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Abstract
Objectives To evaluate the performance of radiomic features extracted from high-resolution computed tomography (HRCT) for
the differentiation between cholesteatoma and middle ear inflammation (MEI), and to investigate the impact of post-
reconstruction harmonization and data resampling.
Methods One hundred patients were included in this retrospective dual-center study: 48 with histology-proven cholesteatoma (center
A: 23; center B: 25) and 52 with MEI (A: 27; B: 25). Radiomic features (co-occurrence and run-length matrix, absolute gradient,
autoregressive model, Haar wavelet transform) were extracted from manually defined 2D-ROIs. The ten best features for lesion
differentiation were selected using probability of error and average correlation coefficients. A multi-layer perceptron feed-forward
artificial neural network (MLP-ANN) was used for radiomics-based classification, with histopathology serving as the reference standard
(70% of cases for training, 30% for validation). The analysis was performed five times each on (a) unmodified data and on data that
were (b) resampled to the same matrix size, and (c) corrected for acquisition protocol differences using ComBat harmonization.
Results Using unmodified data, the MLP-ANN classification yielded an overall median area under the receiver operating character-
istic curve (AUC) of 0.78 (0.72—0.84). Using original data from center A and resampled data from center B, an overall median AUC of
0.88 (0.82-0.99) was yielded, while using ComBat harmonized data, an overall median AUC of 0.89 (0.79-0.92) was revealed.
Conclusion Radiomic features extracted from HRCT differentiate between cholesteatoma and MEI. When using multi-centric
data obtained with differences in CT acquisition parameters, data resampling and ComBat post-reconstruction harmonization
clearly improve radiomics-based lesion classification.
Key Points
* Unenhanced high-resolution CT coupled with radiomics analysis may be useful for the differentiation between cholesteatoma
and middle ear inflammation.
* Pooling of data extracted from inhomogeneous CT datasets does not appear meaningful without further post-processing.
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» When using multi-centric CT data obtained with differences in acquisition parameters, post-reconstruction harmonization and
data resampling clearly improve radiomics-based sofi-tissue differentiation.
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Abbreviations
COM Co-occurrence matrix
HIS First-order histogram

HRCT High-resolution CT

k-NN K-nearest neighbor

LDA Linear discriminant analysis

MEI Middle ear inflammation

MLP-ANN  Multi-layer perceptron feed-forward
artificial neural network

POE + ACC Probability of error and average
correlation

Introduction

One of the most common diseases of the tympanic cavity be-
sides middle ear inflammation (MEI) is cholesteatoma, which is
an expanding growth consisting of the epithelium surrounded by
inflammatory reaction [1]. Currently, diagnostic workup and
preoperative planning of clinically suspected cholesteatoma or
complicated MEI are mostly performed using high-resolution
computed tomography (HRCT) of the temporal bone [2]. In
both MEI, especially when chronic, and cholesteatoma, erosion
of surrounding bony structures can occur and surgical interven-
tion might be indicated. Although the presence of cholesteatoma
is typically suggested by its location in the attic or sinus tympani
[3], both entities can appear in different areas of the tympanic
cavity, which limits their discrimination on HRCT. While
diffusion-weighted imaging (DWI) may aid the diagnosis of
cholesteatoma, inflammatory tissue and high protein fluid in
MEI might lead to false positive results [4], whereas early and
small cholesteatomas may be missed [5]. As a consequence, a
final diagnosis can presently only be established by histopatho-
logic analysis of surgically removed tissue. Accurate preopera-
tive discrimination between both diseases is of high clinical
importance as the therapy for cholesteatoma is usually surgery
whereas chronic MEI can be treated conservatively in most
cases [6]. In addition, preoperative information on the possible
underlying disease is important for the surgical approach and
technique to be chosen. Therefore, improved differentiation of
cholesteatoma and MEI by means of imaging has without doubt
a considerable clinical impact and efforts to do so are needed.
Radiomics is an emerging field in medical imaging that may
potentially advance current clinical practice. Radiomics is based
on the assumption that genetic, molecular, and biological prop-
erties of tissues are correlated with signal intensity patterns within
medical images (i.e., spatial variations of gray-level values of
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pixels and voxels), such as CT and MRI. Notably, computed-
assisted radiomic analyses can extract a multitude of so-called
radiomic features (mathematical descriptors of image texture and
shape) that the human eye cannot assess, let alone quantify [7].
Nevertheless, the use of multi-center data for radiomics analyses
can be problematic, as differences in acquisition parameters are
known to have a considerable effect on radiomic features [8]. A
prerequisite for the widespread application of radiomics in clin-
ical practice is the development and investigation of post-
processing methods, as strictly homogeneous data acquisition
between multiple centers is unlikely to be achieved [9].

The main goal of the present study was to determine whether
radiomic features extracted from unenhanced HRCT can be
used to differentiate between cholesteatoma and MEI—not just
in a single-, but also in a dual-center setting. It was also of
special interest to investigate the impact of post-reconstruction
techniques in that regard. To our knowledge, the utility of
radiomic signatures derived from cross-sectional imaging for
the assessment of diseases of the temporal bone, including
cholesteatoma and MEI, has not been investigated yet. We
hypothesized that microstructural differences between the two
types of soft tissue masses would lead to characteristic patterns
in HRCT that can be quantified using radiomics analysis, and
that post-processing could potentially improve its value.

Material and methods

This retrospective dual-center study conforms to Health
Insurance Portability and Accountability Act (HIPAA) guide-
lines and was approved by the local Institutional Review
Boards/Ethics committees; informed consent was waived.

Patient selection

In center A, a database search was performed for patients who
underwent initial unenhanced HRCT for clinically suspected
cholesteatoma between January 2017 and September 2018. In
center B, a retrospective review of surgery log books of
January 2006 to January 2010 was performed to identify pa-
tients that underwent surgery due to suspected cholesteatoma
or MEI Final confirmation of diagnosis was based on intra-
operative histology in all cases. In both centers, exclusion
criteria were former surgery of the middle ear, no pathological
findings in HRCT, and lack of preoperative HRCT or post-
operative histology. In both centers, patients were included
consecutively; neither in children nor in adults, size or other
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morphological criteria of the lesions on HRCT were used for
patient selection.

Imaging protocol

In center A, all studies were performed on a 192-slice third-
generation dual-source CT scanner (Somatom Force, Siemens
Healthineers) operating at 120 kV and 150 mAs. Acquisition
was performed in craniocaudal direction with a pitch of 0.85
and collimation of 0.4 mm. Automatic tube current modulation
(Caredose 4D, Siemens Healthineers) was activated in all ex-
aminations. All data were reconstructed as axial, paracoronal,
and parasagittal images with a matrix size of 512 x 512 voxels,
a section thickness of 0.4 mm, and increment of 0.2 mm. An
advanced modeled iterative reconstruction algorithm (Admire,
Siemens Healthineers) was used at a strength level of 3 out of 5.

In center B, all patients underwent state-of-the-art HRCT
on a 64-row multi-detector CT scanner (Brilliance 64, Philips
Healthcare) at 140 kV and 200 mAs. Acquisition was per-
formed in craniocaudal direction (pitch, 0.35; collimation,
0.63 mm). Axial, coronal, and sagittal image series were re-
constructed with a matrix size of 768 x 768 voxels, slice thick-
ness of 0.67 mm, and increment of 0.33 mm. Filtered-back
projection reconstruction was used.

CT scans of younger children were conducted in sedation,
if necessary, to facilitate diagnostic image quality and to avoid
the necessity to repeat an acquisition.

Image post-processing

Data resampling was performed by a radiologist (R.E.S),
using DCMScale of the DCM Toolkit (https://support.
dcmtk.org/docs/dcmscale.htm). Data from center B was
resampled from a 768 x 768 to a 512 x 512 matrix (+Sxv
512) using DCMScale’s standard interpolation (+i 1) to
match the matrix used in center A.

Post-reconstruction harmonization of data in terms of cor-
rection for acquisition protocol differences between the two
centers/scanners was applied directly to radiomic feature
values. For this study, the ComBat method was used [10].
ComBat harmonization was originally developed for genomic
data and is based on the removal of the center effect on nu-
merical values of extracted radiomic features.

Image analysis and radiomics

Axial HRCT image series from both centers were used for
radiomics analysis. For feature extraction, a semi-automatic
approach was selected using publicly available software
MaZda 4.6 (http://www.eletel.p.lodz.pl/programy/mazda). In
all cases, two board-certified radiologists with 6 years of ex-
perience each in consensus chose one representative slice and
placed a single 2D circular region of interest (>4 mm?) in the

Fig. 1 Manual region of interest placement for radiomics analysis in an 11-
year-old boy with clinically suspected cholesteatoma in the left middle ear

center of the middle ear lesion (Fig. 1). A particular slice was
chosen to capture the lesion in its largest extent while at the
same time preserving adequate distance from surrounding an-
atomical structures. Gray-level normalization was applied in
every region of interest to reduce potential influences of
brightness and contrast variations on feature quantification
[11], limiting dynamics to i+ 30 (i, gray-level mean; o, stan-
dard deviation) [12]. A multitude of radiomic features (n=
279 per lesion) from the following categories of radiomic
features were extracted from the manually defined regions of
interest: first-order histogram (HIS; n = 9; gray-level statistics
such as percentiles), co-occurrence matrix (COM; n =220;
distribution of pixel pairs with predefined gray-level values
and interpixel distances), run-length matrix (RUN; n=20;
distribution of runs of pixels with the same gray-level value)
, absolute gradient (GRA; n=135; degree/abruptness of gray-
level value changes between neighboring pixels),
autoregressive model (ARM; n =5; degree of gray-level ran-
domness/regularity), and discrete Haar wavelet transform
(WAV; n=73; frequency content of an image at different
scales). The full list of radiomic features that MaZda is capable
of calculating can be found at http://www.eletel.p.lodz.pl/
programy/mazda/download/FeaturerList.pdf.

Statistical analysis and classification

The utility of HRCT radiomics for differentiation between
cholesteatoma and MEI was evaluated in different datasets:

(1) inunmodified single-center data (i.e., separate evaluation
of data from the two centers);

(2) inunmodified pooled data from the two centers;

(3) in pooled data from the two centers that were resampled
to the same matrix size; and

(4) in pooled data from the two centers that were corrected
for acquisition protocol differences using ComBat
harmonization.
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For all above analyses, feature selection was performed as a
first step, to reduce the large number of features obtained
initially to the most relevant feature sets based on mathemat-
ical criteria. For this study, POE + ACC (probability of error
and average correlation) coefficients were used to select sub-
sets of the 10 best radiomic features for differentiation be-
tween cholesteatoma and MEI. This method was chosen be-
cause in addition to identification of features that best distin-
guish between classes, it also addresses data redundancy (i.e.,
the correlation between individual radiomic features).

For the separate analyses of unmodified data from the two
centers, linear discriminant analysis (LDA), which generates
the most discriminating features based on the sets of 10 fea-
tures identified in the previous step, was applied for further
dimensionality reduction. This was done due to the lower
number of samples per center, to avoid overfitting—i.e., pro-
ducing overoptimistic estimates of classification performance.
Overfitting may occur when the number of features consid-
ered is very high in comparison to the number of samples
analyzed, because in this case, random correlations may be
detected. For the same reason, a K-nearest neighbor (k-NN)
approach with leave-one-out cross-validation was used for
classification in these separate monocentric datasets; i.e., the
model was trained using all patients of a center excluding one
patient (z — 1) and tested on the held-out patient, to keep the
number of samples high relative to the number of radiomic
features; this process was repeated n times [12]. Rates of
misclassified vectors yielded by the k-NN classifier were used
to calculate accuracies, which served as the main outcome
variable in these groups. LDA and k-NN classification was
performed for data from centers A and B separately, and sub-
sequently, for pooled data from both centers.

For pooled (unmodified or post-processed) data, a multi-
layer perceptron feed-forward artificial neural network (MLP-
ANN), which is based on a back-propagation learning algo-
rithm, was used for radiomics-based classification. Contrary
to the single-center analysis, the cohort was considered suffi-
ciently large to use this more advanced technique. Here, 70%
of cases were randomly assigned to the training dataset, and
30% to the validation dataset. Because the initial step taken by
the neural network is a “guess” at the weights of the individual
radiomic features—potentially leading to different classifica-
tion results, the analysis was performed five times each, to
provide a more robust/realistic estimate of classification per-
formance. In addition, for each repetition of the classification
step, patients were newly randomized and assigned to training
or validation group. For MLP-ANN, a minimum of one hid-
den layer with a minimum of three neurons per layer was used.
Areas under the receiver operating characteristic (ROC)
curves (AUC) and classification accuracies for training and
validation datasets were calculated. MLP-ANN was applied
to the pooled unmodified data, the pooled ComBat harmo-
nized data, and the pooled data that were resampled to the
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same matrix. For the latter, the regions of interest (ROIs) were
drawn anew on resampled images to obtain radiomics fea-
tures; POE + ACC feature selection was also repeated.
Histopathology obtained from surgery specimens served as
the standard of reference.

Results

In center A, 18 out of the initial group of 68 patients were
excluded due to former surgery of the middle ear (n = 15) or
lack of pathological findings in HRCT (n = 3). All remaining
23 patients received surgery after HRCT and were histologi-
cally diagnosed with cholesteatoma. Another 27 patients with
histological or clinical diagnosis of MEI were used as a con-
trol group. Mean patient age was 33.1 £19.9 (range, 6—
78 years); 38 patients were male.

In center B, 69 consecutive patients who underwent sur-
gery due to cholesteatoma were retrospectively included. Out
of these patients, 44 had to be excluded due to lack of preop-
erative HRCT (n=42) or post-operative histology (n=2).
Another 25 patients with MEI were retrospectively selected
as a control group. Mean age was 39.5 +22.3 years (range, 5—
81 years); 24 patients were male.

Thus, 100 patients (center A, 50 patients, 23 with
cholesteatoma, 27 with MEI; center B, 50 patients, 25 with
cholesteatoma, 25 with MEI) were included in this study
(Fig. 2).

Unmodified data

Separately for data from center A, 33/50 cases (accuracy,
66%; misclassified: 9 cholesteatoma, 8 MEI) were correctly
classified, whereas separately for data from center B, 42/50
cases (accuracy, 84%; misclassified: 4 cholesteatoma, 4 MEI)
were correctly classified.

Using unmodified pooled data from the two centers, MLP-
ANN classification yielded an overall median AUC of 0.78
(0.72-0.84), with median accuracies of 71.4% (65.7-85.7%)
in the training and 66.7% (63.3-71%) in the validation
datasets (Fig. 2).

Pooled post-processed data

Using original data from center A with a 512 X 512 matrix and
data from center B resampled to the same matrix, MLP-ANN
classification revealed an overall median AUC of 0.88 (0.82—
0.99) with median accuracies of 83.8% (79.2-95.9%) in the
training and 76.9% (71.4-85.2%) in the validation datasets.
Using pooled ComBat harmonized data, MLP-ANN clas-
sification yielded an overall median AUC 0f0.89 (0.79-0.92),
with median accuracies of 82.9% (68.6-88.6%) in the training
and 73.3% (60.0-76.7%) in the validation datasets (Fig. 3).
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Fig. 2 Left: unenhanced high-resolution computed tomography (HRCT)
image of a 54-year-old female patient with middle ear inflammation (MEI)
in the right tympanic cavity (a). Right: unenhanced HRCT image of a 19-
year-old male patient with a cholesteatoma in the left tympanic cavity (b).
Both show soft tissue in the middle ear without bone destruction. Radiomics
characteristics derived from unenhanced HRCT-differentiated MEI from
cholesteatoma with an overall median area under the receiver operating
characteristic curve (AUC) of 0.78 (separate accuracies: center A, 66%;
center B, 84%) in our patient collective. Post-processing in terms of data
resampling and harmonization yielded overall median AUCs of 0.88, and
0.89, respectively

Discussion

In this dual-center study, we evaluated the utility of
unenhanced HRCT radiomic signatures for the non-invasive
discrimination of cholesteatoma and MEI, and additionally
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Fig. 3 Results from the receiver operating characteristic (ROC) curve
analysis for the radiomics-based separation of patients with middle ear
inflammation and cholesteatoma using dual-center data. An initial area

under the curve (AUC) of 0.78 could be improved to 0.88 and 0.89 using
post-processing in terms of data resampling and harmonization

investigated the impact of two post-reconstruction methods
in that regard. Our results indicate that radiomic analyses of
pooled inhomogeneous data from multiple centers should not
be performed without further post-processing. Both ComBat
harmonization and resampling to identical matrix size similar-
ly improve radiomics-based lesion classification. Hence, both
methods seem to be valuable post-reconstruction techniques
for multi-center radiomics analyses, and need to be investigat-
ed further. After additional validation, unenhanced HRCT
coupled with radiomics analysis may be a useful tool for the
image-based differentiation between cholesteatoma and MEI.

Radiomic analyses performed on various types of imaging
data have yielded promising results for the separation of dif-
ferent tumor entities throughout the body [13—15]. An accu-
rate identification of cholesteatoma among other soft tissue
masses is especially relevant due to its locally aggressive na-
ture, possibly leading to permanent damage to surrounding
anatomical structures, and high risk of recurrence [16]. The
diagnosis of cholesteatoma in preoperative HRCT mostly re-
lies on typical lesion location and presence of bony erosion;
however, this approach is known to be limited [17]. Previous
attempts to differentiate cholesteatoma and MEI have been
made. For instance, Trojanowska et al suggested a potential
usefulness of post-contrast CT for the detection of
cholesteatoma in 17 patients [18], while De Foer et al empha-
sized the value of DWI and T1-weighted sequences in that
regard [19]. Also Profant et al recommended non-echo planar
imaging DWI as a valid method for the diagnosis and follow-
up of cholesteatoma [20]. Shie et al proposed a feature-based
classification system for otoscopic diagnosis of MEIL, includ-
ing, but not limited to, HIS features [21]. In a study including
91 patients, Lee et al concluded that measurements of
Hounsfield units (HU)—i.e., HIS features—are not sufficient
to distinguish between the two diseases [22]. Park et al, how-
ever, found HU values to be significantly different between
cholesteatoma and inflammatory tissue in 82 patients [23].
Our results show that among the variety of radiomic features,
HIS features did not seem to be relevant for radiomics-based
lesion classification, as opposed to COM (co-occurrence ma-
trix; based on the distribution of pixel pairs with predefined
gray-level intensities), RUN (run-length matrix; based on se-
quences of pixels with the same gray-level intensity), and
WAV (Haar wavelet transform; based on image decomposi-
tion for capturing details and edges in different directions
across an image) features (Table 1) [24]. In particular, COM
features such as angular second moment, which measures the
gray-level homogeneity or order of gray-level intensities, and
contrast, which emphasizes gray-level intensity differences
between the two pixels of a pixel pair, dominated the list of
relevant features. Unlike these “true” radiomic features that
reflect spatial variations of gray-level intensities across an
ROI, HIS features are statistical descriptors of signal
intensities.

@ Springer
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Table 1 Selected feature sets for radiomics-based separation of middle
ear inflammation and cholesteatoma using pooled dual-center data

Unmodified and harmonized Resampled
WavEnLL_s—21 S(2,0)SumVarnc?
S(1,1)InvDfMom? S(0,5)DifVarnc?
S(2,0)SumOfSgs* S(0,1)SumAverg?
S(1,-1)SumAverg® S(0,3)InvDfMom?
S(3,0)Correlat® S(0,2)Correlat®
S(0,4)Contrast® S(2,2)Correlat®
S(0,3)AngScMom? S(2,-2)Correlat®
S(3,3)Correlat® 45dgr LngREmph®
S(2,0)InvDfMom? S(3,-3)Contrast®

45dgr GLevNonU?

WavEnLL s-22

" Discrete Haar wavelet transform: WavEnLL s-2, wavelet transform en-
ergy after bi-directional low-pass filtering

2 Co-occurrence matrix: AngScMom, angular second moment; Correlat,
correlation; SumAverg, sum average; SumOfSqs, sum of squares;
SumVarne, sum variance; InvDfMom, inverse difference moment; values
in parentheses reflect interpixel distances and coordinates/directions for
pixel pairs

3 Run-length matrix: 45dgr GLevNonU, gray-level non-uniformity cal-
culated in 45° direction; 45dgr_LngREmph, long-run emphasis calculat-
ed in 45° direction

Previous studies have shown that radiomics features are af-
fected by image acquisition parameters such as slice thickness
and reconstruction algorithm. In a recent systematic review of
41 studies, Traverso et al observed the strongest effect of ac-
quisition parameter variations on reproducibility for spatial res-
olution, followed by scan duration and method of reconstruc-
tion [25]. In general, first-order and shape features were found
to be more stable than texture features, which capture lesion
heterogeneity [26, 27]. As a result, prior investigators have
yielded variable results for the utility of radiomics signatures
for lesion differentiation when heterogeneous data in terms of
scanner and imaging protocol was used [28]. Likewise, pooling
of multi-center data does not seem meaningful without further
post-processing in the present study, achieving an overall me-
dian AUC of only 0.78 for the separation of MEI and
cholesteatoma. In view of the literature and the fact that, in
our study, HRCT data from center B, which were obtained with
higher slice thickness, but a larger matrix size, yielded better
results than data from center A, we hypothesize that for future
radiomics studies on this or similar topics, HRCT protocols
should put particular emphasis on high in-plane resolution.

Post-reconstruction methods such as data resampling (i.e.,
preimage analysis) and data harmonization (i.e., post-image
analysis) are currently being investigated as potential solu-
tions to this known problem in the field of radiomics.
Harmonization relies on mathematical post-processing to re-
move effects of image acquisition parameter variations on
already-existing radiomics features. The currently popular
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application ComBat has been found to be beneficial for pos-
itron emission tomography (PET) radiomics in previous stud-
ies [10, 29]. A very recent study has also confirmed the effec-
tiveness of ComBat for correction of CT radiomic data [30].
Resampling of voxel size is considered to be another promis-
ing strategy to correct for effects due to differences in spatial
resolution between scanners [31]. Our results suggest that
both data resampling and harmonization may be helpful ap-
plications for multi-center radiomics studies involving large
amounts of heterogeneous data, removing the impact of ac-
quisition differences while preserving pathophysiological in-
formation. With an increase in AUC from 0.78 to 0.88 and
0.89, data resampling and post-reconstruction harmonization
yielded similarly good to excellent results in terms of accuracy
for the discrimination of cholesteatoma and MEIL Notably,
resampling and ComBat harmonization are applied at very
different levels in the analytic process. Resampling is applied
before, and ComBat harmonization after radiomic feature ex-
traction, meaning that one technique operates directly on the
images, and the other on the numerical feature values. Given
these fundamental differences, it is very difficult to say why
resampling performed slightly better in our present study, or
whether this observation can be generalized—to our knowl-
edge, this is the first study to compare both techniques in the
same sample. It is, however, apparent that, to yield meaningful
results, future radiomics studies require high-quality data, ob-
tained with homogeneous imaging protocols and/or corrected
for image acquisition differences when this cannot be
achieved [32].

This study has some limitations beyond its retrospective
design, which need to be acknowledged. First, our patient
cohort is relatively small; however, neither class imbalance
nor overfitting which are common pitfalls in radiomics re-
search, should have an impact on our results, as classes and
rates of misclassified cases are balanced throughout the study.
Second, while methods such as k-NN, LDA, and MLP-ANN
are well established [33, 34], more advanced convolutional
neural networks with larger numbers of hidden layers are con-
sidered the gold standard in the field of machine learning.
Nonetheless, a model should be chosen according to cohort
size to avoid overfitting. Third, for the sake of consistency,
ROIs were drawn in round shape, manually and on one slice
only, thus possibly omitting characteristic portions of the le-
sions in terms of gray-level heterogeneity that would have
been captured using, for instance, mesh volumes of interest.
Clearly, future studies would therefore need to include confir-
matory 3D analyses, preferably with automatic lesion segmen-
tation. Fourth, since different matrix sizes were used routinely
at each study site and raw data were not available due to
retrospective design, resampling of reconstructed data was
necessary. For the same reason, we were unable to evaluate
the influence of the number of iterations on radiomic features.
Finally, a direct comparison of HRCT radiomics with DWI
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should be performed in a future trial to investigate the inter-
changeability of HRCT radiomics and DWI for the differen-
tiation of cholesteatoma and middle ear inflammation. The
combination of HRCT with DWI data in future studies might
even further improve the relevance of radiomics analysis, as
different aspects of tissue biology such as heterogeneity and
diffusivity could be taken into account.

In conclusion, our data indicate that radiomic features de-
rived from unenhanced HRCT may be useful for the differen-
tiation between cholesteatoma and MEI. However, pooling of
data extracted from inhomogeneous CT datasets does not ap-
pear to be meaningful without further post-processing. When
using multi-centric data obtained with differences in CT ac-
quisition parameters, ComBat post-reconstruction harmoniza-
tion and data resampling clearly improve radiomics-based le-
sion classification. Unenhanced HRCT may be a valuable
addition to DWI for soft tissue differentiation between
cholesteatoma and MEI when radiomic features are utilized.
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