CORRECTION

Correction to: Point estimate and reference normality interval of MRI-derived myocardial extracellular volume in healthy subjects: a systematic review and meta-analysis

Francesco Sardanelli ^{1,2} • Simone Schiaffino ¹ • Moreno Zanardo ³ • Francesco Secchi ¹ • Paola Maria Cannaò ¹ • Federico Ambrogi ⁴ • Giovanni Di Leo ¹

Published online: 5 July 2019

© European Society of Radiology 2019

Correction to: European Radiology https://doi.org/10.1007/s00330-019-06185-w

The original version of this article, published on 02 May 2019, unfortunately contained a mistake. The following correction has therefore been made in the original: The presentation of Fig. 2 was incorrect. The corrected figure is given below.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The online version of the original article can be found at https://doi.org/10.1007/s00330-019-06185-w

Moreno Zanardo moreno.zanardo@unimi.it

- Radiology Unit, IRCCS Policlinico San Donato, via Morandi 30, 20097 San Donato Milanese, Milan, Italy
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Morandi 30, 20097 San Donato Milanese, Milan, Italy
- ³ Integrative Biomedical Research, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via Vanzetti 5, 20133 Milan, Italy

Eur Radiol (2019) 29:7076–7077 7077

Fig. 2 Forest plot of the 56 analyzed studies, for a total of 64 independent study parts. Heterogeneity among studies was very high ($I^2 = 92\%$). The last row shows the pooled extracellular volume obtained using the random effects model

Model	Study name	Statistics for each study		ch study	Mean and 95% CI
		Mean	Lower limit	Upper limit	
	M ordi 2017	0,270	0,254	0,286	+
	Storz 2017	0,246	0,242	0,250	
	Wang 2017	0,269	0,264	0,274	
	Youn 2017	0,258	0,248	0,268	
	Altabella 2016 Boentert 2016	0,245 0,254	0,228 0,242	0,262 0,266	
	Bulluck 2016	0,254	0,242	0,200	
	Hanneman 2016	0,270	0,251	0,289	-
	Lee 2016	0,263	0,256	0,270	
	Luetkens 2016 (1a)	0,277	0,261	0,293	+
	Luetkens 2016 (1b)	0,253	0,241	0,265	•
	Luetkens 2016 (2a)	0,265	0,250	0,280	
	Luetkens 2016 (2b) Mayr 2016	0,261 0,250	0,249 0,243	0,273 0,257	
	Mori 2016	0,262	0,243	0,237	
	Olivieri 2016 (a)	0,252	0,235	0,269	
	Olivieri 2016 (b)	0,207	0,195	0,219	
	Schmacht 2016	0,264	0,250	0,278	+
	Soslow 2016	0,240	0,234	0,246	
	Weingartner 2016 (a)		0,249	0,271	•
	Weingartner 2016 (b)		0,193	0,211	<u>†</u>
	Weingartner 2016 (c) Zhao 2016	0,213	0,202 0,242	0,224 0,260	
	aus dem Siepen 2015		0,242	0,238	
	Bany persad 2015	0,250	0,245	0,255	
	Barison 2015 (1)	0,280	0,255	0,305	
	Barison 2015 (2)	0,250	0,230	0,270	-
	Edwards 2015 (1)	0,250	0,238	0,262	•
	Edwards 2015 (2)	0,250	0,238	0,262	
	Ertel 2015 Hong 2015	0,260	0,256 0,241	0,264 0,271	
	Kuruvilla 2015	0,260	0,241	0,271	
	M ehta 2015	0,271	0,259	0,283	-
	Ntusi 2015	0,279	0,275	0,283	
	Singh 2015	0,251	0,243	0,259	
	Barison 2014	0,260	0,249	0,271	•
	Brower 2014	0,260	0,250	0,270	•
	Chin 2014	0,260	0,253	0,267	
	Dabir 2014 (a) Dabir 2014 (b)	0,250 0,260	0,237 0,246	0,263 0,274	
	Edwards 2014	0,250	0,243	0,274	
	Florian 2014	0,240	0,230	0,250	
	Luetkens 2014	0,236	0,224	0,248	-
	Neilan 2014	0,270	0,253	0,287	+
	Radunski 2014	0,250	0,244	0,256	
	Thuny 2014	0,268	0,259	0,277	•
	Brooks 2013	0,268	0,254	0,282	
	Neilan 2013 (1) Neilan 2013 (2)	0,280	0,270	0,290	
	Puntmann 2013 (1)	0,260	0,270	0,290	-
	Puntmann 2013 (2)	0,270	0,266	0,274	
	Salerno 2013	0,285	0,272	0,298	•
	Shah 2013	0,264	0,259	0,269	
	Thompson 2013	0,222	0,209	0,235	•
	Fontana 2012	0,270	0,262	0,278	
	Kawel 2012 (a) Kawel 2012 (b)	0,270 0,280	0,258 0,268	0,282 0,292	
	Kawel 2012 (c)	0,280	0,268	0,292	
	Kellman 2012	0,254	0,248	0,260	
	Mongeon 2012	0,240	0,227	0,253	-
	Sado 2012	0,253	0,245	0,261	
	Ugander 2012	0,270	0,262	0,278	•
	Broberg 2010	0,248	0,238	0,258	•
Randon	Jerosch-Herold 2008	0,240	0,220	0,260	†,
1 tanuon		0,256	0,252	0,260	0.00 0.20 0.40
					0,00 0,20 0,40

