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Abstract
Objectives Head and neck squamous cell carcinoma (HNSCC) shows a remarkable heterogeneity between tumors, whichmay be
captured by a variety of quantitative features extracted from diagnostic images, termed radiomics. The aim of this study was to
develop and validate MRI-based radiomic prognostic models in oral and oropharyngeal cancer.
Materials and Methods Native T1-weighted images of four independent, retrospective (2005–2013), patient cohorts (n = 102, n = 76,
n = 89, and n = 56) were used to delineate primary tumors, and to extract 545 quantitative features from. Subsequently, redundancy
filtering and factor analysis were performed to handle collinearity in the data. Next, radiomic prognostic models were trained and
validated to predict overall survival (OS) and relapse-free survival (RFS). Radiomic features were compared to and combined with
prognostic models based on standard clinical parameters. Performance was assessed by integrated area under the curve (iAUC).
Results In oral cancer, the radiomic model showed an iAUC of 0.69 (OS) and 0.70 (RFS) in the validation cohort, whereas the
iAUC in the oropharyngeal cancer validation cohort was 0.71 (OS) and 0.74 (RFS). By integration of radiomic and clinical
variables, the most accurate models were defined (iAUC oral cavity, 0.72 (OS) and 0.74 (RFS); iAUC oropharynx, 0.81 (OS) and
0.78 (RFS)), and these combined models outperformed prognostic models based on standard clinical variables only (p < 0.001).
Conclusions MRI radiomics is feasible in HNSCC despite the known variability in MRI vendors and acquisition protocols, and
radiomic features added information to prognostic models based on clinical parameters.
Key Points
• MRI radiomics can predict overall survival and relapse-free survival in oral and HPV-negative oropharyngeal cancer.
• MRI radiomics provides additional prognostic information to known clinical variables, with the best performance of the
combined models.

• Variation in MRI vendors and acquisition protocols did not influence performance of radiomic prognostic models.
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Abbreviations
ACE-27 Adult Comorbidity Evaluation 27
HNSCC Head and neck squamous cell carcinoma
iAUC Integrated area under the curve
MANOVA Multivariate analysis of variance
OPSCC Oropharyngeal squamous cell carcinoma
OS Overall survival
OSCC Oral squamous cell carcinoma
RFS Relapse-free survival
STIR Short TI inversion recovery

Introduction

Head and neck squamous cell carcinoma (HNSCC) is a ma-
lignancy arising in the mucosal lining of the oral cavity, oro-
pharynx, larynx, and hypopharynx [1]. Unfortunately, mortal-
ity rates are high [2], and long-term functional deficits often
remain after therapy [3]. Ideally, treatment is personalized to
maximize treatment efficacy and minimize side effects.
However, treatment personalization is currently only based
on stage, site, and histological parameters after surgery, with
suboptimal performance [4].

Despite that HNSCC arise in one tissue type, they are re-
markably heterogeneous hampering accurate prediction of
clinical behavior [5]. This heterogeneous tumor biology may
be captured by imaging [6, 7]. In the past, images were mostly
described by qualitative features such as dimension and inva-
sion in neighboring structures, but currently images are also
being analyzed by extraction of a variety of quantitative fea-
tures, also termed radiomics [8].

Radiomic analyses have previously been applied in HNSCC
patients, but most studies focused on computed tomography
(CT), most particularly for radiotherapy planning. Aerts et al
described a prognostic radiomic signature based on CT scans
of lung cancer and applied this signature successfully in oropha-
ryngeal cancer [9]. Others followed with comparable approaches
[10–14]. The preference for CT is explained by (i) intuitive in-
terpretation of signal intensities that correspond to tissue
radiodensity [8], (ii) standardization of imaging performance
across vendors and scanners [8], and (iii) availability of delineat-
ed tumor volumes from radiation treatment plans.

Nonetheless, in clinical practice, magnetic resonance imaging
(MRI) is often the modality of choice for imaging of head and
neck tumors, because of the superior soft tissue contrast.
However, the acquired MRI signal intensities are influenced by
scanner parameters and many image acquisition-related factors
[15]. Still, MRI can identify physical properties of the tumor by
application of separate sequence acquisition protocols (e.g.,
diffusion-weighted MRI (DWI), dynamic contrast-enhanced

(DCE)MRI [16]), and therefore, MRI might better capture over-
all tumor biology than CT. As such, MRI radiomics was able to
categorize breast cancer, glioblastoma, and prostate cancer in
different molecular subtypes [17–19]. In HNSCC, prognostic
models based on MRI radiomics were only described for small
series of less than 20 cases of oropharyngeal cancer [20, 21] or
heterogeneous cohorts [22, 23].

In this study, we present an MRI radiomics workflow
based on T1-weighted images that is applied in two indepen-
dent patient cohorts of oral cancer (n = 102 and n = 76) and
two cohorts of HPV-negative oropharyngeal cancer (n = 89
and n = 56) for prediction of overall survival (OS) and relapse-
free survival (RFS).

Material and methods

Patients

Four independent, retrospective cohorts of HNSCC patients
included (i) a cohort of oral squamous cell carcinoma (OSCC)
patients from Amsterdam UMC, location VUmc (VUMC),
treated from 2005 to 2013; (ii) a cohort of OSCC patients from
University Medical Center Utrecht (UMCU) treated from
2010 to 2013; (iii) a cohort of HPV-negative oropharyngeal
squamous cell carcinoma (OPSCC) patients from VUMC,
treated from 2008 to 2012; and (iv) a cohort of HPV-
negative OPSCC patients from UMCU treated from 2010 to
2013. All patients were treated with curative intent. HPV sta-
tus was assessed with p16 immunohistochemistry and subse-
quent PCR-based HPV DNA detec t ion on p16-
immunopositive cases. HPV-positive tumors were excluded
because this group is considered to be a separate disease entity
within HNSCC [24], which would interfere with radiomic
findings [25] and clinical outcome [26]. The Dutch Medical
Research Involving Human Subjects Act (WMO) does not
apply to this study and therefore informed consent was waived
by the Medical Ethics Review Committee at Amsterdam
UMC. Medical records were reviewed to obtain clinical char-
acteristics, including age at diagnosis, gender, comorbidity,
and clinical TNM-stage (7th edition) [27]. Comorbidity was
classified using the Adult Comorbidity Evaluation 27 (ACE-
27) [28]. Two outcome measures were used: (a) OS, which
was defined as time from date of incidence to death from any
cause; and (b) RFS, which was defined as time from date of
incidence to development of locoregional recurrence, distant
metastasis, or second primary HNSCC. For RFS, patients who
died of other causes or developed other tumors outside the
head and neck region were censored at the date of death or
incidence date of the other tumor.
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MRI

The schematic workflow of this study is depicted in Fig. 1.
Axial 2D T1W images without gadolinium enhancement and
short TI inversion recovery (STIR) (OSCC VUMC, OSCC
UMCU, OPSCC VUMC) or T2-weighted (OPSCC UMCU)
images were available for all patients. These scans were ob-
tained using scanners of different vendors and protocols
(Supplemental Table 1). Native T1W images were used for
feature extraction because this sequence was available for all
tumors. The STIR sequence was used to facilitate tumor seg-
mentation, and for feature extraction in the OSCC cohorts to
assess a possible additional prognostic value. Our protocols of
contrast-enhanced T1W imaging changed in time (e.g., slice
thickness, 2D versus 3D, with or without fat saturation), and
therefore this sequence was not considered in this study.

Segmentation

MR images of VUMC patients were transferred to VelocityAI
3.1 (Varian Medical Systems), whereas UMCU MRI scans
were transferred to an in-house developed target volume de-
lineation tool [29]. Subsequently, STIR images were automat-
ically co-registered to the T1W images and registration was
visually checked. Supervised manual delineation of all prima-
ry tumors was performed by S.M. and B.P. (both 3 years of
experience) with visual inspection of delineation by senior
head and neck radiologists (P.G. or F.P. with 11 and 25 years
of experience). In Fig. 2, an example of a delineated tumor is
shown on T1W MRI and STIR.

Feature extraction and processing

The feature extraction and processing can be found in detail in
the Supplemental Methods. The extracted features are de-
scribed in Table 1.

Interobserver feature stability

MRI scans of 30 OPSCCs were re-segmented by an indepen-
dent senior head and neck radiologist (J.C., with 35 years of
experience) according to the pipeline described before.

Fig. 1 Illustration of radiomics pipeline. Abbreviations: MRI, magnetic resonance imaging; OPSCC, oropharyngeal squamous cell carcinoma; OSCC,
oral cavity squamous cell carcinoma; T1W, T1-weighted

Fig. 2 Illustration of tumor segmentation on T1 MRI and STIR.
Exemplary segmentation of a T2N2b tongue tumor on the left side on
T1W MRI (a) and STIR (b)
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Subsequently, feature extraction was performed and the mean
value of similar features was determined, leaving n = 89
unique features. The Kendall’s coefficient of concordance
was determined and a coefficient of ≥ 0.7 was considered high
concordance.

Factor analysis and model training

The subsequent steps of predictive modelling that were ap-
plied in this study have been described before [30], and can
be found in detail in the Supplemental Methods.

Influence of vendor and magnetic field strength

As described above, a variety of MRI acquisition protocols
and equipment of different vendors were used. Although this
may impact the radiomics analyses, it reflects current clinical
routine. Ideally, a correlation analyses would be performed of
test-retest data from different vendors and magnetic field
strengths to standardize the data, but such datasets are not
available. Instead, multivariate analysis of variance

(MANOVA) was performed to compare the mean factor
scores between vendors and magnetic field strength in
VUMC patient cohorts. In the UMCU cohorts (OSCC and
OPSCC), only the mean factor scores between magnetic field
strengths were compared, because most scans were obtained
using one MR vendor (Table 2).

Results

Patient characteristics

Patient cohorts consisted of 102 patients (VUMC OSCC), 76
patients (UMCU OSCC), 89 patients (VUMC OPSCC), and
56 patients (UMCU OPSCC). Patient characteristics for each
cohort are presented in Table 2. VUMC OSCC and UMCU
OSCC cohorts had similar distributions of age and gender, but
VUMC patients presented with higher comorbidity
scores (p < 0.001), more advanced T-stage (p < 0.01),
and consequently a poorer overall survival (p = 0.01).
In contrast, VUMC OPSCC and UMCU OPSCC cohorts

Table 1 Radiomic raw features (p = 545)

Group Number Name

First-order statistics 35 From entire image (before normalization): maximum gray level, minimum gray level, range, mean,
median, standard deviation, maximum gray level of all values over 0.5, median of all values over 0.5,
mean of all values over 0.5

From tumor VOI (after normalization): maximum gray level, minimum gray level, range, mean, median,
standard deviation, interquartile range, coefficient of variation (COV, in percentage), skewness,
kurtosis, excess kurtosis, median absolute deviation of the median, mean absolute deviation of the
median, mean absolute deviation of the mean, mean Laplacian, total energy, variance,
root-mean-square (RMS), mean of the maximum voxel and the six adjacent voxels (Maxstar), integrated
intensity, entropya, uniformitya

Spatial autocorrelation 2 Moran’s I, Geary’s C

Intensity-volume histogram
features

1 Area under a cumulative intensity-volume histogram curve (AUC)

Morphological features 11 Tumor volume, surface area, surface-to-volume ratio, surface area to surface of an equivolumetric
sphere-to-volume ratio, radius of an equivolumetric sphere, compactness 1, compactness 2, spherical
disproportion, sphericity, asphericity, maximum 3D diameter

Fractal features 4 Fractal dimension (calculated), fractal dimension (fitted), fractal abundance, fractal lacunarity

Texture features based on gray
level co-occurrence matrixa,b

300 Joint maximum, joint average, joint variance, joint entropy, difference average, difference variance,
difference entropy, sum average, sum variance, sum entropy, angular second moment, contrast,
dissimilarity, inverse difference, inverse difference normalized, inverse difference moment, inverse
difference moment normalized, inverse variance, correlation, autocorrelation, cluster tendency, cluster
shade, cluster prominence, first measure of information correlation, second measure of information
correlation

Texture features based on gray
level run lengtha,b

192 Short-run emphasis, long-run emphasis, low-gray-level-run emphasis, high-gray-level-run emphasis,
short-run low-gray-level emphasis, short-run high-gray-level emphasis, long-run low-gray-level
emphasis, long-run high-gray-level emphasis, gray level non-uniformity, gray level non-uniformity
normalized, run length non-uniformity, run length non-uniformity normalized, run percentage, gray
level variance, run length variance, run entropy

aObtained using a discretization of 32, 64, or 128 gray level bins
b Calculated from matrices per direction and then averaged (average), or from merged matrix created using all matrices over all directions (combined).
The matrices were calculated either per x-y plane (2D, but all planes were used in the calculation) or volumetrically (3D)
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only differed significantly from each other in terms of
ACE-27 score (p = 0.01). Moreover, the scans were

obtained using scanners of different vendors and proto-
cols (see also Supplemental Table 1).

Table 2 Patient characteristics

VUMC OSCC UMCU OSCC VUMC OPSCC UMCU OPSCC p value* p value±

Number of cases 102 76 89 56

Median age Years (MAD) 63 (11.9) 66.3 (11.1) 60 (7.4) 64 (11.9) 0.23 0.24

Gender Male 64 (62.7) 46 (60.5) 49 (55.1) 35 (62.5)

Female 38 (37.3) 30 (39.5) 40 (44.9) 21 (37.5) 0.77 0.48

Smoking Current 51 (50.0) 34 (44.7) 54 (60.7) 34 (60.7)

Former 35 (34.3) 24 (31.6) 26 (29.2) 13 (23.2)

Never 16 (15.7) 15 (19.7) 9 (10.1) 6 (10.7)

Unknown 0 (0) 3 (3.9) 0 (0) 3 (5.4) 0.23 0.16

Alcohol Current 68 (66.7) 49 (64.5) 66 (74.2) 40 (71.4)

Former 13 (12.7) 6 (7.9) 12 (13.5) 10 (17.9)

Never 21 (20.6) 17 (22.4) 11 (12.4) 3 (5.4)

Unknown 0 (0) 4 (5.3) 0 (0) 3 (5.4) 0.11 0.07

ACE27 0 28 (27.5) 27 (35.5) 26 (29.2) 17 (30.4)

1 34 (33.3) 40 (52.6) 33 (37.1) 27 (48.2)

2 28 (27.5) 4 (5.3) 27 (30.3) 7 (12.5)

3 12 (11.8) 5 (6.6) 3 (3.4) 1 (1.8)

Unknown 0 (0) 0 (0) 0 (0) 4 (7.1) < 0.001 0.01

T-stage 1 12 (11.8) 20 (26.3) 7 (7.9) 6 (10.7)

2 36 (35.3) 28 (36.8) 35 (39.3) 17 (30.4)

3 21 (20.6) 4 (5.3) 16 (18.0) 13 (23.2)

4 33 (32.4) 24 (31.6) 31 (34.8) 20 (35.7) < 0.01 0.67

N-stage 0 62 (60.8) 51 (67.1) 40 (44.9) 18 (32.1)

1 20 (19.6) 6 (7.9) 14 (15.7) 7 (12.5)

2 20 (19.6) 19 (25.0) 35 (39.3) 30 (53.6)

3 0 (0) 0 (0) 0 (0) 1 (1.8) 0.13 0.19

Stage I 10 (9.8) 18 (23.7) 4 (4.5) 4 (7.1)

II 23 (22.5) 17 (22.4) 17 (19.1) 6 (10.7)

III 25 (24.5) 6 (7.9) 15 (16.9) 7 (12.5)

IV 44 (43.1) 35 (46.1) 53 (59.6) 39 (69.6) 0.01 0.4

Vendor GE 49 (48.0) 0 (0) 70 (78.7) 0 (0)

Philips 4 (3.9) 76 (100) 1 (1.1) 55 (98.2)

Siemens 48 (47.1) 0 (0) 18 (20.2) 1 (1.8)

Toshiba 1 (1.0) 0 (0) 0 (0) 0 (0) < 0.001 < 0.001

Magnetic field strength 1.0 T 12 (11.8) 0 (0) 1 (1.1) 0 (0)

1.5 T 83 (81.4) 58 (76.3) 71 (79.8) 21 (37.5)

3.0 T 7 (6.9) 18 (23.7) 17 (19.1) 35 (62.5) < 0.001 < 0.001

Survival Deceased 49 (48.0) 24 (31.6) 47 (52.8) 28 (50.0)

Alive 53 (52.0) 52 (68.4) 42 (47.2) 28 (50.0) 0.01 0.87

Median time to death Years (MAD) 1.4 (1.2) 1.3 (1.0) 2.1 (1.9) 2.0 (1.5) 0.03 0.17

Median follow-up time (alive patients) Years (MAD) 4.5 (2.0) 3.7 (0.9) 5.9 (1.7) 5.0 (0.5) < 0.001 < 0.001

Abbreviations: MAD, median absolute deviation; OPSCC, oropharyngeal squamous cell carcinoma; OSCC, oral cavity squamous cell carcinoma; T,
Tesla

p value* = VUMCOSCC compared to UMCUOSCC, and calculated with the use of Student’s t test for continuous variables and χ2 test for categorical
variables

p value± = VUMC OPSCC compared to UMCU OPSCC, and calculated with the use of Student’s t test for continuous variables and χ2 test for
categorical variables
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Normalization

Since different MRI parameters were used on MRI systems
supplied by different vendors, we assessed the influence of
signal intensities on radiomic analysis [31, 32] using five gray
level normalization methods that are described in the
Supplemental Methods. A high concordance was found for
the 89 radiomics features before and after normalization
(mean = 0.82, sd = 0.19). Figure 3 a shows a histogram of
the concordances of the core 89 radiomics features. Given the
minor influence of gray level normalization on these features,
it was decided to proceed with unnormalized data.

Interobserver stability

Another putative important variable in radiomics feature ex-
traction is definition of the tumor contours by manual delin-
eation, which may introduce variability in the data by incon-
sistency of segmentation [33]. Therefore, the stability of the
radiomics features of a random subgroup of 30 VUMC

OPSCCs was assessed when the tumors were delineated by
two independent radiologists. A high concordance was found
of the 89 radiomics features (mean = 0.88, sd = 0.09) suggest-
ing that delineation by experienced radiologists is consistent
or minor changes in delineation do not impact radiomic fea-
tures. Figure 3b displays the concordances of the 89 core
radiomics features with multiple delineations.

Dimension reduction and factor analysis

Redundancy filtering was applied to the 89 core radiomic
features to remove highly correlated features which resulted
in 50 features (VUMC OSCC dataset) and 51 features
(VUMC OPSCC dataset). A regularized estimator of the cor-
relation matrix between the features was obtained, and factor
analysis was performed on this matrix, which showed that
both VUMC OSCC features and VUMC OPSCC features
were described by 7 latent factors. The factors accounted for
78% (VUMC OSCC) and 77% (VUMC OPSCC) of the var-
iation in the data. The 7 factors can be roughly interpreted as
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Fig. 3 Radiomic features showed
high concordance before and after
gray level normalization and high
interobserver stability. a Five
methods of gray level
normalization were performed
before feature extraction and the
concordance was calculated of the
89 averaged radiomics features
before and after normalization.
The figure shows an histogram of
the Kendall’s coefficients of
concordance (mean = 0.82, sd =
0.19). b For 30 VUMC OPSCCs,
interobserver stability was
assessed by delineation of the
tumors by two independent
radiologists. The figure shows an
histogram of the Kendall’s
coefficients of concordance
(mean = 0.88, sd = 0.09)
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representing (i) 3D geometrics, (ii) meta-gray level co-occur-
rence, (iii) meta-first order, (iv) gray level mix, (v) meta-gray
level run length, (vi) geometrics, and (vii) entropy. The exact
content of each factor is shown in Supplemental Table 2
(OSCC) and Supplemental Table 3 (OPSCC). The highest
variation in both datasets is explained by factors 1 (3D geo-
metrics) and 2 (meta-gray level co-occurrence).

OSCC prognostic models

The 7 extracted latent factors were used to train a model to
predict OS and RFS of OSCC patients. For OS, an iAUC was
found of 0.69 in both the VUMC OSCC cohort and the
UMCU OSCC cohort (Table 3). For RFS, iAUCs of 0.63
and 0.70 were found in the VUMC OSCC cohort and the
UMCU OSCC cohort, respectively (Table 3). These
radiomics models were compared to models using (i) tumor
volume, and (ii) clinical variables (N-stage, age at diagnosis
and gender). Tumor volume only had a limited prognostic
value (iAUC 0.50–0.60). Compared to the radiomics only
model, the clinical models performed equally or worse
(Table 3). Subsequently, the radiomics and clinical models
were combined to assess whether this could further improve
the performance. Indeed, the most accurate models were
found when radiomics and clinical data were combined

(Table 3), and the iAUC improvement was also statistically
significant (Supplemental Table 4). Figure 4a and b show
Kaplan-Meier curves of the UMCU OSCC cohort with group
stratification based on the median predicted risk.

For delineation, STIR imaging was also used since the
tumors are more clearly discriminated from normal tissue on
this sequence. Radiomic features extracted from this sequence
may also further improve the prognostic model, and therefore
additional prognostic models based on the combination of
STIR and T1W MRI radiomic features were trained and val-
idated. In the training cohort, the iAUC did not improve by
using the combination of T1W MRI and STIR (Table 4),
whereas in the validation cohort the iAUC did improve, but
the precision of the estimated iAUC is low given the wide
confidence intervals. The difference between the cohorts
might also be explained by the shorter follow-up time in the
OSCC UMCU cohort or the smaller cohort size (Table 2).

OPSCC prognostic models

Following the strategy of assessing the relevance of radiomics
models in OSCC patients, OPSCC models were trained using
radiomics, clinical data, tumor volume, and a combination of
both. Note that the study encompassed only HPV-negative
cases. Similarly to the OSCC cohorts, radiomics-only models

Table 3 Performance of
radiomic, clinical, and combined
models in OSCC and OPSCC
cohorts

Overall survival Relapse-free survival
iAUC (95% CIa) pb value iAUC (95% CIa) pb value

OSCC VUMC—training

Radiomic 0.69 (0.59–0.73) 0.63 (0.50–0.68)

Clinicalc 0.69 (0.61–0.75) 0.60 (0.49–0.66)

Radiomic + clinicalc 0.75 (0.65–0.77) 0.65 (0.51–0.67)

OSCC UMCU—validation

Radiomic 0.69 (0.52–0.75) 0.009 0.70 (0.54–0.75) 0.003

Clinicalc,d 0.65 (0.51–0.72) 0.02 0.64 (0.51–0.70) 0.08

Radiomic + clinicalc,d 0.72 (0.55–0.74) 0.01 0.74 (0.58–0.78) < 0.001

OPSCC VUMC—training

Radiomic 0.71 (0.62–0.76) 0.70 (0.58–0.77)

Clinicalc 0.57 (0.46–0.61) 0.56 (0.42–0.61)

Radiomic + clinicalc 0.73 (0.62–0.76) 0.70 (0.56–0.75)

OPSCC UMCU—validation

Radiomic 0.71 (0.58–0.77) 0.02 0.74 (0.60–0.83) 0.08

Clinicalc,d 0.74 (0.64–0.83) < 0.001 0.71 (0.58–0.82) 0.01

Radiomic + clinicalc,d 0.81 (0.68–0.91) < 0.001 0.78 (0.62–0.83) 0.04

Abbreviations: CI, confidence interval; iAUC, integrated area under the curve; OPSCC, oropharyngeal squamous
cell carcinoma; OSCC, oral cavity squamous cell carcinoma
a CIs were assessed by bootstrapping
bAssessed by log-rank testing in validation cohorts with group stratification based on the median predicted risk
c Clinical models consisted of N-stage, age at diagnosis and gender
d Recalibration of coefficients of clinical variables was allowed to optimize comparability with radiomic models
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predicted the outcome of OPSCC patients (Table 3). The clin-
ical models, however, were less informative in the VUMC
cohort (Table 3). The better performance of the clinical
models in the OPSCC UMCU cohort may relate to the shorter
follow-up time or the smaller cohort size (Table 2). The com-
bined models showed the highest iAUCs (Table 3), and were

significantly better than radiomic and clinical models
(Supplemental Table 4). Tumor volume only had a lim-
ited prognostic value (iAUC 0.53–0.64). Figure 4c and
d show Kaplan-Meier curves of the UMCU OPSCC
cohort with group stratification based on the median
predicted risk.

a b

c d

OSCC
Overall survival

OSCC
Relapse-free survival

OPSCC
Overall survival

OPSCC
Relapse-free survival

Time (years) Time (years)

Time (years) Time (years)

Fig. 4 The radiomic signature predicts overall and relapse-free survival in
oral cavity squamous cell carcinoma and oropharyngeal squamous cell
carcinoma. a, bKaplan-Meier analysis of overall survival (a) and relapse-
free survival (b) with risk groups defined by median predicted hazards of
the radiomic signature in the UMCU validation cohort of 76 OSCC pa-
tients. c, d Kaplan-Meier analysis of overall survival (c) and relapse-free

survival (d) of different risk groups defined by median predicted hazards
of the radiomic signature in the UMCU validation cohort of 56 OPSCC
patients. All p values are calculated using a log-rank test. Tick marks on
curves indicate censoring. Abbreviations: OPSCC, oropharyngeal squa-
mous cell carcinoma; OSCC, oral cavity squamous cell carcinoma

Table 4 Performance of radiomic
(T1W + STIR), clinical, and
combined models in OSCC
cohort

Overall survival Relapse-free survival
iAUC (95% CIa) pb value iAUC (95% CIa) pb value

OSCC VUMC—training

Radiomic 0.67 (0.57–0.71) 0.62 (0.47–0.65)

Clinicalc 0.69 (0.61–0.75) 0.60 (0.49–0.66)

Radiomic + clinicalc 0.74 (0.64–0.76) 0.65 (0.49–0.66)

OSCC UMCU—validation

Radiomic 0.80 (0.68–0.84) < 0.001 0.72 (0.57–0.77) 0.01

Clinicalc,d 0.65 (0.51–0.72) 0.02 0.64 (0.51–0.70) 0.08

Radiomic + clinicalc,d 0.82 (0.67–0.83) < 0.001 0.76 (0.61–0.80) 0.001

Abbreviations: CI, confidence interval; iAUC, integrated area under the curve; OPSCC, oropharyngeal squamous
cell carcinoma; OSCC, oral cavity squamous cell carcinoma; STIR, short TI inversion recovery; T1W, T1-
weighted
a CIs were assessed by bootstrapping
bAssessed by log-rank testing in validation cohorts with group stratification based on the median predicted risk
c Clinical models consisted of N-stage, age at diagnosis and gender
d Recalibration of coefficients of clinical variables was allowed to optimize comparability with radiomic models
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Influence of vendor and magnetic field strength

Radiomic features were extracted from scans with three dif-
ferent magnetic field strengths (Table 2). The VUMC cohorts
also consisted of data extracted from scanners of various MR
vendors (Table 2). MANOVA analysis implied that there
might be an effect of the field strength on factor 3 (meta-first
order), factor 4 (gray level mix), and factor 5 (meta-gray level
run length) (Supplemental Table 5). Second, MANOVA anal-
ysis presented a possible effect of MR vendor on factor 3
(meta-first order), factor 4 (gray level mix), factor 5 (meta-
gray level run length), factor 6 (geometrics), and factor 7
(entropy) (Supplemental Table 6). However, the indicated ef-
fects were not consistent across datasets, except for factor 3
(meta-first order).

Discussion

This study was set out to develop prognostic models based on
MRI radiomics in oral cavity and oropharyngeal cancer pa-
tients. Although MRI is most commonly used in head and
neck cancer imaging, clinical routine shows a large variety
of MRI vendors and MRI acquisition protocols, which might
hamper radiomic analyses. Here we show that despite this
potential problem, relevant information can be extracted.

In four patient cohorts, 545 quantitative features were ex-
tracted from native T1W MRI, and a four-step method was
applied to reduce dimensions while preserving the data’s co-
variation [30]. This method includes redundancy filtering and
factor analysis, and provided models based on 7 latent factors
both in OSCC and in OPSCC. These factors roughly describe
tumor intensity (i.e., “graylevel-mix” and “meta-firstorder”),
shape (i.e., “3D geometrics” and “geometrics”), and texture
(i.e., “meta-graylevelco-occurrence,” “meta-graylevelrunlength,”
and “entropy”). In validation setting, the prognostic perfor-
mance of these models was accurate, and the combined
models outperformed clinical characteristics alone in predicting
both OS and RFS. These results are very promising and
indicate that MRI radiomic analysis may have additional value
to current prognostic variables.

Furthermore, as with all prognostic models, it is important
that it applies in settings outside the reference hospitals in-
volved in the development. Partly, this was overcome by
using independent validation cohorts provided by a second
institution that uses imaging equipment from different ven-
dors. Moreover, feature stability remained high with and with-
out gray level normalization, and did not depend on interob-
server variability. Together this suggests that the external va-
lidity of the signature described is expected to be high.

To date, only few prognostic MRI radiomic signatures for
HNSCC have been published [20–23]. Most previous studies
applied radiomic analyses to CT scans of HNSCC patients

[10–13], and comparable performance of the prognostic
models was reported. However, in these studies, delineated
CT scans from radiotherapy treatment plans were used, which
are often not available in surgically treated patients and there-
by not available for manyHNSCC patients. Nonetheless,MRI
radiomics has been applied to nasopharyngeal carcinoma
[34–39], which is a separate disease entity [40].

Next to radiomic signatures, there is a myriad of other
prognostic biomarkers for HNSCC available that, for instance,
are based on imaging [41], immunohistochemistry [42], and
microarray data [4]. The advantages of our radiomic profile is
that it is available before treatment and based on standard
diagnostic images, thereby avoiding additional costs and dis-
comfort for the patient. Moreover, radiomic analyses may
better capture tumor heterogeneity than biomarkers [43].

Our study has several strengths. First, standard-of-care na-
tive T1W MR images were used to extract the radiomic fea-
tures. This sequence is used in almost all clinical HNSCC
protocols and makes the results broadly applicable. Second,
multiple adequately sized patient cohorts were imaged on
scanners of different vendors to develop and validate the
models, which further contributes to the generalizability of
the approach. In addition, features were not very sensitive to
delineation. Finally, the prognostic signature is interpretable
for clinicians: the latent factors represented different tumor
characteristics and were subsequently used in Cox regression.
Cox regression is familiar to most clinicians as opposed to
machine learning algorithms [44], alleviating the “black
box” effect of many high-throughput prognostic models.

However, there are also limitations to be identified in this
study. Foremost, the MRI scans of the tumors in this study
stem from scanners of different vendors and were attained
with different acquisition settings, causing data variability.
Indeed, our analyses indicate that some factor scores might
be influenced by the variety of scanning protocols and used
MR equipment. This is especially true for factor 3, which is
made up of features describing first-order statistics that would
be expected to be influenced by acquisition settings and mag-
netic field strength. However, the largest variability in the data
was explained by factors 1 and 2, which appeared not to be
influenced by vendor and field strength variability.
Nonetheless, more uniform data will likely improve model
performance and validity [8]. Finally, the radiomic signatures
were combined with several important clinical variables (e.g.,
N-stage, age at diagnosis), but combination with other impor-
tant clinical factors such as smoking (packyears) and alcohol
consumption (unityears) might improve prediction accuracy
further [45]. Of note, the retrospective nature of this study
precluded the use of the 8th edition of the UICC TNM
Classification because important information was not avail-
able (i.e., clinical depth of invasion and clinical extranodal
extension). However, it has been shown that the 8th edition
outperforms the previous edition [46], and including the new
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system in future studies may improve prediction of the clinical
and combined clinical-radiomic models.

In conclusion, we developed and validated a prognostic
signature based on radiomic features extracted from
standard-of-care MRI. This finding suggests that important
prognostic information is present in MRI databases of
HNSCC patients across the world. It also implicates that
MRI acquisition protocols should be further standardized to
optimize exchangeability of data and models. Future research
could focus on analysis of feature stability by scanning pa-
tients on scanners of different vendors, and on the same scan-
ner at multiple time points (test-retest analysis). Moreover, we
already show that combining multiple sequences may im-
prove the prognostic performance of the model, while future
studies should incorporate functional MRI sequences and
multiple imaging modalities (i.e., CT and PET) to capture
more aspects of tumor biology.

Acknowledgments The authors thank Furkan Yaz for his help in data
acquisition and extraction, and Patricia Doornaert and Tezontl Rosario
for the assistance in tumor delineation using VelocityAI 3.1.

Funding information This study has received funding by the European
Union’s Seventh Framework Project (grant agreement 611425: OraMod)
and by the Netherlands Organisation for Health Research and
Development (ZonMw) (grant 10-10400-98-14002).

Compliance with ethical standards

Guarantor The scientific guarantor of this publication is Pim de Graaf.

Conflict of interest The authors of this manuscript declare no relation-
ships with any companies whose products or services may be related to
the subject matter of the article.

Statistics and biometry One of the authors has significant statistical
expertise.

Informed consent Written informed consent was waived by the
Institutional Review Board.

Ethical approval Institutional Review Board approval was obtained.

Methodology
• retrospective
• diagnostic or prognostic study
• multicenter study

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes weremade. The images or other third party material in this article
are included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will

need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Forastiere A, KochW, Trotti A, Sidransky D (2001) Head and neck
cancer. N Engl J Med 345:1890–1900

2. Surveillance E, and End Results (SEER) Program (www.seer.
cancer.gov) Research Data (1975-2016), National Cancer
Institute, DCCPS, Surveillance Research Program, released April
2019, based on the November 2018 submission

3. Murphy BA, Deng J (2015) Advances in supportive care for late
effects of head and neck cancer. J Clin Oncol 33:3314–3321

4. Mes SW, Leemans CR, Brakenhoff RH (2016) Applications of
molecular diagnostics for personalized treatment of head and neck
cancer: state of the art. Expert Rev Mol Diagn 16:205–221

5. Leemans CR, Snijders PJF, Brakenhoff RH (2018) The molecular
landscape of head and neck cancer. Nat Rev Cancer 18:269–282

6. Gevaert O, Xu J, Hoang CD et al (2012) Non-small cell lung can-
cer: identifying prognostic imaging biomarkers by leveraging pub-
lic gene expression microarray data–methods and preliminary re-
sults. Radiology 264:387–396

7. O’Connor JP, Rose CJ, Waterton JC, Carano RA, Parker GJ,
Jackson A (2015) Imaging intratumor heterogeneity: role in therapy
response, resistance, and clinical outcome. Clin Cancer Res 21:
249–257

8. Kumar V, Gu Y, Basu S et al (2012) Radiomics: the process and the
challenges. Magn Reson Imaging 30:1234–1248

9. Aerts HJ, Velazquez ER, Leijenaar RT et al (2014) Decoding tu-
mour phenotype by noninvasive imaging using a quantitative
radiomics approach. Nat Commun 5:4006

10. Parmar C, Leijenaar RT, Grossmann P et al (2015) Radiomic fea-
ture clusters and prognostic signatures specific for lung and head &
neck cancer. Sci Rep 5:11044

11. Leger S, Zwanenburg A, Pilz K et al (2017) A comparative study of
machine learning methods for time-to-event survival data for
radiomics risk modelling. Sci Rep 7:13206

12. Vallieres M, Kay-Rivest E, Perrin LJ et al (2017) Radiomics strat-
egies for risk assessment of tumour failure in head-and-neck cancer.
Sci Rep 7:10117

13. Bogowicz M, Riesterer O, Stark LS et al (2017) Comparison of
PET and CT radiomics for prediction of local tumor control in head
and neck squamous cell carcinoma. Acta Oncol 56:1531–1536

14. Forghani R, Chatterjee A, Reinhold C et al (2019) Head and neck
squamous cell carcinoma: prediction of cervical lymph node me-
tastasis by dual-energy CT texture analysis with machine learning.
Eur Radiol 29:6172–6181

15. Jethanandani A, Lin TA, Volpe S et al (2018) Exploring applica-
tions of radiomics in magnetic resonance imaging of head and neck
cancer: a systematic review. Front Oncol 8:131

16. Nooij RP, Hof JJ, van Laar PJ, van der Hoorn A (2018) Functional
MRI for treatment evaluation in patients with head and neck squa-
mous cell carcinoma: a review of the literature from a radiologist
perspective. Curr Radiol Rep 6:2

17. Li H, Zhu Y, Burnside ES et al (2016) Quantitative MRI radiomics
in the prediction of molecular classifications of breast cancer sub-
types in the TCGA/TCIA data set. NPJ Breast Cancer. https://doi.
org/10.1038/npjbcancer.2016.12

18. Gevaert O, Mitchell LA, Achrol AS et al (2014) Glioblastoma
multiforme: exploratory radiogenomic analysis by using quantita-
tive image features. Radiology 273:168–174

6320 Eur Radiol (2020) 30:6311–6321

http://creativecommons.org/licenses/by/4.0/
www.seer.cancer.gov
www.seer.cancer.gov
https://doi.org/10.1038/npjbcancer.2016.12
https://doi.org/10.1038/npjbcancer.2016.12


19. Gnep K, Fargeas A, Gutierrez-Carvajal RE et al (2017) Haralick
textural features on T2 -weighted MRI are associated with bio-
chemical recurrence following radiotherapy for peripheral zone
prostate cancer. J Magn Reson Imaging 45:103–117

20. Dang M, Lysack JT, Wu T et al (2015) MRI texture analysis pre-
dicts p53 status in head and neck squamous cell carcinoma. AJNR
Am J Neuroradiol 36:166–170

21. Jansen JF, Lu Y, Gupta G et al (2016) Texture analysis on para-
metric maps derived from dynamic contrast-enhanced magnetic
resonance imaging in head and neck cancer. World J Radiol 8:
90–97

22. Yuan Y, Ren J, Shi Y, Tao X (2019)MRI-based radiomic signature
as predictive marker for patients with head and neck squamous cell
carcinoma. Eur J Radiol 117:193–198

23. Ren J, Tian J, Yuan Y et al (2018) Magnetic resonance imaging
based radiomics signature for the preoperative discrimination of
stage I-II and III-IV head and neck squamous cell carcinoma. Eur
J Radiol 106:1–6

24. Hayes DN, Van Waes C, Seiwert TY (2015) Genetic landscape of
human papillomavirus-associated head and neck cancer and com-
parison to tobacco-related tumors. J Clin Oncol 33:3227–3234

25. Leijenaar RT, Bogowicz M, Jochems A et al (2018) Development
and validation of a radiomic signature to predict HPV (p16) status
from standard CT imaging: a multicenter study. Br J Radiol 91:
20170498

26. Nauta IH, Rietbergen MM, van Bokhoven A et al (2018)
Evaluation of the eighth TNM classification on p16-positive oro-
pharyngeal squamous cell carcinomas in the Netherlands and the
importance of additional HPV DNA testing. Ann Oncol 29:1273–
1279

27. Brierley JD, Gospodarowicz MK, Wittekind C (eds) (2016) TNM
Classification of malignant tumours, 8th edn. Wiley-Blackwell,
Hoboken

28. Piccirillo JF, Tierney RM, Costas I, Grove L, Spitznagel EL Jr
(2004) Prognostic importance of comorbidity in a hospital-based
cancer registry. JAMA 291:2441–2447

29. Bol GH, Kotte AN, van der Heide UA, Lagendijk JJ (2009)
Simultaneous multi-modality ROI delineation in clinical practice.
Comput Methods Programs Biomed 96:133–140

30. Peeters CFW, Übelhör C, Mes SW et al (2019) Stable prediction
with radiomics data. arXiv:1903.11696 [stat.ML]

31. Collewet G, Strzelecki M, Mariette F (2004) Influence of MRI
acquisition protocols and image intensity normalization methods
on texture classification. Magn Reson Imaging 22:81–91

32. Zhao B, Tan Y, Tsai WY et al (2016) Reproducibility of radiomics
for deciphering tumor phenotype with imaging. Sci Rep 6:23428

33. Balagurunathan Y, Gu Y,Wang H et al (2014) Reproducibility and
prognosis of quantitative features extracted from CT images. Transl
Oncol 7:72–87

34. Mao J, Fang J, Duan X et al (2019) Predictive value of pretreatment
MRI texture analysis in patients with primary nasopharyngeal car-
cinoma. Eur Radiol 29:4105–4113

35. Zhang B, He X, Ouyang F et al (2017) Radiomic machine-learning
classifiers for prognostic biomarkers of advanced nasopharyngeal
carcinoma. Cancer Lett 403:21–27

36. Zhang B, Ouyang F, Gu D et al (2017) Advanced nasopharyngeal
carcinoma: pre-treatment prediction of progression based on multi-
parametric MRI radiomics. Oncotarget 8:72457–72465

37. Zhang B, Tian J, Dong D et al (2017) Radiomics features of
multiparametric MRI as novel prognostic factors in advanced na-
sopharyngeal carcinoma. Clin Cancer Res 23:4259–4269

38. Zhuo EH, Zhang WJ, Li HJ et al (2019) Radiomics on multi-
modalities MR sequences can subtype patients with non-
metastatic nasopharyngeal carcinoma (NPC) into distinct survival
subgroups. Eur Radiol 29:5590–5599

39. Zhao L, Gong J, Xi Y et al (2020)MRI-based radiomics nomogram
may predict the response to induction chemotherapy and survival in
locally advanced nasopharyngeal carcinoma. Eur Radiol 30:537–
546

40. Bruce JP, Yip K, Bratman SV, Ito E, Liu FF (2015)
Nasopharyngeal cancer: molecular landscape. J Clin Oncol 33:
3346–3355

41. Marcu LG, Reid P, Bezak E (2018) The promise of novel bio-
markers for head and neck cancer from an imaging perspective.
Int J Mol Sci. https://doi.org/10.3390/ijms190925

42. Rivera C, Oliveira AK, Costa RAP, De Rossi T, Paes Leme AF
(2017) Prognostic biomarkers in oral squamous cell carcinoma: a
systematic review. Oral Oncol 72:38–47

43. Sala E, Mema E, Himoto Y et al (2017) Unravelling tumour het-
erogeneity using next-generation imaging: radiomics,
radiogenomics, and habitat imaging. Clin Radiol 72:3–10

44. Parmar C, Grossmann P, Rietveld D, Rietbergen MM, Lambin P,
Aerts HJ (2015) Radiomic machine-learning classifiers for prog-
nostic biomarkers of head and neck cancer. Front Oncol 5:272

45. Mes SW, Te Beest D, Poli T et al (2017) Prognostic modeling of
oral cancer by gene profiles and clinicopathological co-variables.
Oncotarget 8:59312–59323

46. Moeckelmann N, Ebrahimi A, Tou YK et al (2018) Prognostic
implications of the 8th edition American Joint Committee on
Cancer (AJCC) staging system in oral cavity squamous cell carci-
noma. Oral Oncol 85:82–86

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

6321Eur Radiol (2020) 30:6311–6321

https://doi.org/10.3390/ijms190925

	Outcome prediction of head and neck squamous cell carcinoma by MRI radiomic signatures
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Material and methods
	Patients
	MRI
	Segmentation
	Feature extraction and processing
	Interobserver feature stability
	Factor analysis and model training
	Influence of vendor and magnetic field strength

	Results
	Patient characteristics
	Normalization
	Interobserver stability
	Dimension reduction and factor analysis
	OSCC prognostic models
	OPSCC prognostic models
	Influence of vendor and magnetic field strength

	Discussion
	References


