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Measuring the cochlea and cochlear implant electrode depth
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The functional benefit of cochlear implants can vary consid-
erably in both children and adults [1, 2]. Outcomes appear to
be dependent upon demographic, audiologic, and surgical fac-
tors [3]. Given that surgical factors can be optimized and man-
aged, there has been a substantial amount of literature pub-
lished in recent years with the aim of identifying surgical
factors that can be adjusted to improve outcomes. Much of
this research has focused on the insertion depth of the cochlear
implant electrode arrays. Electrodes that are placed deeply
may improve hearing of low-pitched sounds, but also can
damage structures and cause loss of residual hearing, cause
pitch confusion, and reduce stimulation within the basilar turn
[4]. The human cochlea outer wall and first turn lengths can
vary by nearly 20% and first turn internal diameters can vary
by nearly 80% [5]. Preoperative measurement of the cochlear
duct length (CDL) has thus been posited as helpful in
projecting electrode insertion depth, which then informs elec-
trode size selection. However, there are multiple proposed
methods to measure electrode insertion depth and CDL.

The obvious method to measure insertion depth is the lin-
ear insertion depth—the length of electrode inserted into the
cochlea. However, linear insertion depth does not always ac-
curately reflect the location of the tip of the electrode within
the cochlea. For example, an electrode located along the
modiolus will have a deeper tip than an electrode located
along the lateral cochlea wall with the same measured linear
insertion depth. Similarly, an electrode located in a small co-
chlea will have a deeper tip than an electrode located in a large
cochlea with the same measured linear insertion depth.
Moreover, a kink or unintended redundancy in positioning

of the electrode will result in a long insertion depth that does
not accurately reflect the position of the electrode tip. Angular
insertion depth—the radiographic measurement in degrees of
the location of the tip of the electrode relative to the round
window membrane [6]—is thus generally the preferred mea-
surement as it more accurately indicates the position of the
electrode tip within the cochlear spiral.

Multiple studies over the last 15 years have investigat-
ed a variety of CDL measurements with a nice overview
recently published [7]. In 2005, hand-drawn measure-
ments of the basilar turn of the cochlea on high-
resolution CT in cadavers were demonstrated to be feasi-
ble and angular depths of electrodes inserted into these
temporal bones correlated with depth on histology [8].
In 2006, a simpler cochlear distance measurement was
proposed, called the cochlear basal turn diameter, measur-
ing from the round window to the lateral wall and then
extrapolating that measurement with a 2D spiral approxi-
mation mathematical function to a basilar turn estimated
CDL [9]. This method was updated in 2015 to approxi-
mate two-turn and complete CDL estimations [10]. In
2009, the cochlear basal turn diameter was shown to cor-
relate with insertion depth angle and was shown to be
similar when measured on both CT and MRI [11]. In
2014, a 3D-curved MPR was used to accurately and di-
rectly measure dummy electrode markers placed within
cadaver ears [12]. Also in 2014, it was shown that outer
cochlea wall measurements could be measured on cone
beam CT and these measurements fall in a normal distri-
bution [13]. Then in 2018, it was shown that the inner
wall could also be measured on cone beam CT [14].
And in 2017, a method for automated two-turn CDL mea-
surements was presented to decrease clinical time spent
measuring CDL and to address user-dependent measure-
ment variability [15].

The study by Oh et al [16], published in this month’s edi-
tion of European Radiology, investigated whether CT mea-
surements of lateral wall CDL and/or the cochlear basal turn
diameter correlate with final insertion depth angle. The
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cochlear basilar turn diameter negatively correlated with in-
sertion depth angle, suggesting that a larger basilar turn results
in shallower electrode placement. Interestingly, CDL did not
correlate with final insertion depth angle, yet CDL did strong-
ly correlate with the cochlear basal turn diameter. These find-
ings suggest that the size of the basilar turn is a more important
predictor of electrode insertion depth than overall CDL, which
can be rationalized in that the primary linear length of inser-
tion depth is within the basilar turn. It is unclear whether these
results are generalizable across devices or device lengths be-
cause a single cochlear implant electrode device was utilized
in all of the patients in this study. Further exploration of basilar
turn measurements compared with CDL measurements ap-
pears warranted to potentially improve accuracy and precision
of electrode insertion depth planning.

A potential barrier of implementing the approach as
outlined in this study is the requirement that the temporal
bone CT images be reformatted in a specific plane
through the basal turn and round window. In routine tem-
poral bone CT, the acquisition plane can be highly vari-
able. While reconstruction and reformat planes are not
standardized, an axial plane parallel to the lateral semicir-
cular canal has been described as the optimal clinical im-
aging plane in a primary head and neck imaging text book
[17], used in research studies [18, 19], and implemented
in large clinical settings [20]. This plane is easily
reproduceable, decreases variance within a practice to fa-
cilitate comparison imaging, and allows adoption of study
findings such as measuring otic capsule thickness to eval-
uate for otosclerosis. Requiring manual radiologist
reformats in an additional imaging plane can be cumber-
some within a busy clinical practice, but is achievable and
feasible with the readily available MPR tools available in
many current PACS systems.

In summary, the cochlear basal turn diameter may more ac-
curately predict cochlear implant electrode placement depth than
CDL. Ideally, robust preoperative CT measurements, postopera-
tive insertion depth angle measurements, and clinical outcomes
would next be investigated in a multi-center prospective study
utilizing multiple devices and electrode lengths.
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