. 4. The mea-
sured noise magnitude (SDcsf) of DLRwas clearly lower than the
noise magnitude for Hybrid-IR and MBIR, as can be seen in
Table 3. DLR also resulted in the highest SDNR between grey
and white matter. These improvements in image quality are ob-
tained with a modest increase in reconstruction time compared to

Hybrid-IR (+ 17 s), but with substantial reduction in reconstruc-
tion time compared to MBIR (− 132 s). The SDcsf and SDNR
were significantly better for sequential scans than those of the
helical scans, as shown in Table 5.

Discussion

This study evaluated the image quality in cerebral NCCT
resulting from DLR, and it was determined that with a small
reconstruction time penalty, DLR results in improved noise
and tissue differentiation compared to Hybrid-IR, while main-
taining the quality of the other quality characteristics. For this,
DLR needs 17 s extra reconstruction time. DLR performs
better for all image quality characteristics compared to
MBIR. These results are in line with studies evaluating DLR
in body applications [9, 12–14]. These studies showed a lower
noise and a higher SDNR for DLR compared to Hybrid-IR
and MBIR, although these studies also showed a higher

Fig. 3 Example slice demonstrating the impact of the different reconstruction algorithms for the same non-contrast CT acquisition in a patient with small
intracerebral haemorrhages with surrounding oedema

Table 4 The results found when analysing the scans of only the patients having a foreign body. The scores did not show any significant differences in
the observer preferences than those found for the entire case set

Hybrid-IR MBIR DLR DLR vs. Hybrid-IR DLR vs. MBIR

Perceived ratings

Noise 2.87 [2.71–3.04] 2.50 [2.34–2.66] 3.26 [3.09–3.42] p = 0.001 p < 0.001

Sharpness 3.13 [2.95–3.30] 2.53 [2.35–2.70] 3.17 [3.00–3.35] p = 0.733 p < 0.001

Natural appearance 3.23 [3.06–3.40] 2.57 [2.40–2.74] 3.23 [3.06–3.40] p = 1.000 p < 0.001

Grey-white matter differentiation 2.94 [2.76–3.13] 2.57 [2.38–2.76] 3.33 [3.14–3.52] p = 0.005 p < 0.001

Artefacts 2.86 [2.68–3.03] 2.50 [2.32–2.68] 2.81 [2.64–2.99] p = 0.734 p = 0.013

Overall perceived image quality 3.13 [2.95–3.30] 2.53 [2.35–2.70] 3.31 [3.14–3.49] p = 0.141 p < 0.001

Quantitative analysis

Standard deviation in lateral ventricle 6.6 ± 1.1 6.4 ± 0.8 5.7 ± 1.2 p < 0.001 p = 0.02

Signal-difference-to-noise-ratio 1.8 ± 0.4 1.9 ± 0.5 2.4 ± 0.7 p < 0.001 p = 0.01

Standard deviation in fourth ventricle* 6.2 ± 0.3 6.3 ± 1.4 5.1 ± 0.9 p = 0.01 p = 0.02

*Two patients were excluded from these measurements as the fourth ventricle was filled with blood
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perceived image quality score. In this study, a statistically
significant difference in the overall quality rating between
DLR and Hybrid-IR was not detected, although in a majority
of cases the perceived image quality of DLR was rated higher
than Hybrid-IR.

The lower measured noise and therefore the higher SDNR
might allow for lowering the radiation dose. The noise in DLR
images is about 1.3 times lower than that in resulting from
Hybrid-IR. Although noise decreases with the square root of
the dose in filtered back projection, this is not the case for
DLR and Hybrid-IR [11, 15], making it impossible to directly
determine what dose reduction could be achieved while main-
taining the SDNR, based solely on the results of this study.
For this, further investigation on noise characteristics, magni-
tude and texture, as function of dose, would be needed. Of
course, another alternative is to maintain the same dose levels,
which could result in improved diagnostic performance.

Artefacts are common on non-contrast cerebral CT due to
beam hardening (e.g., in the posterior fossa) or due to the
presence of foreign bodies. Additional noise measurements
in areas prone to artefacts, such as in the fourth ventricle, did

not reveal different results to those in the CSF within the
lateral ventricle. In addition, subgroup analysis of the scores
given in cases of patients with foreign bodies present did not
show any significant differences in the observer preferences
than those found for the entire case set. The artefacts due to a
foreign body were found to be comparable across the different
image reconstruction algorithms, as illustrated by Fig. 5.

Different acquisition techniques were used in this study.Most
acquisitions (35) weremade using a helical scan techniquewith a
CTDIvol of 52.7mGy.Another 10 acquisitionswere in sequential
mode with a lower CTDI of 43.2 mGy. This study found signif-
icant higher image quality characteristics for the sequential scan
technique. Analysis showed a non-significant interaction be-
tween acquisition technique and reconstruction method, suggest-
ing that the statistically significant change in image quality char-
acteristics between the two acquisition techniques is equivalent
for all reconstruction techniques. Other studies found that overall
image quality characteristics of helical and sequential cerebral
scans are comparable, although small differences were found
[16, 17]. A study on chest CT, using a CT system comparable
to the one used in this study, found that sequential acquisitions

Fig. 4 Example of the ROIs placed in the three different structures: centrum semiovale (left), putamen (middle) and cerebro-spinal fluid within the lateral
ventricle (right)

Table 5 Summary observer study
results and quantitative
measurements split to sequential
and helical scanning modes. For
the observer study, estimated
marginal means for every quality
parameter, reconstruction
algorithm and significance are
given, with 95% confidence
intervals in brackets. For the
quantitative measurements, mean
and standard deviation are shown

Sequential Helical p value

Perceived ratings

Noise 3.57 [3.47–3.68] 3.13 [3.08–3.19] p < 0.001

Sharpness 3.72 [3.61–3.83] 3.31 [3.24–3.37] p < 0.001

Natural appearance 3.78 [3.67–3.89] 3.33 [3.28–3.39] p < 0.001

Grey-white matter differentiation 3.75 [3.64–3.87] 3.24 [3.18–3.30] p < 0.001

Artefacts 3.77 [3.67–3.88] 3.30 [3.25–3.36] p < 0.001

Overall perceived image quality 3.41 [3.30–3.52] 3.27 [3.21–3.32] p < 0.001

Quantitative analysis

Standard deviation in CSF 5.4 ± 0.6 6.1 ± 0.9 p < 0.001

Signal-to-noise-ratio 2.4 ± 0.5 2.1 ± 0.7 p = 0.005
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that used about 10% lower dose than that used in helical scans
resulted in the same image quality [18]. To investigate this effect
in brain for this CT system, more research is needed.

Our study has limitations. First, only thin slice reconstruc-
tions (0.5 mm) were evaluated, but the effect of DLR on
thicker slices is expected to be similar, although the noise
reduction might be less pronounced since thicker slices are
inherently less noisy in all reconstruction methods. Second,
noise was only measured in terms of standard deviation.
Although this parameter is broadly used to summarise noise,
it does not incorporate the different noise textures for each
reconstruction algorithm [11]. However, the noise texture is
an important factor in the perception of the natural appearance
[19] and this image quality characteristic is judged non-
significantly different for Hybrid-IR and DLR, while DLR is
preferred compared to MBIR. Finally, we only examined the
preference for certain image quality characteristics and we did
not incorporate a detection task evaluating the diagnostic ac-
curacy for intracranial pathology. To determine if there is a
real clinical benefit with DLR, a follow-up study incorporat-
ing detection and characterisation performance of lesions is
warranted.

In conclusion, this study shows that with a slightly in-
creased reconstruction time, DLR results in lower noise and
improved tissue differentiation compared to Hybrid-IR. Image
quality of MBIR is significantly lower compared to DLR with
much longer reconstruction times.
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