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Predictive imaging for thoracic aortic dissection and rupture:
moving beyond diameters
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Abstract
Acute aortic syndromes comprise a group of potentially fatal conditions that result from weakening of the aortic vessel wall. Pre-
emptive surgical intervention is currently reserved for patients with severe aortic dilatation, although abundant evidence describes
the occurrence of dissection and rupture in aortas with diameters below surgical thresholds. Modern imaging techniques (such as
hybrid PET-CTand 4D flowMRI) afford the non-invasive assessment of anatomic, hemodynamic, and molecular features of the
aorta, and may provide for a more accurate selection of patients who will benefit from preventative surgical intervention. In the
current review, we summarize evidence and considerations regarding predictive aortic imaging and highlight evolving imaging
modalities that have shown promise to improve risk assessment for the occurrence of dissection and rupture.
Key Points
• Guidelines for the preventative management of aortic disease depend on maximal vessel diameters, while these have shown to
be poor predictors for the occurrence of catastrophic acute aortic events.

• Evolving imaging modalities (such as 4D flow MRI and hybrid PET-CT) afford a more comprehensive insight into anatomic,
hemodynamic, and molecular features of the aorta and have shown promise to detect vessel wall instability at an early stage.
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Abbreviations
AAA Abdominal aortic aneurysm
AAS Acute aortic syndrome
BAV Bicuspid aortic valve
IMH Intramural hematoma
PC Phase contrast
SD Standard deviation
TAA Thoracic aortic aneurysm

VSMC Vascular smooth muscle cell
WSS Wall shear stress

Introduction

“Upon examining the heart, its pericardium was found
distended with a quantity of coagulated blood, nearly
sufficient to fill a pint cup; the whole heart was so com-
pressed as to prevent any blood contained in the veins
from being forced into the auricles; therefore, the ven-
tricles were found absolutely void of blood; and, in the
trunk of the aorta, we found a transverse fissure on its
inner side, about an inch and a half long, through which
some blood had recently passed … ”

In 1760, King George II of Great Britain died unexpectedly
while “straining on the toilet,” and so became subject of the
first ever case report on acute type A aortic dissection [1]. At
autopsy, the King’s personal physician described findings of
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an intimal vessel wall tear and subsequent cardiac tamponade,
which—as we now know—is one of the most feared compli-
cations of dissection. Along with pathophysiologically dis-
tinct entities like aneurysm rupture and intramural hematoma
(IMH), dissection belongs to the spectrum of acute aortic syn-
dromes (AASs). Despite best efforts, these have proven chal-
lenging to predict, and annual incidence rates have been stable
at approximately 10 per 100,000 over the past decades [2, 3].
Cardiovascular imaging plays a central role in the preventative
management of aortic disease, since guidelines traditionally
depend on diameter criteria for stratification towards prophy-
lactic surgical intervention [4, 5]. In the current review, we
summarize evidence and considerations regarding predictive
aortic imaging and highlight modern imaging techniques that
have shown promise to improve risk assessment for the oc-
currence of dissection and rupture.

Best current practice—aortic diameters

Normal diameters

The aorta is the largest artery in the body and runs from the
aortic valve until the abdominal bifurcation. From proximal to
distal, it consists of the aortic root, ascending aorta, aortic
arch, descending thoracic aorta, and abdominal aorta
(Fig. 1). Cross-sectional diameters are influenced by gender,
patient habitus, and hypertension, and increase in an indolent
manner by approximately 0.1 mm/year [6]. Reference values
for the different anatomic segments have been established by
multiple imaging modalities, including echocardiography, CT,
and MRI [7–9]. Imaging guidelines provide specific measure-
ment recommendations for each of these techniques and em-
phasize that there exists no standardized method across mo-
dalities [10]. Therefore, diameters can vary slightly depending
on trigger time (end-systolic vs. end-diastolic) and edge selec-
tion (leading edge-to-leading edge vs. inner edge-inner edge
vs. outer edge-outer edge). In general, it is stressed that mea-
surements should be performed perpendicular to the aortic
centerline (i.e., on double oblique images), and that measure-
ment location andmethodology should be specified in order to
provide for accurate follow-up in individuals with an indica-
tion for repetitive imaging [11–13].

Thoracic aortic aneurysm

An aneurysm is defined as a localized arterial dilatation of ≥ 2
standard deviations (SDs) above the expected vessel diameter
[14]. The underlying pathophysiological mechanisms differ
partially for aneurysms at various locations along the aorta.
Whereas thoracic aortic aneurysm (TAA) results from exces-
sive degeneration of the medial layer of the vessel wall (also
known as cystic medial necrosis), the formation of abdominal

Fig. 1 Three-dimensional CT reconstruction of a healthy thoracic aorta.
The ascending aorta runs from the sinotubular junction until the first
branch vessel (brachiocephalic trunk), while the aortic arch is defined
as the segment that contains the three branch vessels. The descending
thoracic aorta is divided into two parts: a proximal part (from the left
subclavian artery to the level of the pulmonary artery) and a distal part
(from the pulmonary artery to the diaphragm)
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aortic aneurysms (AAAs) is mainly associated with athero-
sclerosis [15]. However, the net result—extensive remodeling
of the extracellular matrix of the vessel wall with loss of vas-
cular smooth muscle cells (VSMCs) and elastin content—is
similar for all aneurysms [15].

Progressive aortic dilatation is a well-acknowledged
risk factor for the occurrence of both acute dissection and
rupture. While these natural complications are rare in as-
cending aortic aneurysms of moderate size (yearly rupture
or dissection risk of 0.08%, 0.22%, and 0.58% at diameters
of 45, 50, and 55 mm, respectively), a sharp step-up in
their occurrence—to 6.9% yearly—is observed when the
diameter exceeds 60 mm (Fig. 2) [16–18]. In descending
thoracic aneurysms, a similar “hinge point” is identified at
70 mm [18]. In order to avoid aneurysm expansion beyond
these critical points, the general consensus is to refer pa-
tients for pre-emptive surgery at 55 mm (ascending aorta)
or 55 to 60 mm (descending thoracic aorta, depending on
the eligibility for an endovascular approach) [4, 5, 19].
More frequent surveillance imaging and lower surgical
cut-offs apply to patients with connective tissue diseases
(such as Marfan syndrome), who are at increased risk for
negative outcomes [5]. In these patients, surgery is indicat-
ed at diameters ≥ 50 mm, or even ≥ 45 mm in the co-
presence of additional risk factors (growth rate > 3



Aortic size paradox

Despite the evident link between TAA formation and un-
favorable outcomes, the vast majority of dissections occur
in aortas with diameters below the threshold for preventa-
t ive surgery— the so-cal led aort ic s ize paradox.
Retrospective studies have shown that only 30–41% of
patients with type A and 18% of patients with type B dis-
section had diameters ≥ 5.5 cm at the time of presentation
[23–26]. Since the aorta dilates by about one-third of its
size directly after dissection onset, the number of events
that could have been prevented by current diameter cut-
offs is probably even lower [27–29]. Nevertheless, it is
questionable if lowering the thresholds for surgical inter-
vention would bear a long-term mortality benefit. Given
the large population at risk, it would more likely expose a
considerable number of patients with smaller TAAs—and
thus, minimal yearly risk of natural complications—to the
3.7–8.3% mortality risk associated with elective surgery
[30]. In conclusion, it could be stated that the aortic diam-
eter predicts rupture and dissection on a populational level,
but is an insufficient parameter to identify individuals at
risk. For this reason, recent research interests have shifted
to the deciphering of additional risk factors for AAS, in an
attempt to enhance personalized risk assessment and clin-
ical decision-making.

Modern perspectives—moving
beyond diameters

Aortic elongation and volume

One drawback of maximal diameter measurements is that they
do not adequately represent the three-dimensional process of
aortic growth. Aneurysm lengthening and cylindrical defor-
mation are two scenarios of positive remodeling that are not
necessarily accompanied by an increase of maximal diameters
[31]. Since more advanced acquisition and post-processing
techniques are required to assess the three-dimensional geom-
etry of the aorta, data on its length and volume are relatively
scarce. Similar to its diameters, normal aortic length has
shown to increase with age [32, 33]. With the vessel being
confined within the thoracic cavity, this lengthening process
naturally causes the artery to become more tortuous [32].
Driven by observations that the intimal entry tear runs in the
transverse direction in the majority of cases (i.e., results from
disruptive stretch in the longitudinal direction), recent studies
have investigated the role of excessive elongation in the path-
ophysiology of dissection [34, 35]. They found that increased
vessel curvature significantly elevates the forces acting on the
aortic wall and that vessel length serves as an independent risk
factor for the occurrence of both type A and type B dissection
(Fig. 3) [36–39].

To date, the added value of volume measurements in the
management of thoracic aortic disease is not fully under-
stood. Several AAA studies have suggested improved sen-
sitivity for detection of aneurysm growth by reporting that
substantial volume expansion can occur even while the
maximal diameter remains stable [40–43]. This finding is
important, since it implicates (rapid) growth in regions
proximally or distally from the widest portion of the aneu-
rysm sac. Volumetry has also shown improved intra- and
inter-observer variability when compared with diameter
measurements, which is another argument in favor of its
use in clinical aneurysm follow-up [44]. Although no caus-
al link with adverse outcomes has yet been established, the
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mm/year, familial history of dissection, or severe valvular
regurgitation). Patients with bicuspid aortic valve (BAV)
and concomitant risk factors are also considered for sur-
gery at a lower than normal threshold (≥ 50 mm), although
evidence for this approach is lacking [4, 5, 20].
Admittedly, BAV is overrepresented in large dissection co-
horts, but the higher number of aortic events in this patient
group cannot be seen independent from its increased TAA
prevalence [17, 21]. At any given TAA diameter, the yearly
aortic complication risk for bicuspid and tricuspid valves
has shown to be comparable [22].

Fig. 2 Lifetime probability of
dissection or rupture at various
sizes of the thoracic aorta. Note
the “hinge points” at 6 cm
(ascending aorta) and 7 cm
(descending thoracic aorta), at
which the natural complication
risk suddenly escalates. Reprinted
from Elefteriades et al, J Am Coll
Cardiol 2010;55(9):841–857,
with permission from Elsevier



Aortic hemodynamics

The role of hemodynamics in the pathogenesis of aortopathy
has been subject of a long-standing debate. Especially in BAV
patients, who exhibit enlarged aortic diameters even in the
absence of valvular dysfunction, there has been controversy
regarding the origin of aneurysm formation [45]. Two theories
explain the accelerated aortic growth rates and high preva-
lence of TAA in this patient group: (i) a genetic theory, which
rests on evidence that BAV is a congenital condition with
considerable genetic heterogeneity and (ii) a hemodynamic
theory, in which abnormal flow patterns and turbulence cause
elevated wall stress and subsequent vessel remodeling [46].
Several genes (such as NOTCH1, ACTA2, and GATA5) have
been associated with abnormal development of the aortic
valve [46, 47]. Given that the aortic cusps and the medial layer
of the ascending aorta are embryologically linked (i.e., both
originate from the neural crest), it is conceivable that the genes
responsible for BAV formation can also affect the develop-
ment of the aortic vessel wall. Other arguments in support of
the genetic theory include observations that BAVaortopathy is
not uncommon in children and adolescents, and that progres-
sive diameter increase can occur even after replacement of the
aortic valve [48, 49]. Initially, the histologic presence of cystic
medial necrosis was also presented as an argument for disease
inheritability, as this was believed to resemble findings in
those with Marfan syndrome [50]. However, later work has
demonstrated that medial degeneration is a common feature of
all TAAs and dissected aortas, regardless of their underlying
etiology [15, 51].

Over the past few years, the hemodynamic theory has be-
come increasingly popular, along with the evolvement of

Fig. 3 Scatter plot depicting the length of the ascending aorta in patients
with acute type A dissection (red) and healthy controls (gray). In the
majority of dissection patients, the aorta was evidently lengthened
(mean difference of 2.0 cm when compared with propensity-matched
healthy controls). Adapted by permission from BMJ Publishing Group
Limited, from Heuts et al, Aortic elongation part II: the risk of acute type
A aortic dissection, Heart 2018;104:1778–1782

Fig. 4 a Streamline visualization
of a BAV patient, showing a
pronounced eccentric and helical
flow pattern. b The adjacent WSS
map showing elevated wall stress
in the greater curvature of the
aorta, at the location of
impingement between the
eccentric jet and the vessel wall
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cited studies have demonstrated that aortic length and vol-
ume can be measured on routinely obtained CT using com-
mercially available software packages. This widespread
availability makes them feasible predictive parameters for
use in a clinical setting, although longitudinal—and, pref-
erably, prospective—studies are now required as the next
step in their validation process.



functional imaging modalities that afford a more comprehen-
sive insight into aortic hemodynamics. In flow MRI, phase-
contrast (PC) techniques are used to generate image contrast
between moving protons (such as in blood) and stationary
protons (most soft tissues). The underlying concept is based
on the feature of protons to accumulate an MRI phase shift
that is proportional to the speed at which they move along a
magnetic gradient field. Phase-contrast MRI is traditionally
performed using a manually positioned two-dimensional
(2D) acquisition that encodes velocity in one principal direc-
tion. This approach generates time-resolved velocity maps,
which can be used to quantify flow rates and velocities of
blood moving through the imaging slice. As such, it enables

evaluation of a broad spectrum of cardiovascular diseases,
including assessment of shunt fractions and valvular
regurgitant volumes. Over recent years, methodological ad-
vances have facilitated the acquisition of time-resolved,
three-dimensional, three-directionally encoded velocity data.
This technique, commonly known as 4D flow MRI, affords a
uniquely detailed flow visualization within the heart and large
vessels and allows post hoc flow quantification at any location
within an acquired volume [52]. Furthermore, the obtained
velocity data can be used for estimation of various flow-
derived hemodynamic parameters, including wall shear stress
(WSS) and normalized flow displacement. In BAV patients,
4D flow MRI has revealed markedly eccentric and helical

6400 Eur Radiol (2019) 29:6396–6404

Fig. 5 Aortic wall specimens of regions with normal WSS (left panels)
and high WSS (right panels) in three (a–c) patients with BAVaortopathy
(× 40 magnification). Note the decreased number of elastin fibers (black)
in the context of elevated WSS. Center panel: 4D flow MRI–based maps

depicting areas with increased (red) and depressed (blue) WSS. Reprinted
from Guzzardi et al, Valve-related hemodynamics mediate human
bicuspid aortopahy, J Am Coll Cardiol 2015;66:892–900, with
permission from Elsevier



flow with highest flow velocities and WSS located along the
aortic vessel wall (Fig. 4) [53, 54]. For each BAV cusp fusion
type, a typical WSS distribution pattern with elevated shear
stress at the location of impingement between the flow jet and
vessel wall was identified [55]. Subsequently, raphe-specific
WSS patterns have shown to correspond with the phenotype
of BAV aortopathy (i.e., left-right coronary cusp fusion leads
to sole dilatation of the tubular ascending aorta, whereas a
raphe between the right- and non-coronary cusps causes more
diffuse dilatation with involvement of the aortic root, tubular
ascending aorta, and aortic arch) [56, 57]. In a recent contri-
bution, Guzzardi et al have also demonstrated a more direct
association between WSS and histologic changes of the aortic
vessel wall [58]. In their study, BAV patients who were sched-
uled for ascending aortic replacement underwent pre-
operative WSS mapping. During surgery, paired tissue sam-
ples of aortic regions with normal and elevated WSS were
collected to show that increased WSS was associated with
dysregulation of the extracellular matrix and degeneration of
elastin fibers (Fig. 5).

Flow displacement is another 4D flow MRI parameter that
has shown potential to predict progression of aortic disease. It
provides a quantitative measure of flow eccentricity by calcu-
lating the distance between the location of peak systolic flow
and vessel center in a 2D imaging plane [59]. Like WSS, the
degree and direction of flow displacement depend on the un-
derlying aortic valve phenotype [56]. As yet, it is the only 4D
flow MRI parameter that has been associated with aortic
growth in a (small) longitudinal cohort study. In this study
(mean follow-up duration, over 4 years), BAV patients with
eccentric aortic flow exhibited faster diameter growth than
those with laminar flow profiles (1.2 mm/year vs. 0.3 mm/
year, respectively) [60]. Larger longitudinal studies that aim
to acquire the clinical relevance of various 4D flow MRI pa-
rameters are currently ongoing.

Vessel wall inflammation

Immunohistochemical studies have reported extensive inflam-
matory activity within the aneurysmatic vessel wall [15].
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Whereas the presence of lymphocytes and activated macro-
phages is rare in a healthy aorta, elevated numbers of CD3+

and CD68+ cells were found throughout the medial layer of
TAAs [51]. Of note, infiltration of these cells has shown to be
even more pronounced in the dissected aorta, raising the ques-
tion whether the degree of inflammation can be used to dis-
criminate between low- and high-risk patients [51]. Since leu-
kocytes demand glucose for their accelerated metabolic pro-
cesses, areas of increased inflammatory activity can be detect-
ed using positron emission tomography (PET). This imaging
modality depends on measurements of radioactivity emitted
after administration of a radioactive tracer, most commonly
the glucose derivative 18-fluoro-2-deoxyglucose (FDG;
> 95% of all PET examinations). FDG is transported into cells
by glucose transporters and becomes phosphorylated to form
FDG-6-phosphate. Unlike glucose-6-phosphate, FDG-6-
phosphate is not further metabolized along the glycolytic path-
way and becomes trapped within the cell in a concentration
that is in proportion to that cells’ glucose consumption. In
animal experiments, FDG avidity has shown to be positively
correlated with macrophage content of the arterial vessel wall
[61, 62]. A similar association has been observed in vivo in
patients with abdominal aneurysms [63, 64]. Furthermore, the
AAA study by Reeps et al reported FDG uptake to be associ-
ated with a decrease in collagen content and VSMCs—factors
that determine the stability of the aortic wall. However, despite
these promising results, studies that sought to investigate the
use of FDG-PET for prediction of AAA expansion and rup-
ture have reported conflicting results. Whereas two prospec-
tive studies have demonstrated elevated tracer uptake to be
associated with disease progression, others could not establish
such a relationship [65–70]. As yet, only one study has inves-
tigated the use of PET-CT in thoracic aortic disease. In a small
sample of hemodynamically stable patients with various acute
aortic conditions (e.g., type B dissection, penetrating ulcer, or
IMH), this longitudinal study showed increased FDG uptake
to be associated with the risk of disease progression (Fig. 6)
[71]. Of the 11 included patients with increased FDG uptake,
nine (82%) showed progression of wall pathology under
conservative treatment requiring emergency medical

Fig. 6 a Contrast-enhanced CT depicting type B dissection (arrowhead)
in a patient with acute chest pain. b, c Adjacent PET and PET-CT
examinations revealed regions of elevated FDG uptake in the dissected

vessel wall (arrowheads). Adapted by permission from BMJ Publishing
Group Limited, from Kuehl et al, Heart 2008;94:1472–1477
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intervention, and three of these nine patients died. In contrast,
only 10 of the 22 (45%) PET-negative patients experienced
disease progression (two deaths).

In conclusion, no clear relation between FDG-PET and
clinical outcomes in thoracic and abdominal aneurysm pa-
tients has yet been demonstrated, although it should be noted
that the inconsistency between studies partly relates to their
small and heterogeneous study populations. Prospective stud-
ies with larger patient cohorts are warranted to assess the ac-
tual clinical value of FDG-PET. Also, future work could ad-
dress the clinical value of novel radiotracers that have shown
potential to target other processes within the inflammatory
pathway of aneurysmal disease, such as expression of matrix
metalloproteases (MMPSense 680), active vascular calcifica-
tion (18F-NaF), and chemokine receptor 4 expression (68-Ga-
pentixafor) [72–74]. The recent integration of PET and MRI
into PET/MRI scanners has afforded the synchronized evalu-
ation of anatomic, physiologic, and molecular imaging fea-
tures, and could serve as a promising imaging platform in
the future.

Conclusions

Excessive aortic dilatation (diameter ≥ 5.5 cm) poses a signif-
icant risk for the occurrence of acute aortic events, and pa-
tients with aneurysms beyond this size should be referred for
prophylactic surgical intervention. However, the majority of
acute aortic events occur in aortas with diameters below sur-
gical thresholds. Therefore, these patients would not have
qualified for preventative surgery, even when screened appro-
priately prior to event onset. Several modern imaging tech-
niques (such as hybrid PET-CT and 4D flow MRI) have
shown promise to detect vessel wall instability at an early
stage. Studies that aim to demonstrate a causal link with the
occurrence of acute aortic syndromes are currently ongoing
and could lead to the integration of these techniques into clin-
ical practice guidelines.
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