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Abstract
Objective To investigate the effects of Image Biomarker Standardisation Initiative (IBSI) compliance, harmonisation of calcu-
lation settings and platform version on the statistical reliability of radiomic features and their corresponding ability to predict
clinical outcome.
Methods The statistical reliability of radiomic features was assessed retrospectively in three clinical datasets (patient numbers:
108 head and neck cancer, 37 small-cell lung cancer, 47 non-small-cell lung cancer). Features were calculated using four
platforms (PyRadiomics, LIFEx, CERR and IBEX). PyRadiomics, LIFEx and CERR are IBSI-compliant, whereas IBEX is
not. The effects of IBSI compliance, user-defined calculation settings and platform version were assessed by calculating
intraclass correlation coefficients and confidence intervals. The influence of platform choice on the relationship between radiomic
biomarkers and survival was evaluated using univariable cox regression in the largest dataset.
Results The reliability of radiomic features calculated by the different software platforms was only excellent (ICC > 0.9) for 4/17
radiomic features when comparing all four platforms. Reliability improved to ICC > 0.9 for 15/17 radiomic features when analysis was
restricted to the three IBSI-compliant platforms. Failure to harmonise calculation settings resulted in poor reliability, even across the
IBSI-compliant platforms. Software platform version also had a marked effect on feature reliability in CERR and LIFEx. Features
identified as having significant relationship to survival varied between platforms, as did the direction of hazard ratios.
Conclusion IBSI compliance, user-defined calculation settings and choice of platform version all influence the statistical reli-
ability and corresponding performance of prognostic models in radiomics.
Key Points
• Reliability of radiomic features varies between feature calculation platforms and with choice of software version.
• Image Biomarker Standardisation Initiative (IBSI) compliance improves reliability of radiomic features across platforms, but
only when calculation settings are harmonised.

• IBSI compliance, user-defined calculation settings and choice of platform version collectively affect the prognostic value of features.
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Abbreviations
IBSI Image biomarker standardisation initiative
ICC Intraclass correlation coefficient

Introduction

There is considerable current interest in calculating features
frommedical images using high-throughput methods and then
relating these features to clinical endpoints [1, 2]. This ap-
proach has been termed ‘radiomics’. The principal hypothesis
is that medical images contain information beyond that iden-
tified readily by traditional radiological examination, and that
this information can be extracted through advanced image
analysis. Since imaging plays a key role in cancer diagnosis,
treatment and follow-up, radiomics provides potential non-
invasive and inexpensive methods for developing biomarkers
for prognosis and/or prediction in oncology.

The potential value of radiomic biomarkers has been well
documented [1, 3], but recent literature have highlighted po-
tential barriers to the translation of radiomics into useful
decision-making tools [4, 5]. For example, studies have dem-
onstrated that radiomic features can be heavily influenced by
scanner acquisition and reconstruction parameters [6, 7] or
inter-observer variability in defining target lesions [8], both
of which influence model performance [9, 10].

One critical aspect of the radiomics workflow that remains
relatively unexamined is the implementation of the software
platforms used to calculate radiomic features. Many radiomic
software platforms are reported in the literature, ranging from
in-house developments [11], to open-source [12–14], free-
ware [15] and commercial offerings [16]. With in-house and
commercial products, the source code for calculating features
is not always publically available. This can prevent compari-
son of results between studies in the literature. This is contrary
to current moves towards an open-science approach in ‘big
data’ analyses and in artificial intelligence, where open-source
and freeware developers publish feature definitions alongside
software code, including the values chosen for any calculation
settings, and the user-defined free parameters that are required
for the calculation of some features [17].

Several studies have previously demonstrated that features
can vary when calculated in different software platforms
[18–20]. The Image Biomarker Standardisation Initiative
(IBSI) is an international collaboration developed to help stan-
dardise radiomic feature calculation and has provided a frame-
work to deliver practical solutions to this problem [21]. The
IBSI has made recommendations concerning feature calcula-
tion, standardised feature definition and nomenclature. It has
also provided a digital phantom with benchmark values to
validate feature calculation platforms (to become IBSI-
compliant) [22]. However, IBSI does not address calculation
settings or evaluate versions of software.

In this article, we expand on this work by looking in three
clinical datasets. We aimed to investigate the effects of IBSI
compliance, harmonisation of calculation settings and choice
of platform version on the statistical reliability of radiomic
features and their corresponding ability to predict clinical
outcome.

Methods and materials

In this study, we evaluated three different clinical
datasets using four different radiomic feature calculation
platforms.

Patient data

Data analysis was performed following institutional board ap-
proval and was compliant with UK research governance (ref.
17/NW/0060). We examined three datasets:

1. One hundred eight radiotherapy planning contrast-
enhanced CT scans from patients with oropharyngeal
head and neck (H&N) cancer treated with either chemo-
radiotherapy or radiotherapy alone at The Christie NHS
Foundation Trust, Manchester, UK.

2. Thirty-seven radiotherapy planning contrast-enhanced
CT scans from a cohort of patients with small-cell lung
cancer (SCLC) who had been enrolled in the CONVERT
trial [23], acquired in nine different institutions
(Supplementary Material A).

3. Forty-seven diagnostic contrast-enhanced CT scans from
a cohort of patients with stage 4 non-small-cell lung can-
cer (NSCLC) cancer treated with first-line immunothera-
py at The Christie NHS Foundation Trust, Manchester,
UK.

The gross tumour volume, the extent of the visible tu-
mour on the CT scan, was extracted from the radiotherapy
structure set for both the H&N and SCLC cohorts. Original
contours were drawn by the treating physician using the
Pinnacle3 Treatment Planning system (versions 8.0, 9.0,
9.8 or 16.0, Philips Healthcare) and used as the analysis
region of interest (ROI). Twelve H&N and 10 SCLC pa-
tients did not have contrast due to poor renal function or IV
access. For the NSCLC dataset, ROIs were drawn by a
thoracic oncologist (C.A.; 5 years’ experience) using the
same Pinnacle software (version 9.8). ROIs were checked
by a board-certified radiologist J.O.C.: 14 years’ experi-
ence). Full details of patient cohorts, image acquisition
and reconstruction are detailed in Supplementary
Tables 1 and 2.
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Radiomic software platform selection

To our knowledge, 14 different radiomics software platforms
are reported in the literature (Table 1) [12–15, 24–29]. Four of
these software platforms are freely available, used widely in
the literature and have mathematical equations documented to
sufficient detail to understand the basis for their analysis.

For all of the study, we used the latest version of the following
platforms: LIFEx v5.47 [15], IBEX v1.0 beta [13], PyRadiomics
v2.2.0 [14] and the Computational Environment for Radiological
Research (CERR) commit a1c8181 (05/09/2019) available at
https://github.com/cerr/CERR [12]. Notably, LIFEx,
PyRadiomics and CERR claim compatibility with the IBSI
standard, whereas IBEX does not (Table 1).

For the comparison between software versions, we used
LIFEx v5.1, CERR commit 50530f7 (29/08/2019) and
PyRadiomics v2.1.2. IBEX has only released one version.

Feature calculation

We analysed radiomic features common to the four software
platforms. These 17 features included three shape parameters,
four intensity feature, one histogram feature, six 3D grey level

co-occurrence matrix (GLCM) features and three 3D
neighbourhood grey tone difference matrix (NGTDM) features
measuring ROI heterogeneity (Table 2; example of the shape
feature ‘sphericity’ shown in Fig. 1). Since naming conventions
for these features are not consistent across software (see Table 2),
we used the feature names most closely in keeping with IBSI
nomenclature, but simplified where appropriate. No image pre-
processing was performed.

The absolute numerical value of some radiomic features
depend heavily on choice of default or user-defined settings.
For example, the number of bins used to discretise image
intensities do not have consistent default values across the
platforms (see Table 3). Therefore, as well as performing
inter-platform comparison of the results from different plat-
forms, we also investigated the effect harmonising these pa-
rameters to common values. The harmonised calculation set-
tings are presented in Table 3. Differences between platforms
are detailed in Supplementary Material B.

Statistical analysis

To assess the effect of software platform variation on
the reliability of radiomic biomarkers, we calculated

Table 1 Details of various software packages available for radiomic feature calculation. The listed number of citations are those that cite the initial
publication introducing the platform according to PubMed (search on 30/01/2020)

Software Year of
publication

Citations IBSI-
compliant?

Free? Open
source?

Feature sets
calculated

Mathematical
equations
documented?

MaZda [24] 2009 366 × ✓ × Shape, intensity
and texture

×

Chang-Gung Image Texture Analysis
(CGITA) [25]

2014 65 × ✓ ✓ Intensity and
texture

×

IBEX [13] 2015 134 × ✓ ✓ Shape, intensity
and texture

✓

Moddicom [26] 2015 13 × ✓ ✓ Shape, intensity
and texture

×

PyRadiomics [14] 2017 324 ✓ ✓ ✓ Shape, intensity
and texture

✓

LIFEx [15] 2018 84 ✓ ✓ × Shape, intensity
and texture

✓

Quantitative Image Feature Engine
(QIFE) [27]

2018 13 × ✓ ✓ Shape, intensity
and texture

×

CERR [12] 2018 25 ✓ ✓ ✓ Shape, intensity
and texture

✓

MITK Phenotyping [28] 2019 6 ✓ ✓ ✓ Shape, intensity
and texture

✓

RaCat [29] 2019 4 ✓ ✓ ✓ Shape, intensity
and texture

×

PORTS v.1.1 matlab software
(www.ncihub.org/resources/1663)

Not published Not published × ✓ ✓ Intensity and
texture

✓

MatLab package (www.github.
com/mvallieres/radiomics)

Not published Not published ✓ ✓ ✓ Shape, intensity
and texture

✓

TexRad Not published Not published Unknown × × Unknown Unknown

Oncoradiomics Not published Not published Unknown × × Unknown Unknown
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two-way mixed effect intraclass correlation coefficients
(ICC) and their 95% confidence intervals (CIs) for each
feature. The ICC quantifies the absolute agreement be-
tween features computed by each platform. The ICC
estimates and CI were stratified to indicate poor (ICC
CI < 0.5), moderate (0.5 < ICC CI < 0.75), good (0.75
< ICC CI < 0.9) and excellent (ICC CI > 0.9) reliability
[30]. Negative ICC estimates and CI were truncated at
zero.

To assess the effect of software platform variation on
the relationship of radiomic biomarkers to clinical out-
come, we applied univariable cox regression against
overall survival in the H&N dataset for each feature in
Table 2. We repeated this analysis for each software
platform using both their default calculation settings
and the harmonised settings. Feature values were nor-
malised to uniform scale (mean 0, standard deviation 1)
to permit relative comparison of effect sizes.

All statistical analyses were performed in R 3.5.2 [31] with
packages irr v0.84 [32] and survival v2.44.1.1 [33].

Results

Poor radiomic biomarker reliability across software
platforms is improved by IBSI standardisation

We assessed the statistical reliability between radiomic
features calculated from four software platforms using
harmonised calculation settings in three clinical datasets.
The distribution of feature values across all platforms and
cohorts is available in the Supplementary Data. In each
case, ICC and confidence intervals were derived (Fig. 2a).
Reliability between all four software was excellent (ICC
CI > 0.9) in all datasets for only 4/17 features (volume,
skewness, mean and maximum intensity). Reliability be-
tween software was poor (ICC CI < 0.5) in all datasets for
6/17 features (sphericity, some GLCM features and all
NGTDM features). The other features had moderate or
good reliability. Overall, the level of reliability for each
individual feature was highly consistent across the three
clinical datasets.

Table 2 Differences in naming conventions defined by the IBSI across the radiomic software. ID, inverse difference;GLCM, grey-level co-occurrence
matrix; HU, Hounsfield Unit; NGLDM, neighborhood grey-level different matrix; NGTDM, neighboring grey tone difference matrix

Feature IBSI terminology LIFEx IBEX PyRadiomics CERR

Volume Volume (mesh) and volume
(voxel counting)

Volume Volume Mesh volume and
voxel volume

Volume

Sphericity Sphericity Sphericity Sphericity Sphericity Sphericity

Area Surface area (mesh) Surface area Surface area Surface area Surface area

Skewness Discretised intensity
skewness

Histogram skewness Intensity histogram
skewness

First-order
skewness

Skewness

GLCM correlation GLCM correlation GLCM correlation GLCM correlation GLCM correlation GLCM correlation

GLCM contrast GLCM contrast GLCM contrast =
variance

GLCM contrast GLCM contrast GLCM contrast

GLCM angular
Second moment

GLCM angular Second
moment

GLCM energy = angular
second moment

GLCM energy GLCM joint energy GLCM joint energy

GLCM joint
entropy

GLCM joint entropy GLCM entropy Log2 =
joint entropy

GLCM entropy GLCM joint
entropy

GLCM joint entropy

GLCM difference
average

GLCM difference average GLCM dissimilarly GLCM dissimilarly GLCM difference
average

Dissimilarity
(difference
average)

GLCM inverse
difference

GLCM inverse difference GLCM homogeneity =
inverse difference

GLCM homogeneity GLCM ID GLCM inverse
difference

NGTDM busyness NGTDM busyness NGLDM busyness Neighbour intensity
difference busyness

NGTDM busyness NGTDM busyness

NGTDM
coarseness

NGTDM coarseness NGLDM coarseness Neighbour intensity
difference coarseness

NGTDM
coarseness

NGTDM coarseness

NGTDM contrast NGTDM contrast NGLDM contrast Neighbour intensity
difference contrast

NGTDM contrast NGTDM contrast

Minimum Minimum intensity Conventional HU
minimum

Global Minimum First-order
minimum

Minimum

Maximum Maximum intensity Conventional HU
maximum

Global maximum First-order
maximum

Maximum

Mean Mean intensity Conventional HU mean Global mean First-order mean Mean

Standard deviation Not defined (variance is
defined)

Conventional HU
standard deviation

Global standard deviation First-order standard
deviation

Standard deviation
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We repeated the analysis for only the IBSI-compliant soft-
ware platforms, by removing IBEX data (Fig. 2b). This had a
marked effect, with 15/17 features now showing excellent
reliability across all datasets. Overall, these data show that
the level of reliability across different radiomic biomarkers
can vary substantially between different software platforms
in the absence of IBSI-compliant standardisation. Once
standardisation is adopted, this divergence is reduced substan-
tially for most radiomic biomarkers.

IBSI standardisation is only effective when calculation
settings are harmonised

IBSI guidelines provide clear instructions and definitions for
the process of image biomarker calculation. However, no rec-
ommendations are given for calculation settings. We

evaluated the influence of using the default calculation set-
tings versus harmonising them across software platforms
using the three IBSI-compliant software platforms (Fig. 3a).
Reliability was excellent for only 6/17 features (volume,
skewness, standard deviation and mean, minimum, maximum
intensity) when default calculation settings were used, despite
all software being IBSI-compliant. In distinction, 10/17 fea-
tures (sphericity, all six GLCM-based features and all three
NGTDM-based features) had poor reliability across all three
datasets.

Once calculation settings were harmonised, the reliability
reverted to that seen for IBSI-compliant software (Fig. 3b).
These data reveal the importance of these user-defined free
parameters to the calculation of radiomic features. Without
harmonisation of calculation settings, even IBSI-compliant
platforms generate unreliable features, with the effect

Table 3 Default calculation settings for each software platform along with the harmonised settings used in this study

Calculation settings LIFEx IBEX PyRadiomics CERR Harmonised settings (this study)

Histogram

Number of grey levels 400 256 Bin width 25 Bin width 25 64

Lower bound − 1000 0 Minimum 0 Minimum

Upper bound 3000 4096 Maximum 500 Maximum

GLCM

Number of grey levels 400 100 Bin width 25 Bin width 25 64

Lower bound − 1000 0 Minimum 0 Minimum

Upper bound 3000 2100 Maximum 500 Maximum

Directions 13 13 13 4 13

Offset 1 1, 4 and 7 1 1 1

Symmetric Yes Yes Yes Yes Yes

NGTDM

Number of grey levels 400 256 Bin width 25 Bin width 25 64

Lower bound − 1000 0 Minimum 0 Minimum

Upper bound 3000 4096 Maximum 500 Maximum

Distance 1 2 1 1 1

Fig. 1 Example tumours and
corresponding values for the
feature ‘sphericity’ from each
dataset
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remarkably consistent across the three different tumour types
and two different types of CT data (diagnostic and radiother-
apy planning scans).

Different versions of each software platform influence
the statistical reliability of radiomic biomarkers

Software platforms undergo frequent updates. We evaluated
the effect of changing between software versions for all three
IBSI-compliant platforms by calculating the ICC between the
newer and older versions. PyRadiomics had excellent reliabil-
ity for all features (Fig. 4a). CERR had a discretisation error in
an older version (commit 50530f7 (29/08/2019) available at
https://github.com/cerr/CERR) which affected texture
features calculation (GLCM and NGTDM) (Fig. 4b). We
identified this difference and, after making the developers

aware, the source of error issue was discovered and corrected
for the newest version, which is used in our full analysis.

Initial experiments showed that sphericity had poor reli-
ability in all datasets, even when comparison was restricted
to IBSI-compliant software platforms (Fig. 2b). Investigation
traced this uncertainty to LIFEx (the sphericity values for
CERR and PyRadiomics had ICC estimates with 95% CI of
0.996 to 0.999 (CI 0.992-1) for the three clinical datasets).
Comparing the latest LIFEx release (5.1) with the develop-
ment version used in this study (5.47) shows significant
changes in sphericity (Fig. 4c). The minimum value calcula-
tion also changed between these versions with knock-on effect
on dependent features, such as skewness, some GLCM fea-
tures and standard deviation.

Taken together, these data reveal the importance of study
authors reporting which software version was used for data

Fig. 3 Boxplots of ICC estimates and CI for each cohort (H&N in green,
NSCLC in pink, SCLC in blue) across all 17 features, showing the
statistical reliability between the different software platforms. a ICC
estimates and CI for the three IBSI-compliant software with default cal-
culation settings (i.e. with IBEX excluded from analysis). b ICC estimates
and CI for the three IBSI-compliant software with harmonised calculation
settings (i.e. with IBEX excluded from analysis)

Fig. 2 Boxplots of ICC estimates and CI for each cohort (H&N in green,
NSCLC in pink, SCLC in blue) for all 17 features, showing the statistical
reliability between the different software platforms. a ICC estimates and
CI for all four software with harmonised calculation settings. b ICC
estimates and CI for the three IBSI-compliant software with harmonised
calculation settings (i.e. with IBEX excluded from analysis)
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analysis. The data also highlight the difficulty in comparing
studies that initially appear to be similar to one another.

Software platform and calculation settings affect the
significance and direction of correlation of radiomic
features to overall survival

We assessed how the choice of software platform and calcu-
lation settings influences the relationship of radiomic features
to patient outcome. These analyses were performed in the
largest of our clinical datasets (H&N cancer; N = 108).
Overall survival was determined, with 28 patients dying with-
in the follow-up period of 2.2 years. Univariable Cox regres-
sion results are presented for all 17 features with harmonised
calculation settings and default calculation settings (Fig. 5).

The p values and associated hazard ratios for each feature
when using harmonised calculation settings are presented in
Fig. 5a. Eight features (volume, area, sphericity, GLCM cor-
relation, NGTDM busyness, NGTDM coarseness, minimum
and maximum) were significant at p < 0.05 in all four plat-
forms. A further five features (GLCM angular second mo-
ment, GLCM joint entropy, GLCM difference average,
GLCM inverse difference and standard deviation) were sig-
nificant at p < 0.05 for the three IBSI-compliant software
platforms but not in IBEX. When a given radiomic feature
was deemed significant at the p < 0.05 threshold for multiple
software platforms, the hazard ratios were generally in close
agreement across the software platforms.

The p values and associated hazard ratios for each feature
when using default calculation settings are presented in Fig. 5b.
Since shape and most first-order features are not dependent on

Fig. 4 Boxplots of ICC estimates and CI for each cohort (H&N in green,
NSCLC in pink, SCLC in blue) across all 17 features, showing the
reliability between different versions of the same software platform.
ICC estimates and CI are presented for (a) PyRadiomics version 2.2.0
versus 2.1.2 with harmonised calculation settings, (b) CERR commit

a1c8181 versus 50530f7 with harmonised calculation settings and (c)
LIFEx version 5.47 versus 5.1 with harmonised calculation settings
(NB: area is not calculated in LIFEx version 5.1 and so does not appear
in c)
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these parameters, they were unaffected by the changed calcula-
tion settings. Texture features, however, are dependent on the
user-defined calculation settings and all became no longer signif-
icant at the p < 0.05 threshold, with the exception of GLCM
correlation. Notably, IBEX diverged further from agreement
with the three IBSI-compliant software platforms.

Of particular note, the hazard ratio for GLCM joint entropy
changed from 0.56–0.59 (i.e. less than 1.0 and significant p
value) when harmonised calculation settings were used to 1.5
(i.e. more than 1.0 and significant p value) when default cal-
culation settings were used. Thus, significant correlations
were detected that had opposing hazard ratio directions de-
pending on choice of parameter input. This effect is shown
clearly in Fig. 6, where the direction of the hazard ratio
changed from protective to harmful. These data reveal that
both IBSI compliance and calculation settings can affect the
significance and direction of relationships between radiomic
features and clinical outcome.

Discussion

Radiomics has great potential to produce independent
predictive biomarkers for personalised healthcare, partic-
ularly in the management of patients with cancer [2].
Many studies have been published describing prognostic
and predictive radiomic signatures, but significant meth-
odological limitations have hindered clinical translation
of these techniques [34].

In this study, we investigated the importance of IBSI com-
pliance, harmonising calculation settings and choice of plat-
form version when using different radiomics calculation plat-
forms. We tested how these factors affect the statistical reli-
ability of features and showed how these factors also influence

the relationship between radiomic biomarkers and clinical out-
come (in this case, the overall survival).

Radiomic feature calculation is an important part of the
radiomics workflow. Studies can use a variety of commercial
or freely available software platforms to achieve this [16] or
use in-house developed software. A study by Foy et al com-
pared two in-house developed software to IBEX and found
that for head and neck CT scans, histogram features had ex-
cellent reliability but GLCM features varied between poor and
excellent reliability [18]. The software packages in that study
were not IBSI-compliant.

Our study demonstrates the benefits of standardising fea-
ture calculation platforms according to the IBSI. Features cal-
culated in IBSI-compliant software had greater statistical reli-
ability than features calculated in non-compliant platforms,
but only when calculation settings were also harmonised.
The method of grey level discretisation has been shown to
affect feature reproducibility within the same software plat-
form [35, 36]. Our results both confirm these findings and
extend the principle to all those user-defined parameters listed
in Table 3, emphasising the need to harmonise calculation
settings even when an IBSI-compliant platform is used.
Results were highly consistent across three clinical datasets.

Our data has also highlighted the importance of inter-software
comparison. By doing so, we identified potential errors in both
the CERR and LIFEx code bases, leading to subsequent correc-
tions and improved reliability. It is vital that investigators docu-
ment the version and date of the software platform used in their
study to ensure results are reproducible between institutions. Our
data also highlight the benefits of open-source tools and the
importance of the relevant scientific communities actively work-
ing with their developers to improve them.

Univariable survival analysis revealed substantial differ-
ences in prognostic power between supposedly similar

Fig. 5 Heat-map of the p values (and associated hazard ratios) from
univariable Cox regression for each radiomic feature, with harmonised
calculation settings on the left (a) and default calculation settings on the

right (b). Cells are colour-coded according to the following p value
thresholds: p value < 0.05 (red), 0.05 < p value < 0.1 (orange) and p value
> 0.1 light orange. ASM, angular second moment; HR, hazard ratio
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features derived from different software platforms. We make
three observations. Firstly, some features had significant asso-
ciation with H&N cancer overall survival in the IBSI-
compliant software but not in IBEX. These findings concur
with Liang et al who investigated two platforms and found
differences in downstream clustering of known prognostic
factors in patients with nasopharyngeal carcinoma [20].
Similar conclusions were drawn by Bogowicz et al who in-
vestigated this in PET scans of patients with H&N cancer [19].
Secondly, when only evaluating IBSI-compliant software,
there was a divergence of feature to survival correlation be-
tween software platforms when calculation settings varied.

Thirdly, our study demonstrates that when different calcu-
lation settings are used, the relationship of significant features
to survival can remain significant but the direction of that
relationship (hazard ratio) can invert from protective to harm-
ful. This effect may reflect that for some features, altering
calculation settings radically alters the biophysical property
being measured. In this study, there is no ground truth against
which the ‘true’ direction of a feature can be established, but
the data demonstrates the important role calculation settings
play in selecting features for radiomic signatures.

There are several limitations to this study. Our inclusion
criteria for feature calculation platforms that they are freely
available, widely cited, and sufficiently well documented for
analysis limited the number of assessed platforms to four, only
one of which was not IBSI-compliant. There are also more
features available in each of the software platforms that were
not included in this study, as only features that were available
across all four software platforms were analysed. The clinical
datasets used were sufficiently large to evaluate ICC with CIs
but the number of events only permitted univariable survival
analysis of outcome. Lastly, LIFEx is a closed-source project,
which precluded thorough investigation of the observed dif-
ference in sphericity calculation compared to other IBSI-
compliant software.

In conclusion, this study has shown that use of IBSI-
compliant radiomic feature calculation platforms appears to
increase the statistical reliability of features. However, even
IBSI-compliant platforms are affected strongly by user-
defined calculation settings and changes between software
versions. Future radiomics studies should be aware of poten-
tial differences between software platforms and ensure plat-
forms used for radiomics studies are IBSI-compliant. Studies
should ensure software version and user-defined parameters
are clearly reported. Furthermore, the radiomics community
should consider working towards a recommended set of
harmonised calculation settings. Locking imaging biomarkers
down in this way will improve the technical quality of data
from subsequent studies, a vital step towards their translation
into clinical decision-making tools [37].
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Fig. 6 GLCM joint entropy (here calculated in PyRadiomics) against 2-
year survival for patients with H&N cancer when calculated with
harmonised settings (blue) and default settings (orange)
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