CORRECTION

Correction to: CT iterative vs deep learning reconstruction: comparison of noise and sharpness

Chankue Park 1 · Ki Seok Choo 1 · Yunsub Jung 2 · Hee Seok Jeong 1 · Jae-Yeon Hwang 1 · Mi Sook Yun 3

Published online: 16 December 2020 © European Society of Radiology 2020, corrected publication 2021

Correction to: European Radiology https://doi.org/10.1007/s00330-020-07358-8

The original version of this article, published on 15 October 2020, unfortunately contained mistakes. The following corrections have therefore been made in the original:

The heading "Sharpness evaluation" should be a subheading of "Quantitative analysis", the presentation of Table 1 was incorrect and affiliation 1 was incomplete.

The original article has been corrected.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The online version of the original article can be found at https://doi.org/ 10.1007/s00330-020-07358-8

- Department of Radiology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea
- ² CT Research Team, GE Healthcare Korea, Seoul, South Korea
- Division of Biostatistics, Pusan National University Yangsan Hospital, Yangsan, South Korea

Eur Radiol (2021) 31:4410–4411 4411

 Table 1
 Quantitative analysis (conventional method)

	AV-80	AV-100	TF-L	TF-M	TF-H	<i>p</i> *
Aorta						
HU	$403.1^{b} \pm 172.0$	$401.0^a \pm 171.1$	$406.3^{\circ} \pm 171.8$	$406.3^{\circ} \pm 171.7$	$406.3^{\circ} \pm 171.8$	< 0.001
SD	$27.9^{c} \pm 10.1$	$26.5^{b} \pm 11.1$	$32.5^{\mathrm{d}} \pm 8.0$	$28.6^{c}\pm8.7$	$24.6^{a} \pm 9.6$	< 0.001
SNR	$14.9^{b} \pm 5.2$	$16.0^{\circ} \pm 5.7$	$12.6^{a} \pm 4.6$	$14.5^b \pm 5.2$	$17.3^{\circ} \pm 6.4$	< 0.001
CNR	$20.3^b \pm 6.0$	$21.8^{c} \pm 6.7$	$17.0^{a} \pm 5.1$	$19.6^{b} \pm 5.9$	$23.5^{\circ} \pm 7.6$	< 0.001
Femoral a	artery					
HU	$442.6^{b} \pm 179.0$	$436.6^{a} \pm 176.6$	$450.0^{\circ} \pm 181.1$	$450.6^{c} \pm 180.6$	$450.5^{c} \pm 180.9$	< 0.001
SD	$46.6^{a,b,c} \pm 40.7$	$45.7^{a,b,c} \pm 40.9$	$47.9^{\circ} \pm 41.9$	$46.1^{b} \pm 42.5$	$44.5^a \pm 43.2$	0.007
SNR	$12.7^{a,b}\pm6.4$	$13.0^{a,b,c} \pm 6.6$	$11.7^a \pm 5.1$	$12.7^b \pm 5.7$	$13.9^{c} \pm 6.7$	0.001
CNR	$17.4^{a,b,c} \pm 9.0$	$17.6^{c,d} \pm 8.6$	$15.7^a \pm 6.2$	$17.0^{b,c}\pm7.2$	$18.8^{\rm d}\pm8.9$	0.001
Popliteal	artery					
HU	$473.1^{b} \pm 177.3$	$466.7^a \pm 175.4$	$488.1^{e} \pm 178.6$	$487.7^d \pm 178.8$	$487.1^{\circ} \pm 179.0$	< 0.001
SD	$67.7^{a} \pm 39.7$	$67.2^a \pm 38.7$	$70.4^{b} \pm 40.1$	$70.1^{b} \pm 40.5$	$70.0^{b} \pm 41.0$	< 0.001
SNR	$9.1^{a} \pm 6.0$	$9.2^{a} \pm 7.1$	$8.6^a \pm 4.8$	$8.8^a \pm 5.1$	$8.9^a \pm 5.4$	0.390
CNR	$12.2^{a} \pm 8.3$	$12.4^{a} \pm 10.2$	$11.2^a \pm 6.0$	$11.4^{a} \pm 6.4$	$11.7^a \pm 7.1$	0.276
Liver						
HU	$140.5^a \pm 23.1$	$140.6^{b} \pm 23.1$	$141.0^{\circ} \pm 23.1$	$141.1^{\circ} \pm 23.1$	$141.1^{c} \pm 23.0$	< 0.001
SD	$25.4^{b} \pm 5.6$	$22.7^a \pm 5.8$	$30.6^d \pm 4.7$	$26.8^c \pm 5.2$	$23.1^a \pm 5.9$	< 0.001
SNR	$5.8^{c} \pm 1.6$	$6.6^{\rm d} \pm 2.2$	$4.7^a\pm1.0$	$5.5^{b} \pm 1.3$	$6.5^{\rm d} \pm 2.0$	< 0.001
CNR	$8.4^{c} \pm 2.3$	$9.5^{\rm d} \pm 3.0$	$6.9^{a} \pm 1.5$	$7.9^{b} \pm 2.0$	$9.4^{\rm d}\pm2.9$	< 0.001
Psoas mu	scle					
HU	$66.1^{a} \pm 7.6$	$66.0^{a} \pm 7.5$	$67.4^{b} \pm 7.9$	$67.2^{b} \pm 7.5$	$67.2^{b} \pm 7.5$	< 0.001
SD	$17.4^b \pm 4.4$	$14.6^{a} \pm 4.7$	$24.3^d \pm 3.7$	$19.8^{\rm c}\pm4.0$	$15.1^a \pm 4.5$	< 0.001
SNR	$4.0^{\rm c}\pm1.0$	$4.9^{\rm d}\pm1.5$	$2.8^a \pm 0.5$	$3.5^b \pm 0.7$	$4.8^d \pm 1.2$	< 0.001
CNR	$12.3^{c}\pm3.4$	$15.2^{\rm d}\pm4.8$	$8.6^{a} \pm 1.7$	$10.6^b \pm 2.4$	$14.4^d \pm 3.8$	< 0.001

Data are mean value \pm standard deviation. The superscripts represent the same group of the Bonferroni post hoc test (the alphabetical order indicates the order, starting from the lowest mean value). AV-80 and AV-100 = ASIR-V with a blending factor of 80% and 100%, respectively; TF-L, TF-M, and TFH = TrueFidelity with low, medium, and high strength levels, respectively; HU = mean CT number, SD = image noise, SNR = target HU / target SD, and CNR = target HU - fat HU / target SD

^{*}p values were calculated with repeated measures ANOVA among the five groups