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Quantitative DCE-MRI demonstrates increased blood perfusion
in Hoffa’s fat pad signal abnormalities in knee osteoarthritis, but not
in patellofemoral pain
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Abstract
Objective Infrapatellar fat pad (IPFP) fat-suppressed T2 (T2FS) hyperintense regions onMRI are an important imaging feature of
knee osteoarthritis (OA) and are thought to represent inflammation. These regions are also common in non-OA subjects, and may
not always be linked to inflammation. Our aim was to evaluate quantitative blood perfusion parameters, as surrogate measure of
inflammation, within T2FS-hyperintense regions in patients with OA, with patellofemoral pain (PFP) (supposed OA precursor),
and control subjects.
Methods Twenty-two knee OA patients, 35 PFP patients and 43 healthy controls were included and underwent MRI, comprising
T2 and DCE-MRI sequences. T2FS-hyperintense IPFP regions were delineated and a reference region was drawn in adjacent
IPFP tissue with normal signal intensity. After fitting the extended Tofts pharmacokinetic model, quantitative DCE-MRI perfusion
parameters were compared between the two regions within subjects in each subgroup, using a paired Wilcoxon signed-rank test.
Results T2FS-hyperintense IPFP regions were present in 16 of 22 (73%) OA patients, 13 of 35 (37%) PFP patients, and 14 of 43
(33%) controls. DCE-MRI perfusion parameters were significantly different between regions with and without a T2FS-hyperin-
tense signal in OA patients, demonstrating higher Ktrans compared to normal IFPF tissue (0.039 min−1 versus 0.025 min−1, p =
0.017) and higher Ve (0.157 versus 0.119, p = 0.010). For PFP patients and controls no significant differences were found.
Conclusions IPFP T2FS-hyperintense regions are associated with higher perfusion in knee OA patients in contrast to identically
appearing regions in PFP patients and controls, pointing towards an inflammatory pathogenesis in OA only.
Key Points
• Morphologically identical appearing T2FS-hyperintense infrapatellar fat pad regions show different perfusion in healthy
subjects, subjects with patellofemoral pain, and subjects with knee osteoarthritis.

• Elevated DCE-MRI perfusion parameters within T2FS-hyperintense infrapatellar fat pad regions in patients with osteoarthritis
suggest an inflammatory pathogenesis in osteoarthritis, but not in patellofemoral pain and healthy subjects.
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Abbreviations
AIF Arterial input function
BMI Body mass index
DCE-MRI Dynamic contrast-enhanced MRI
FOV Field-of-view
FSE Fast spin echo
FSPGR Fast spoiled gradient echo
IPFP Infrapatellar fat pad or Hoffa’s fat pad
IQR Interquartile range
KL Kellgren and Lawrence
KOOS Knee Injury and Osteoarthritis Outcome Score
MOAKS MRI Osteoarthritis Knee Score
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MRI Magnetic resonance imaging
OA Osteoarthritis
PFP Patellofemoral pain
ROI Region of Interest
SD Standard deviation

Introduction

The infrapatellar fat pad (IPFP), also known as “Hoffa’s fat
pad,” is an intracapsular, extra-synovial structure in the ante-
rior knee joint and is one of several fat pads of the knee. This
structure has been proposed as possible source of knee pain in
patients suffering from osteoarthritis (OA) and from the sup-
posed precursor of knee OA: patellofemoral pain (PFP) [1–6].
In OA research, the MRI Osteoarthritis Knee Score
(MOAKS) is one of the most commonly used scoring systems
for knee OA onMRI [7]. In this method, the presence and size
of hyperintense signal within the IPFP is scored on
unenhanced fat-suppressed MR images. These hyperintense
lesions are thought to be a manifestation of knee inflammation
and are therefore classified as Hoffa synovitis [7]. Moreover,
multiple studies have emphasized the importance of T2FS-hy-
perintense IPFP regions as a precursor for structural knee OA
[8–12].

A recent study that included patients with PFP and healthy
controls subjects showed that T2FS-hyperintense regions in
the IPFP are rather common [13]. The question arises whether
this identically appearing feature, commonly encountered in
daily clinical practice and considered an “early OA” feature,
has a different pathophysiology across populations. A hyper-
intense T2FS signal may be caused by edema due to inflam-
matory induced vasodilatation, but a prior study by Roemer
et al suggested that this feature may not always be linked to
inflammation [14]. Other causative effects of a fluid signal
might be edema due to mechanical friction/impingement or
increased vascularity due to neo-angiogenesis, necrosis, or
cellular infiltration [15, 16].

Dynamic contrast-enhanced (DCE) MRI enables further
evaluation of the pathophysiology of IPFP T2FS-hyperintense
lesions. Fitting a pharmacokinetic model to the DCE-MRI
data enables quantitative surrogate measurement of physio-
logical parameters such as blood flow, blood volume, and
extravascular permeability [17]. Increased blood perfusion,
evaluated byDCE-MRI, has been considered a surrogate mea-
sure of inflammation for a variety of musculoskeletal tissues
[18–23]. To the best of our knowledge, the only research with
regard to DCE-MRI in the IPFP was performed by Ballegaard
et al [23]. They studied obese patients with knee OA using a
heuristic DCE-MRI analysis approach and found a positive
correlation between knee pain and their DCE-MRI-derived
inflammation marker and between knee pain and Hoffa-
synovitis assessed by MOAKS, thereby stipulating the

importance of the IPFP and the potential of DCE-MRI as a
biomarker of inflammation [23]. So far, DCE-MRI has not
been applied for studying the pathogenesis of T2FS-hyperin-
tense IPFP regions in an OA and non-OA population.

Therefore, the aim of this study was to evaluate differences
in quantitative DCE-MRI blood perfusion parameters be-
tween a T2FS-hyperintense region of the IPFP and adjacent
IPFP tissue with normal signal intensity within patients with
knee OA, patients with PFP and healthy control subjects. Our
hypothesis was that T2FS-hyperintense IPFP regions demon-
strate different DCE-MRI perfusion parameters in patients
with OA, patients with PFP, and healthy control subjects, with
the highest degree of perfusion expected in patients with OA.

Materials and methods

Study population

In the current study, we analyzed data from two previous
studies in order to include both patients with OA and patients
with PFP, the supposed precursor of OA. In the first study,
patients with unicompartmental radiographic knee OAwith a
severity of KL (Kellgren and Lawrence [24]) grade 2 and
higher, aged 52 to 75 years, scheduled to undergo knee re-
placement surgery, were included. Patients were excluded
when the glomerular filtration rate was < 60 mL/min. In the
second study, healthy controls and patients with PFP, aged
between 18 and 40 years, were included. Patients were ex-
cluded if they had other defined pathological conditions of
the knee such as patellar tendinopathy or osteoarthritis, if the
onset of PFP occurred after trauma, if they had previous knee
injuries or surgery or previous episodes of PFP that occurred
more than 2 years ago, or if they had contraindications for
MRI scanning with contrast administration. Patients of both
studies were included between 2013 and 2017 at the Erasmus
University Medical Center Rotterdam (Rotterdam,
The Netherlands); details of each study have been published
elsewhere [13, 25]. Both studies were approved by the insti-
tutional review board of Erasmus MC and written informed
consent was obtained from all subjects.

MR imaging acquisition

In both studies, all subjects underwent MRI using the same
MRI scanner and an identical MRI protocol. Multisequence
MRI was performed using a 3-T MRI system (Discovery
MR750, General Electric Healthcare) and a dedicated 8-
channel transmit/receive knee coil (Invivo). DCE-MRI was
acquired in the sagittal plane, using a fat-suppressed 3D fast
spoiled gradient echo (FSPGR) sequence with 35 phases of
10 s. Contrast agent 0.2 mmol/kg gadopentetate dimeglumine
(Magnevist, Bayer) was administrated intravenously with a
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power injector at a rate of 2 ml/s started after the first phase
and followed by a saline flush. The field-of-view (FOV) was
22 × 22 cm, with an in-plane resolution of 0.85 × 1.20mm and
5-mm slice thickness, and a flip angle of 30° and repetition
time of 9.3 ms was used. T2 mapping was performed using a
iMSDE prepared 3D fast spin echo (FSE) sequence with a
FOV of 15 × 15 cm, 3-mm slice thickness, and an in-plane
resolution of 0.52 × 0.78 mm, using 5 different echo times in
the preparation module (3.1, 13.4, 27.0, 40.7, 68.1 ms). The
protocol also included a fat-suppressed sagittal T2-weighted
FSE sequence with a FOV of 15 × 15 cm, 3-mm slice thick-
ness, and an in-plane resolution of 0.36 × 0.59 mm.

Image analysis

To correct for patient movement, all 35 time points of the
DCE-MRI were registered using an automated rigid body reg-
istration with Elastix [26]. We first assessed the fat-saturated
T2-weighted images for the presence of T2FS-hyperintense
regions in the IPFP. Subsequently, detected T2FS-hyperintense
regions were delineated on the quantitative T2 maps. The
delineation of ROIs was performed on T2 maps as these im-
ages were scanned in the same part of the scan session as the
DCE-MRI, in contrast to the T2FS-weighted images, and thus
the regions of interest (ROIs) could be copied to the DCE-
maps. ROIs were placed within the borders of the hyperin-
tense regions using the Horos software package
(Horosproject.org). When multiple hyperintense regions
were found in the IPFP, the ROI was placed in only one, the
largest region. Two ROIs were drawn in the IPFP, one within
the T2FS-hyperintense region and the second in an adjacent
area without T2-hyperintensity (Fig. 1). All ROIs were drawn
by a researcher with a technical medical degree and more than
three years of experience in musculoskeletal imaging research
(B.d.V.). The same ROIs from the T2-maps were copied to the
registered DCE-MR images to extract quantitative DCE mea-
sures from the same regions. These quantitative DCE param-
eters (Ktrans, Kep, Ve, Vp) were calculated by fitting the
extended Tofts pharmacokinetic model to the DCE-MRI data,
using the DCETool in Horos [27, 28]. Subsequently, mean T2
value and mean perfusion parameter values of the ROIs were
calculated. The Tofts pharmacokinetic model is widely used
for this purpose and has shown to be the most accurate model
for patellar bone [29]. For highly vascularized tissues, like the
IPFP, the extended Tofts pharmacokinetic model is more suit-
able due to the addition of the vascular term Vp; therefore, in
this study, we used the extended Tofts pharmacokinetic model
[30]. Ktrans reflects the volume transfer constant into the tis-
sue compartment, Kep describes the rate constant back into
the vascular component, Ve is the extravascular extracellular
space, and Vp is the vascular fraction of the region [31]. The
arterial input function (AIF) was estimated using a ROI in the
popliteal artery. All fitted AIFs were visually checked.

Statistical analysis

The image analyses result in a mean value for the T2 and
perfusion parameters within each region. For each region,
the median T2 and perfusion parameters over all subjects in
a certain group were calculated, as well as the interquartile
range (IQR) as a measure of variability. Since all DCE-MRI
variables showed a non-normal distribution, using the
Shapiro-Wilk test, a paired Wilcoxon signed-rank test was
used to compare perfusion parameter values of the T2FS-hy-
perintense region with the adjacent region with normal signal
intensity within the different subject groups. A Mann-
Whitney U test was used to evaluate the location distribution
of T2FS-hyperintense IPFP regions over the groups as well as
differences in DCE-MRI perfusion parameters of a central
versus a peripheral T2FS-hyperintense region. Statistical anal-
ysis was performed using SPSS v25 (IBM). P values < 0.05
were considered to be statistically significant.

Results

In total, 100 participants were included from both studies: 22
patients with knee OA, 35 patients with PFP, and 43 healthy
controls. The mean BMI was higher in the OA group
(30.6 kg/m2) in comparison to the PFP and the control group
with ameanBMI of 24.6 and 22.3 kg/m2, respectively. TheKnee
Injury and Osteoarthritis Outcome Score (KOOS) indicated
that pain symptoms were most severe in the OA group.
Characteristics of all participants are shown in Table 1.

Fig. 1 Two ROIs were drawn in the IPFP, one within the T2FS-
hyperintense region and the second in an adjacent area without T2-
hyperintensity
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T2FS-hyperintense IPFP regions were present in 43 sub-
jects. The prevalence of the T2FS-hyperintense IPFP regions
was different between the groups: 16 of 22 (73%) knee OA
patients, 13 of 35 (37%) PFP patients, and 14 of 43 (33%)
controls. Of the 16 knee OA patients, three had a radiographic
OA severity of Kellgren and Lawrence grade 2, eight had KL
grade 3, and five patients had KL grade 4.

The median T2 value in IPFP tissue without T2-
hyperintensity was 36.4, 33.9, and 32.7 ms in OA patients,
PFP patients, and controls, respectively. For the T2FS-hyper-
intense regions, these values were 61.4, 52.3, and 53.7 ms,
respectively (Table 2).

Most hyperintense regions were located centrally (n = 30)
in the IPFP whereas 13 were located more peripherally. We

observed no significant difference in location distribution be-
tween groups as well as no difference in all DCE-MRI perfu-
sion parameters of a central versus a peripheral T2FS hyperin-
tense region.

In knee OA patients, the T2FS-hyperintense IPFP regions
demonstrated significantly higher values of Ktrans (see Fig. 2)
and Ve compared to tissue with normal signal intensity
(0.039 min−1 vs. 0.025 min−1 for Ktrans and 0.157 vs. 0.119
for Ve). Kep and Vp were higher within T2FS-hyperintense
lesions compared to tissue with normal signal intensity (me-
dian Kep 197.57 vs. 163.49 and median Vp 2.09 vs. 1.03,
respectively). However, these differences were not statistically
significant for both Kep (p = 0.079) and Vp (p = 0.363). In
both controls and PFP patients, all DCE-MRI perfusion

Table 2 T2 and DCE-MRI perfusion parameters in the IPFP. p values of the difference between T2-hyperintense region and tissue with normal signal
intensity are reported. IQR = interquartile range

T2 relaxation
time (ms)

Ktrans × 1000 (min−1) Kep × 1000 (min−1) Ve × 1000 (unit-less) Vp × 1000 (unit-less)

Median IQR Median IQR p
value†

Median IQR p
value†

Median IQR p
value†

Median IQR p
value†

OA patients

T2-hyperintense
region

61.40 31.27 39.03 65.79 0.017* 197.57 198.66 0.079 157.19 259.45 0.010* 2.09 6.15 0.363

Normal signal
intensity

36.39 6.15 24.73 22.76 163.49 131.83 119.18 151.43 1.03 5.98

PFP patients

T2-hyperintense
region

52.30 10.66 11.07 13.49 0.552 173.41 198.61 0.552 143.00 128.37 0.917 0.22 0.52 0.477

Normal signal
intensity

33.85 4.62 13.61 10.09 112.86 181.96 143.95 125.33 0.11 0.39

Controls

T2-hyperintense
region

53.67 15.49 9.84 17.28 0.363 91.00 97.38 0.778 160.62 255.09 0.510 0.13 0.70 0.075

Normal signal
intensity

32.71 4.74 14.36 23.02 122.28 117.59 181.53 116.12 0.01 0.18

†Wilcoxon signed-rank test

* p values < 0.05

Table 1 Characteristics of
participants with T2 regions
within IPFP

Groups

Parameter

OA Patients

N = 16

PFP patients

N = 13

Controls

N = 14

Total

N = 43

Sex male (%) 5 (31%) 8 (62%) 7 (50%) 20 (47%)

Age in years 63.3 ± 6.3a 27.0 ± 5.6a 25.8 ± 4.4a 29.6b

[24.0–60.0]

BMI in kg/m2 30.6 ± 5.2a 24.6 ± 3.5a 22.3 ± 2.2a 24.3b

[21.9–29.1]

KOOS pain subscale 40.5 ± 11.0a 71.6 ± 17.9a 100.0b

[100.0–100.0]

66.7b

[44.4–100.0]

SD: standard deviation, IQR: interquartile range
aMean ± SD
bMedian [IQR]
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parameters were not significantly different between IPFP tis-
sue with and without a T2FS-hyperintensity. In PFP-patients, a
Ktrans of 0.014 min−1 and Kep 0.113 min−1 in IPFP tissue
with normal signal intensity and a Ktrans of 0.011 min−1 and
Kep 0.173 min−1 in tissue with T2FS-hyperintensity was
found. In controls, the median Ktrans was 0.014 min−1 and
median Kep was 0.122 min−1 in IPFP tissue with normal
signal intensity and in tissue with T2FS-hyperintensity these
values were 0.010 and 0.091 min−1, respectively. Moreover,
all DCE-MRI perfusion parameters were higher in both the
hyperintense lesions and normal IPFP tissue in the OA group.
All DCE-MRI results are shown in Table 2.

Discussion

In this study, quantitative DCE-MRI perfusion parameters
were measured within T2FS-hyperintense regions and adjacent
IPFP tissue with normal signal intensity of patients with knee
OA and patients with PFP and in healthy controls. Our hy-
pothesis was that identically appearing T2FS-hyperintense

IPFP regions in patients with OA, PFP, and control subjects
demonstrate different degrees of increased perfusion mea-
sured with quantitative DCE-MRI compared to adjacent
IPFP tissue with normal signal intensity. We expected the
highest perfusion in patients with OA, in which term Hoffa
synovitis has been coined to describe such regions. Indeed, we
found that T2FS-hyperintense regions showed significantly
increased perfusion compared to adjacent IPFP tissue with
normal signal intensity in OA patients only, in contrast to both
patients with PFP and healthy controls. This finding suggests
an inflammatory pathogenesis of such regions in OA patients,
but not in patients with PFP and healthy control subjects. Our
observation that knee OA patients demonstrated, in general,
higher DCE-MRI perfusion parameters than PFP patients and
healthy controls, irrespective of the presence of a T2FS-hyper-
intense region, also indicate that the entire IPFP may be af-
fected by inflammation in OA and possibly also by neo-an-
giogenesis, based on the elevated Vp, which represents the
vascular fraction within the ROI. Our observation of this phe-
nomenon in the IPFP is of interest, as from previous literature
it is known that OA is not a simple “wear and tear” disease of

Fig. 2 Delineated T2-hyperintense region within IPFP on T2 map (left) and corresponding Ktrans map (values in 1/min) (right) in patient with PFP
(upper row) and patient with OA (lower row). Higher values of Ktrans are depicted in red
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cartilage and bone, but a whole organ disease, including sev-
eral soft tissues such as the IPFP [32]. Accordingly, there is an
increasing focus on systemic treatment approaches for OA,
such as anti-inflammatory and anti-angiogenic medication
[33]. In future trials, it will be a prerequisite to identify OA
subtypes, in which advanced MR imaging, such as DCE-
MRI, could potentially play a major role.

The different results for PFP found in this study are not
consistent with current insights in PFP, which is supposed to
be a precursor of OA [34, 35]. A possible explanation might
be that tissue homeostasis is not yet as disturbed in PFP and
inflammatory cytokines are not yet released. Thus, even
though T2 hyperintense IPFP regions appear identically on
unenhanced T2-weighted fat-saturated MR images in OA
and PFP patients as well as healthy controls, the results of
our DCE-MRI analysis show that there are different degrees
of perfusion within the IPFP of controls, PFP patients, and OA
patients, which may point towards different pathophysiol-
ogies. This knowledge will help the practicing radiologist
who is confronted with an increased application of sensitive
knee MRI to appraise these lesions in the context of the pa-
tient’s age and concurrent abnormalities.

In this study, the IPFP was quantitatively analyzed by T2
mapping and DCE-MRI in order to investigate the pathophys-
iology of T2 signal alterations in the IPFP within OA and PFP.
The single prior study that applied DCE-MRI to investigate
the IPFP by Ballegaard et al [23] used a different approach in
the definition of the region of interest, as they focused on the
entire IPFP in 3D rather than T2FS-hyperintensities within the
fat pad. Furthermore, only obese patients with knee OAwere
included and a heuristic DCE-MRI analysis method without
pharmacokinetic modeling was performed.

A strength of the current study is the quantitative assess-
ment of DCE-MRI perfusion values, which offers more robust
parameters that directly represent the microvasculature phys-
iology, in contrast to semi-quantitative analysis. Furthermore,
the inclusion of different patient groups from two studies of-
fered the possibility to determine the nature of T2FS-hyperin-
tense IPFP regions across different disease entities, one of
which (PFP) has been suggested as a precursor to the each
other (OA).Wewere able to directly compare the results of the
quantitative DCE-MRI analysis from both studies because the
exact same MRI scanner was used with identical scan and
image post processing for both studies. Additionally, statisti-
cal analyses were performedwithin subjects of each subgroup,
and thus possible differences in confounding variables be-
tween the subgroups will not have influenced our results.

A potential limitation was that no B1+ inhomogeneity as-
sessment and T1 correction was possible, due to the lack of
B1+ or pre-contrast T1 map. A fixed T1(0) value of 1443 ms
(standard value of the DCE Tool used in Horos) was used
instead. We expect that differences that may have arisen as a
result of ignoring region T1 variability will not change the

outcome of this study, as the observed differences in perfusion
were large and substantially larger than any differences that
we would expect due to T1 variability. Furthermore, we used a
dedicated transmit/receive knee coil with relatively homoge-
neous B1 field. At the time of the MR acquisitions, linear
gadolinium contrast agents, like gadopentetate dimeglumine,
were commonly in use. Since then, these have been with-
drawn from the EU market and have been replaced by alter-
natives that carry less risk for nephrogenic systemic fibrosis.
As the perfusion kinetics of these alternatives are similar, we
expect our results to be relevant for the newer generation con-
trast agents as well. Another limitation is that the OA group
comprised patients referred for knee arthroplasty because of
end-stage clinical OA, although the radiographic OA severity
ranged from KL grade 2 to 4, with grade 4 relatively under-
represented. Furthermore, ROIs were drawn on one slice only.
Finally, T2FS-hyperintense lesions were found only in 43 sub-
jects, and the OA group was relatively small. However, all
these subjects underwent an extensiveMRI protocol including
the administration of an intravenous contrast agent. In future
research, it would be interesting to examine the perfusion of
T2FS hyperintense lesions in a population with a wider range
of clinical OA severity, to evaluate the diagnostic value of
T2FS-hyperintense lesions and their perfusion characteristics
in classifying patients with unknown OA status, and to study
the relationship of perfusion parameters with clinical
symptoms.

In conclusion, T2FS-hyperintense regions of the IPFP demon-
strated higher quantitativeDCE-MRI blood perfusion parameters
compared to adjacent tissue with normal signal intensity in pa-
tients with knee OA, but not in patients with PFP and healthy
control subjects. This suggests different pathophysiology of IPFP
T2FS-hyperintense regions across patient subgroups, in which an
inflammatory pathogenesis is only present in OA.
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