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Key Points
• Although radiomics is potentially a promising approach to analyze medical image data, many pitfalls need to be considered to
avoid a reproducibility crisis.

• There is a translation gap in radiomics research, with many studies being published but so far little to no translation into
clinical practice.

• Going forward, more studies with higher levels of evidence are needed, ideally also focusing on prospective studies with
relevant clinical impact.

Since Lambin et al first coined the term radiomics in
early 2012, almost a decade has passed [1, 2]. At that
time, medical imaging and automated image analysis
had already seen significant advances (and certainly
have seen more innovation since then), and the concept
seemed promising. In radiomics research, radiological
image data are processed in order to extract large
amounts of quantitative image features, which are sub-
sequently analyzed to identify meaningful patterns and
novel imaging biomarkers [3]. In most cases, radiomics
is applied to oncological imaging, e.g., to support dis-
crimination of histological tumor subtypes, predict treat-
ment response, and consequently support more individ-
ualized therapy regimes [4]. Understandably, research
interest has been unbroken since then, and numerous
studies have been published discussing the application
of radiomics in various settings (Fig. 1). Coming close
to a decade of research in radiomics, it might be

worthwhile taking a look at what results have been
achieved and what has been translated into clinical use.

At first sight, it seems that radiomics research could poten-
tially have a huge impact on clinical routine. Recently, various
studies addressing interesting clinical scenarios have been
published. For instance, in a study published by Cui et al, a
radiomics model was proposed to predict complete response
to chemoradiotherapy in patients with locally advanced rectal
cancer [5]. In another study, Baessler et al showed that a
radiomics model could potentially differentiate between be-
nign and malignant lymph nodes after chemoradiotherapy for
metastatic germ cell tumors [6]. In both studies, it could be
argued that radical oncological resection (i.e., proctectomy in
the first, and retroperitoneal lymph node dissection in the latter
case) could carry significant peri- and postoperative morbidi-
ty. Hence, reducing overtreatment by incorporating the results
of such radiomics models in clinical decision-making could be
beneficial—if not in all, then at least in selected cases.
Nevertheless, it seems that despite the considerable number
of publications on the subject, translation of such encouraging
findings into clinical application is yet to happen. There are
certainly various factors that play a role here, but a few im-
portant challenges stand out, which should be considered in
future radiomics studies (Table 1).

First of all, a significant proportion of the published studies
on applications of radiomics are of insufficient quality. This is
of course a bold statement and should not be said lightly.
Recently, Park et al carried out a detailed analysis of multiple
studies and assessed their methodological quality using the
radiomics quality score (RQS), as well as how results were
reported according to the Transparent Reporting of a
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Table 1 Key considerations for
study design Selected features Should clearly be described, name selected features, ideally along with information on how

those were calculated. Instances where features like first order statistics such as “max
volume of ROI” or “mean value in ROI” are selected do not necessarily qualify as
radiomics and could also be obtained by “traditional” measurements.

Model building Careful consideration of all potential pitfalls limiting the model’s generalizability (i.e., inter-
and intra-reader testing of the segmentations, testing for test-retest stability, homogeniz-
ing gray level intensities and pixel spacing) and statistical validity is needed.

Selected model The potentially best model should clearly be described. E.g., for simple models give
equation with features and parameters, for more complex models make model accessible
to other researchers so that results can be independently validated or further studies can be
built upon those.

Model
validation

Selected models should be validated on an independent test set that was set aside before
training the algorithm. Sampling method used should be clearly described (e.g.,
randomized stratified sampling).

Model
performance

Clinically meaningful performance metrics should be provided, such as PPV, NPV or F
metrics. Depending on the incidence of disease even with a high
AUC/sensitivity/specificity the PPV might be low, thus limiting its clinical usefulness.
Also, the model should be benchmarked in comparison to expert human readers or
models built on known clinical characteristics (e.g., size, LIRADS, laboratory results).

Intended clinical
use

It should be clearly stated which purpose the model could serve and what clinical need it
serves. E.g., while a model might discriminate between two tumor stages, if no potential
of stratification (due to missing alternatives or disproportionate risk of harming the patient
if treatment is changed) is given, clinical usefulness may be limited.

Impact on
outcome

If a proposed radiomics model has been previously described and its results are reproducible
and validated, outcome studies should carefully be designed to prove the model’s utility
in clinical practice aiming to benefit the patient’s outcome.

In order to move the field forward, there is an urgent need for prospective trials to
demonstrate the impact of radiomics on patient outcome.

Although radiomics research holds the potential to positively impact patient management and outcome, scientific
rigor is needed in order to prove the benefits beyond reasonable doubt [7]

Fig. 1 Number of articles
published (until 2019–2020 was
excluded at the time of writing
due to incomplete data) matching
the search term “radiomics” on
PubMed (https://pubmed.ncbi.
nlm.nih.gov/?term=radiomics)
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multivariable prediction model for Individual Prognosis Or
Diagnosis (TRIPOD) checklist [8]. The results were—to put
it mildly—sobering. With a mean RQS score of only 26.1%
and a mean adherence rate to the TRIPOD checklist of only
56.8%, there is obviously a lot room for improvement. These
findings should, however, not be intended to devalue existing
research, but rather be taken as an eye-opener encouraging us
to strive for the highest possible scientific rigor—from the
design of the studies all the way through the review and pub-
lication process. An open, self-reflecting discussion may be
needed to analyze, why and how such findings come to be.
Among the first steps, one possible approach could be to re-
quire authors and reviewers to follow checklists such as the
aforementioned or the recently proposed Checklist for
Artificial Intelligence in Medical Imaging [9].

Secondly, given that most approaches to radiomics rely on
the analysis of distribution of gray values in a specified region
or volume of interest (ROI/VOI), the inherent problem of
medical imaging needs to be carefully considered. For exam-
ple, while one specific scanner might lead to reproducible gray
value distributions in a single patient at a single time point
when the analysis is carried out by a single reader, this is not
necessarily the case when another patient with the exact same
pathology is scanned on a different machine, the same patient
is scanned at different time points or even when different
readers assess the images and place the ROI/VOI. In the worst
cases, we as radiologists might be able to see the patterns
beyond the noise, but an algorithm that performs complex
calculations might easily be derailed by just the tiniest amount
of noise [10, 11]. To further add to this complexity, in most
cases, complex statistical approaches and machine learning
are used to build prediction models based on radiomics fea-
tures which come with their own challenges [12, 13]. To tack-
le these issues and avoid getting lost in a reproducibility crisis,
careful methodological and statistical consideration of poten-
tial pitfalls is crucial [7, 14].

Lastly, in order to close the “translational gap” of
radiomics, it will be crucial to obtain higher evidence levels
and move beyond exploratory retrospective studies. Carefully
designed prospective, multicenter, randomized controlled tri-
als and data sharing will be needed in the future to prove the
clinical usefulness of radiomics and subsequently improved
patient outcomes in a setting as close to clinical routine as
possible [15, 16].

Of course, neither was Rome built in one day, nor did
cardiac CT find its way to clinical routine just shortly after
the first developments in 1976 [17]. Nevertheless, in order to
move the field of radiomics forward, future research should
focus on the challenges mentioned above (Table 1). It might
not be an easy task, but the effort could prove worthwhile—or
as a prominent political figure might have said, had he done
research in radiomics: “We should choose to bring radiomics
to clinical routine in this decade, not because it is easy, but

because it is hard; because the goal should be to serve our
patients and improve outcomes”.
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