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Radiomics for lung adenocarcinoma manifesting as pure
ground-glass nodules: invasive prediction
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Abstract
Objectives To investigate the value of radiomics based on CT imaging in predicting invasive adenocarcinoma manifesting as
pure ground-glass nodules (pGGNs).
Methods This study enrolled 395 pGGNs with histopathology-confirmed benign nodules or adenocarcinoma. A total of 396
radiomic features were extracted from each labeled nodule. A Rad-score was constructed with the least absolute shrinkage and
selection operator (LASSO) in the training set. Multivariate logistic regression analysis was conducted to establish the radio-
graphic model and the combined radiographic–radiomics model. The predictive performance was validated by receiver operating
characteristic (ROC) curve. Based on the multivariate logistic regression analysis, an individual prediction nomogram was
developed and the clinical utility was assessed.
Results Five radiomic features and four radiographic features were selected for predicting the invasive lesions. The combined
radiographic–radiomics model (AUC 0.77; 95% CI, 0.69–0.86) performed better than the radiographic model (AUC 0.71; 95%
CI, 0.62–0.81) and Rad-score (AUC 0.72; 95% CI, 0.63–0.81) in the validation set. The clinical utility of the individualized
prediction nomogram developed using the Rad-score, margin, spiculation, and size was confirmed in the validation set. The
decision curve analysis (DCA) indicated that using a model with Rad-score to predict the invasive lesion would be more
beneficial than that without Rad-score and the clinical model.
Conclusions The proposed radiomics-based nomogram that incorporated the Rad-score, margin, spiculation, and size may be
utilized as a noninvasive biomarker for the assessment of invasive prediction in patients with pGGNs.
Key Points
• CT-based radiomics analysis helps invasive prediction manifested as pGGNs.
• The combined radiographic–radiomics model may be utilized as a noninvasive biomarker for predicting invasive lesion for pGGNs.
• Radiomics-based individual nomogrammay serve as a vital decision support tool to identify invasive pGGNs, obviating further
workup and blind follow-up.
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Abbreviations
AAH Atypical adenomatoid hyperplasia
AIS Adenocarcinoma in situ
AUC Area under the curve
DCA Decision curve analysis
DICOM Digital Imaging and Communications in Medicine
GGNs Ground-glass nodules
IPA Invasive pulmonary adenocarcinoma
MIA Minimal invasive adenocarcinoma
pGGN Pure ground-glass nodule
ROC Receiver operating characteristic
VOI Volume of interest

Introduction

The improvement in the computed tomography (CT) scan-
ners and the increasing awareness of the physical exami-
nation have led to the detection of the number of ground-
glass nodules (GGNs) as well as attracted unprecedented
attention. GGN is defined as a nodule with slightly in-
creased density, without obscuring the underlying bronchi-
al structures or vascular margins on high-resolution CT [1].
Based on the presence of solid components, GGNs can be
classified into pure GGN (pGGN) and part-solid nodule.
Approximately, 20% of lung adenocarcinomas manifested
as pGGN on CT imaging and showed stable or extremely
slow growth on the follow-up CT as well as favorable
prognosis [2–4]. A majority of the international guidelines
(including American College of Chest Physicians, National
Comprehensive Cancer Network, and British Thoracic
Society) have adopted a conservative treatment attitude
for pGGNs; yet, in one study [5], 10% of pGGNs ≤ 5 mm
showed growth and 1% developed into invasive lesions
after 3.5 years. In other two studies [6, 7], up to 52% and
58% of pGGNs progressed during follow-up. These data
indicated that many pGGNs were active and should not be
neglected. Also, several studies demonstrated that 40.2–
55.3% of pGGNs were invasive lesions [8–11]. The ap-
pearance of invasive components was considered to be a
sign that tumor cells broke the balance of indolent period
and entered the rapid growth time. Therefore, it is not ap-
propriate to utilize the same follow-up strategy or interven-
tion for pGGNs with or without invasive components.

Previous studies suggested that large volume, high voxel
attenuation, unsmooth margin, pleural indentation, vessel
changes, and bubble sign favor the diagnosis of invasive le-
sions in pGGNs [12–16] that are yet difficult to diagnose
based on CT imaging. The reasons are as follows: (1) The
measurement and observation of these features are easily af-
fected by several factors (such as reproduction of measure-
ment, scanning parameters, reconstruction algorithm, and ob-
server experience), (2) some features have a low occurrence in

pGGNs with limited value for identifying the preinvasive le-
sions, and (3) most features overlap in invasive and noninva-
sive lesions.

Artificial intelligence (AI) utilizes radiomics to characterize
lung lesions using computer software to extract a large num-
ber of predefined high-throughput features, followed by sta-
tistical methods to filter the features most relevant to the re-
sults. Finally, the method of machine learning is adopted to
establish a diagnostic and predictive model [17]. The applica-
tion of radiomics in the diagnosis and evaluation of pulmo-
nary nodules is currently under intensive focus. Hwang et al
[18] investigated the importance of texture in the diagnosis of
pGGNs; however, the number of cases was small (64 cases),
and hence, fewer features were extracted. Our previous studies
[10] have shown that a radiomics-based model has better di-
agnostic performance for predicting the subcentimeter GGNs,
but the present study included both part-solid nodules and
pGGNs. Since the solid components on CT imaging exhibit
a satisfactory correlation with pathological invasive compo-
nents [19, 20], the diagnosis of part-solid nodules is uncom-
plicated, while the diagnosis of pGGNs is difficult and the
invasiveness is often underestimated. Therefore, this study
aimed to establish a comprehensive model of pGGNs based
on the traditional CT features and radiomics to improve the
diagnostic accuracy of pGGNs and provide a basis for rational
clinical decision-making.

Materials and methods

Study population

This retrospective study was approved by the institutional
review board (Grant No. 2017K062), and informed consent
was waived. Between January 2011 and October 2017, 1512
consecutive patients underwent complete surgical and were
pathologically confirmed with atypical adenomatoid hyper-
plasia (AAH), adenocarcinoma in situ (AIS), minimal inva-
sive adenocarcinoma (MIA), and invasive pulmonary adeno-
carcinoma (IPA). Themedical records, including clinical char-
acteristics, histopathological results, and serial chest CTscans,
were reviewed. Inclusion criteria for the current study were as
follows: (1) patients with pure GGN without any solid com-
ponent on CT imaging, (2) patients with thin-section chest CT
(section thickness ≤ 1.5 mm), (3) CTscans that were available
and acquired sequentially in one examination within 2 weeks
of surgical resection, and (4) patients who underwent com-
plete surgical resection. PGGNs were GGNs without solid
components that obscured the lung parenchyma [21]
completely, or the underlying lung architecture was viewed
with lung window settings (width, 1500 HU; level,
− 700 HU). Of these 1512 patients, 1178 were excluded from
our study because 1035 had part-solid nodules, 47 were
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analyzed using CT slices thicker than 1.5 mm, and 45 had a
previous therapy history (Fig. 1).

Finally, 395 pGGNs in 385 patients (121 males, 264 wom-
en; mean age, 53.13 ± 12.25 years; range, 23–81 years) ful-
filled the criteria and were randomly assigned to a training set
(n = 277) and a validation set (n = 118) (Fig. 2).

We find rare data on the public dataset collected in TCIA
(https://www.cancerimagingarchive.net/) for external validation
mainly because of the lack of detailed pathological results, and
hence used 53 consecutive data from another hospital as the
testing set (20 men, 33 women; mean age, 54.04 ± 9.75 years;
range, 28–86 years). The diagnostic performance of the model
was further verified in the testing set.

CT scanning

Chest CT imaging was performed using one of the four CT
systems: GEDiscovery CT750 HD, 64-slice LightSpeedVCT
(GE Medical Systems), Somatom Definition Flash, and
Somatom Sensation 16 (Siemens Medical Solutions). The de-
tailed scan and reconstruction parameters are listed in Table 1.

Pathological analysis

All resected specimens were formalin fixed and stained with
hematoxylin–eosin in accordance with the routine regulations
of our hospital. A board-certified pathologist (10-year
experience of pathological diagnosis of lung cancer) reviewed
the specimens and recorded the pathological subtype of each

tumor according to the International Association for the Study
of Lung Cancer (IASLC)/American Thoracic Society (ATS)/
European Respiratory Society (ERS). All pGGNs were divided
into noninvasive (benign, AAH, and AIS) and invasive (MIA
and IPA) groups.

Evaluation of radiographic characteristics

The radiographic characteristics were assessed independently
by two experienced thoracic radiologists (with 6 years and
13 years of experience in chest CT interpretation, respective-
ly), who were blinded to the pathological results. The discrep-
ancies in the interpretation between observers were resolved
by consensus. The radiographic characteristics that were ana-
lyzed for each pGGN included (1) margin (clear, blurred), (2)
lobulation (absent, presence), (3) spiculation (absent, present),
(3) bubble lucency (absence, presence), (4) honeycomb sign
(absent, present), (5) change in the vessels (absent, present),
and (6) pleural attachment including pleural tag and indenta-
tion (absent, present). All CT findings were evaluated based
on high-resolution CT (HRCT) images.

Nodule segmentation

An open-source software (3D Slicer, version 4.8; National
Institutes of Health; https://www.slicer.org) was used to
manually delineate the volume of interest (VOI) of the included
395 pGGNs at the voxel level by one radiologist with 6 years of
experience in chest CT interpretation; then, the VOI was

Fig. 1 The workflow of the study
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confirmed by another radiologist with 13 years of experience in
chest CT interpretation. Large vessels and bronchuswere exclud-
ed from the volume of the nodule. The lung CT Digital Imaging
and Communications in Medicine (DICOM) format images
were imported into the software for delineation, and then, the
images with VOI information were extracted using NII (151
nodules) or NRRD (244 nodules) format for the next step anal-
ysis. To assess the segmentation variability, a third radiologist
with 3 years of experience in chest CT interpretation indepen-
dently segmented a random set of 60 nodules.

Radiomic feature extraction

A total of 396 features, including tumor size, shape, first-order
statistics of descriptor values (histogram features), and high-

order texture features (gray level co-occurrence matrix and
gray level run length), were extracted using Artificial
Intelligence Kit software (A.K. software; GE Healthcare).
Detailed information about the extracted radiomic features is
provided in Appendix E1. Each image was normalized to
achieve a nonzero mean and unit variance across the training
and validation sets.

Feature selection, Rad-score building, and diagnostic
validation

The interobserver reproducibility evaluation of radiomic fea-
ture extraction was performed using intraclass correlation co-
efficients (ICCs) 0.81–1.00 indicating almost perfect agree-
ment, 0.61–0.80 substantial agreement, and 0.41–0.60

Fig. 2 Noninvasive lesion and invasive lesion appearing as pure GGNs.
a–d Transverse, coronal, sagittal, and pathology imaging (hematoxylin
and eosin, × 100) of an 11-mm pure GGN in the right middle lobe. This
nodule was confirmed as non-neoplastic lesion (fibrosis, with alveolar

epithelial hyperplasia and dysplasia, vascular malformations). e–h
Transverse, coronal, sagittal, and pathology imaging (hematoxylin and
eosin, × 100) of an 18-mmwell-defined pure GGN in the right upper lobe
of a 72-year-old woman. This nodule was confirmed as IPA at lobectomy

Table 1 CT scanning parameters
Setting GE Discovery

CT750 HD
LightSpeed
VCT

Somatom
Definition Flash

Somatom
Sensation 16

Tube voltage (kVp) 120 120 120 120
Tube current (mA) 200 200 110 110
Pitch 0.984:f1 0.984:1 1.0 0.8
Collimation 0.625 mm× 64 0.625 mm× 64 0.6 mm× 64 0.75 mm× 16
Rotation time (s/rot) 0.5 0.5 0.33 0.35
SFOV (cm) 50 50 50 50
Slice thickness of

reconstruction (mm)
1.25 1.25 1 1

Slice interval of
reconstruction (mm)

1.25 1.25 1 1

Reconstruction algorithm STND STND Medium sharp Medium sharp
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moderate agreement [22]. The features with ICC > 0.80 were
input to the least absolute shrinkage and selection operator
classifier to establish the radiomic signatures for the distinc-
tion between noninvasive and invasive groups. The classifier
was trained to determine the optimal parameter using 10-fold
cross-validation on the training set.

Development and clinical utility of individualized
prediction nomogram

Multivariate logistic regression analysis using backward step-
wise selection was applied to develop the radiographic–
radiomics model by incorporating the selected radiomic and
radiographic features. The predictive performance of the ra-
diographic model, radiomics model, and the combined model
in the training, validation, and testing sets was assessed using
the receiver operating characteristic (ROC) curve analysis,
and the areas under the curve (AUCs) were established.
Then, an individualized prediction nomogram was construct-
ed based on the multivariate logistic regression.

Statistical analysis

Statistical analysis was conducted using R software (version
3.5.1; http://www.Rproject.org). The statistical significance
for all two-sided tests was set at p < 0.05.

Results

Patients’ profiles

A total of 395 pGGNs were detected in 385 patients in our
institution. Of these, one pGGN was detected in 375 patients
and two in 10 patients. In addition, 164 pGGNs were patho-
logically diagnosed as noninvasive lesions (benign nodules,
n = 52; AAH, n = 20; AIS, n = 92), while 231 pGGNs were
invasive lesions (MIA, n = 176; IPA, n = 55). One hundred
fifteen noninvasive and 162 invasive pure GGNs were
grouped in the training set, while 49 noninvasive and 69 in-
vasive pure GGNs in the validation set. In the testing set, 22
pGGNs were pathologically diagnosed as noninvasive lesions
(benign nodules, n = 5; AAH, n = 4; AIS, n = 13), while 31
pGGNs were invasive lesions (MIA, n = 5; IPA, n = 26).
Differences in variables among the training, validation, and
testing sets were assessed using the independent t test or
Mann–Whitney U test for continuous variables and Fisher’s
exact or chi-square test for categorical variables. Any signifi-
cant differences were not detected in the clinical and radio-
graphic characteristics. The patient profiles for subgroups in
the training and validation sets were assimilated based on the
invasiveness (Table 2).

Furthermore, statistically significant differences were ob-
served between the noninvasive and invasive groups with re-
spect to size, margin, spiculation, and lobulation (p < 0.001).
Multivariate analysis revealed significant differences in the
size, margin, and spiculation (p = 0.001, p < 0.001, and
p < 0.001, respectively). Subsequently, all three parameters
were selected to establish the radiographic model. The AUC
of the radiographic model was 0.75 (95% CI, 0.69–0.81) in
the training set, 0.71 (95%CI, 0.62–0.81) in the validation set,
and 0.66 (95% CI, 0.51–0.82) in the testing set (Fig. 3).

Feature selection, Rad-score building, and diagnostic
validation

Five features with nonzero coefficients were selected to estab-
lish the Rad-score using a least absolute shrinkage and selec-
tion operator (LASSO) logistic regression model (λ = 0.038)
(Fig. 4a, b) after assessing the reproducibility based on the
resegmentation data.

Rad-score = − 0.093 × ClusterShade_angle0_offset7
− 0.058 × GLCMEntropy_AllDirection_offset7_SD − 0.057
× LowGreyLevelRunEmphasis_AllDirection_offset7_SD
+ 0.010 × ShortRunLowGreyLevelEmphasis_angle0_offset1
− 0.574 × SurfaceVolumeRatio + 0.368

The histogram of the Rad-score is presented in Fig. 4 c. The
detail information of the two sets is illustrated in
Appendix E2.

A significant difference was detected in the Rad-score be-
tween noninvasive and invasive groups in the training set
(0.10 ± 0.60 vs. 0.56 ± 0.51; p < 0.001), which was then con-
firmed in the validation set (− 0.03 ± 0.71 vs. 0.47 ± 0.60,
p < 0.001). The Rad-score predicting the invasive pGGNs
yielded a C-index of 0.73 (95% CI, 0.66–0.79) in the training
set, 0.72 (95% CI, 0.63–0.81) in the validation set, and 0.62
(95%CI, 0.46–0.78) in the testing set. TheAUCof the combined
radiographic–radiomics model was 0.80 (95% CI, 0.75–0.86) in
the training set, 0.77 (95% CI, 0.69–0.86) in the validation set,
and 0.82 (95% CI, 0.70–0.94) in the testing set (Fig. 3).

Although the difference in tumor size between the nonin-
vasive and invasive groups was statistically significant
(0.74 cm vs. 0.90 cm, p < 0.001), the AUC of size for classi-
fying noninvasive and invasive lesions was only 0.68 in the
training set and 0.65 in the validation set. The surface–volume
ratio is the strongest radiomic feature with a coefficient of
0.574 in the Rad-score formula. However, the AUC of
surface–volume ratio for classifying noninvasive and invasive
lesions was 0.72 in the training set and 0.70 in the validation
set. The AUC of size and surface–volume ratio for classifying
noninvasive and invasive lesions were all lower than those of
the radiographic model (0.75 and 0.71, respectively), Rad
scores (0.73 and 0.72, respectively), and the combined model
(0.80 and 0.77, respectively). Furthermore, we had performed
DeLong’s test to analyze the difference between the AUC of
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size, surface–volume ratio, and the combined model in the
validation set. The result showed the difference was not sig-
nificant (p = 0.38, p = 0.12), which may be affected by the
amount of data and needed further verification.

Construction of individualized prediction nomogram
and clinical utility

A logistic regression analysis using backward stepwise
selection identified the Rad-score, margin, spiculation,

and size as independent predictors, which were incorpo-
rated to develop an individualized prediction nomogram
(Fig. 5).

The decision curve analysis (DCA) for the individual-
ized prediction nomogram is presented in Fig. 6. The
decision curve showed that if the threshold probability
of a patient or doctor was > 10%, using a model with
Rad-score to predict the invasive lesion would be more
beneficial than that without the Rad-score and the clini-
cal model.

Table 2 Parameters of patients in noninvasive and invasive groups included in the training set and validation set

Clinical parameters Data Noninvasive group (n = 164) Invasive group (n = 231) p value

Age (years) 53.13 ± 12.25 53.00 ± 12.25 53.23 ± 12.49 0.841

Maximal tumor diameter (cm) 0.84 ± 0.44 0.74 ± 0.44 0.90 ± 0.44 < 0.001*

Margin

Clear 346 (87.6) 128 (78.0) 218 (94.4) < 0.001*
Blurred 49 (12.4) 36 (22.0) 13 (5.6)

Lobulation

Absent 200 (50.6) 105 (64.0) 95 (41.1) < 0.001*
Present 195 (49.4) 59 (36.0) 136 (58.9)

Spiculation

Absent 237 (60.0) 127 (77.4) 110 (47.6) < 0.001*
Present 158 (40.0) 37 (22.6) 121 (52.4)

Vessel change

Absent 357 (90.4) 154 (93.9) 203 (87.9) 0.046
Present 38 (9.6) 10 (6.1) 28 (12.1)

Bubble

Absent 314 (79.5) 133 (81.1) 181 (78.4) 0.507
Present 82 (20.5) 31 (18.9) 50 (21.6)

Honeycomb sign

Absent 380 (96.2) 161 (98.2) 219 (94.8) 0.085
Present 15 (3.8) 3 (1.8) 12 (5.2)

Pleural attachment

Absent 331 (83.8) 135 (82.3) 196 (84.8) 0.502
Present 64 (16.2) 29 (17.7) 35 (15.2)

Location

RUL 163 (41.3) 68 (41.5) 95 (41.1) 0.086
RML 24 (6.1) 10 (6.1) 14 (6.1)

RLL 75 (19.0) 31 (18.9) 44 (19.0)

LUL 88 (22.3) 39 (23.8) 49 (21.2)

LLL 45 (11.4) 16 (9.8) 29 (12.6)

Pathological typing

Benign nodule 52 (13.2) 52 (31.7)
AAH 20 (5.1) 20 (12.2)

AIS 92 (23.3) 92 (56.1)

MIA 176 (44.6) 176 (76.2)

IPA 55 (13.9) 55 (23.8)

Ages and size are shown as mean ± standard deviation; other data are the number of patients with the percentage in parentheses. P value is derived from
the univariable association analyses between clinical parameter and invasiveness of pGGNs

RUL right upper lobe, RML right middle lobe, RLL right lower lobe, LUL left upper lobe, LLL left lower lobe, AAH atypical adenomatoid hyperplasia,
AIS adenocarcinoma in situ, MIA minimal invasive adenocarcinoma, IPA invasive pulmonary adenocarcinoma

*p value < 0.05
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Fig. 4 Texture feature selection using the least absolute shrinkage and the
histogram of the Rad-score based on the selected features. a Selection of
the tuning parameter (λ) in the LASSO model via 10-fold cross-
validation based on minimum criteria. Binomial deviances from the
LASSO regression cross-validation procedure were plotted as a

function of log (λ). The optimal λ value of 0.038 was selected. b The
black vertical line was drawn at the value selected using 10-fold cross-
validation in a. The 5 resulting features with nonzero coefficients were
indicated in the plot. c The y-axis indicates the selected five radiomics,
and the x-axis represents the coefficient of radiomics

Fig. 3 The AUC of Rad-score, radiographic model, and combined model
in the training set, validation set, and testing set. The predictive
performance of the combined model for an invasive lesion of pGGNs

was better than that of the radiographic model and Rad-score in the
training, validation, and testing sets
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Discussion

The present study aimed to assess the value of radiomics in the
diagnosis of pGGNs. We systematically evaluated the tradi-
tional radiographic features of lung cancer and extracted more
than 400 radiomics. Then, a combined invasiveness-
predicting model incorporated with Rad-score, spiculation,
andmargin was developed and validated using backward step-
wise selection. Finally, a convenient nomogram incorporated
with Rad-score, spiculation, margin, and size was established.

Several studies have analyzed and compared the value of
traditional CT features and radiomics in the diagnosis of
GGN. Fan et al [23] showed that the imaging radiomics–
based model (AUC = 0.936) is superior to traditional CT
feature–based model (AUC = 0.857) in identifying invasive
lesions, and only the radiomics model is considered to be an

independent predictor of invasive GGNs. In the case of
pGGNs, previous studies were mainly based on traditional
CT features [12, 13, 24]. The current study, for the first time,
combined the traditional CT features and radiomics to estab-
lish an individual predictive model of pGGNs. Liu et al [25]
also confirmed the advantage of radiomics in the diagnosis of
invasive GGN and showed that the performance of combined
radiomics model was better than that of the traditional radio-
graphic features. Xue et al [26] showed that despite the lobu-
lated border and the presence of pleural effectuated a signifi-
cant difference between preinvasive and invasive lesions, they
were not included in the final predictive nomogram. Although
many studies have assessed traditional CT features for inva-
sive predicting, they could not result in a systematic and con-
sistent criterion to integrate the contribution of different risk
factors to achieve a probabilistic forecast of MIA/IPA in GGN

Fig. 5 Radiomics-based
nomogram was developed in the
training set, and the Rad-score,
margin, spiculation, and size were
incorporated

Fig. 6 Decision curve analysis for
the model with and without Rad-
score. The decision curve showed
that if the threshold probability of
a patient or a doctor is > 10%,
using a model with the Rad-score
to predict the invasive lesion
would be more beneficial than
that without the Rad-score
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because the CT features of early-stage lung cancer are often
atypical, and the assessment of these signs requires extensive
diagnostic experience. The current result showed that Rad-
score (AUC = 0.72) and radiographic model (AUC = 0.71)
had similar diagnostic efficiency; however, both were lower
than that of the combined model (AUC = 0.77). The result of
radiographic feature in this study was confirmed by an expert
experienced with the diagnosis of small pulmonary nodules,
which improved the accuracy of the radiographic features.
Thus, the similarity in the performance of the radiographic
model and Rad-score could be detected.

The size of the nodules is a vital parameter for assessing
the invasiveness of GGNs. Previous studies showed that
the cutoff value of 10 mm is an optimal predictor for inva-
sive lesions in pGGNs with 100% specificity [27]. Another
study demonstrated that the diameter > 16.4 mm was fa-
vored in invasive adenocarcinoma for pGGNs > 10 mm
[28]. However, Wu et al [8] showed that the size of the
nodule could not differentiate the invasive lesions from
preinvasive lesions, and the average size of the nodules
in the study was < 10 mm. In the current study, multivariate
analysis revealed that the size was not an independent pre-
dictor. However, the final nomogram included the param-
eter of size and the performance was not optimal. Similar
to the data of Wu et al [8], the average size of the pGGNs
in the current study was < 10 mm, which might be the
differential factor. Thus, the performance of size as a pre-
dictor of invasive lesion correlated with nodule size.

Nevertheless, the present study had several limitations.
First, it was a single-center retrospective study, and only sur-
gically resected pGGNs were included; thus, the verification
bias was inherent to our study design. Second, a reliable and
robust automatic method is essential to simplify the complex
and time-consuming boundary extraction process. Third, the
result showed similar performance of the radiographic model
and Rad-score with respect to the prediction invasiveness of
pGGNs; however, we did not conduct further analysis and
could not assess the correlation between radiomics and radio-
graphic features.

In conclusion, radiomic features provide a crucial reference
for the prediction of invasiveness. These accidental pGGNs
would receive a timely and reasonable solution, avoiding the
blind follow-up and radical invasive treatment. Therefore,
with the gradual development of artificial intelligence technol-
ogy, this quantitative nomogram prediction model based on
the radiomic features of CT imaging, used for the differential
noninvasive lesion and invasive lesion of pGGNs, may have
broad clinical applications.
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