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Abstract
Objectives To investigate whether adaptive statistical iterative reconstruction (ASIR), a hybrid iterative CT image reconstruction
algorithm, affects radiomics feature quantification in primary colorectal cancer compared to filtered back projection. Additionally, to
establish whether radiomics from single-slice analysis undergo greater change than those from multi-slice analysis.
Methods Following review board approval, contrast-enhanced CTstudies from 32 prospective primary colorectal cancer patients
were reconstructed with 20% ASIR level increments, from 0 to 100%. Radiomics analysis was applied to single-slice and multi-
slice regions of interest outlining the tumour: 70 features, including statistical (first-, second- and high-order) and fractal
radiomics, were generated per dataset. The effect of ASIR was calculated by means of multilevel linear regression.
Results Twenty-eight CT datasets were suitable for analysis. Incremental ASIR levels determined a significant change
(p < 0.001) in most statistical radiomics features, best described by a simple linear relationship. First-order statistical features,
including mean, standard deviation, skewness, kurtosis, energy and entropy, underwent a relatively small change in both single-
slice andmulti-slice analysis (median standardised effect sizeB = 0.08). Second-order statistical features, including grey-level co-
occurrence and difference matrices, underwent a greater change in single-slice analysis (median B = 0.36) than in multi-slice
analysis (median B = 0.13). Fractal features underwent a significant change only in single-slice analysis (median B = 0.49).
Conclusions Incremental levels of ASIR affect significantly CT radiomics quantification in primary colorectal cancer. Second-order
statistical and fractal features derived from single-slice analysis undergo greater change than those from multi-slice analysis.
Key Points
• Incremental levels of ASIR determine a significant change in most statistical (first-, second- and high-order) CT radiomics
features measured in primary colorectal cancer, best described by a linear relationship.

• First-order statistical features undergo a small change, both from single-slice and multi-slice radiomics analyses.
• Most second-order statistical features undergo a greater change in single-slice analysis than in multi-slice analysis. Fractal
features are only affected in single-slice analysis.
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Abbreviations
2D 2-dimensional
3D 3-dimensional
ASIR Adaptive statistical iterative reconstruction
CT Computed tomography
FBP Filtered back projection
GLCM Grey-level co-occurrence matrix
GLDM Grey-level difference matrix
GLRL Grey-level run length
GLZSM Grey-level zone-size matrix
MBIR Model-based iterative reconstruction
NGTDM Neighborhood grey-tone difference matrix
ROI Region of interest
SD Standard deviation

Introduction

There has been a growing interest in radiomics approaches
that extract quantitative image features to improve cancer phe-
notyping [1]. Radiomics have shown promise for tumour
characterisation, prognostication, therapy planning and thera-
py assessment in a number of cancers including non-small cell
lung cancer [2–8], breast [9–12], prostate [13, 14] and colo-
rectal cancer [15–21].

Advances in computed tomography (CT) technology,
linked to dose reduction, have led to the implementation of
iterative image reconstruction algorithms in order to compen-
sate for the increase in image noise with low-dose CT acqui-
sitions [22–26]. Adaptive statistical iterative reconstruction
(ASIR) is a hybrid algorithm that uses the image information
obtained from filtered back projection (FBP) as the basis for
iterative reconstruction to optimise image quality. It has en-
abled dose reductions between 32 and 65%, without substan-
tially affecting image quality in phantom studies [27, 28].

To date, the majority of published retrospective CT
radiomics studies have been based on images reconstructed
with FBP alone. Given that iterative reconstruction has been
adopted by all manufacturers in current CT scanners, the im-
pact of iterative reconstruction algorithms on quantitative im-
age features is highly relevant to the field of radiomics. We
hypothesised that ASIR would alter feature values significant-
ly compared with FBP, and alter features progressively with
incremental ASIR weightings (percentage increments). Thus,
the primary aim of our study was to investigate whether hy-
brid iterative reconstruction, specifically ASIR applied with
incremental weightings, affects the quantification of radiomics
features, including first-, second- and high-order statistical as
well as fractal parameters, using primary colorectal cancer at
peak contrast enhancement as an exemplar in light of promis-
ing data [29]. Our secondary aim was to establish whether
features calculated from single-slice analysis (2-dimensional

[2D] radiomics) are influenced to a greater degree than those
from multi-slice analysis (3-dimensional [3D] radiomics).

Materials and methods

Participants

Following institutional review board approval and informed
consent, 32 consecutive patients with primary colorectal can-
cer underwent contrast-enhanced CT from January 2012 to
July 2014 from a single institution (prospective trial,
ISCTRN 95037515). Exclusion criteria were tumour diameter
< 2 cm (to assure a sufficient number of CT voxels for analy-
sis), impaired renal function (estimated glomerular filtration
rate < 50 mL/min) and previous iodinated contrast media al-
lergic reaction precluding administration of an iodinated con-
trast agent.

CT acquisition and reconstruction

CT was performed on a single Discovery 750 HD multi-
detector CT scanner (GE Healthcare). As part of a prospective
research protocol, a dynamic contrast-enhanced CTcentred on
the primary cancer was acquired using the following protocol:
100 kV; 75 mAs; z-axis coverage, 4 cm; scan field of view,
50 cm; matrix, 512 × 512 mm; B30 soft reconstruction kernel;
5 mm reconstructed slice thickness; axial mode with 35 ac-
quisition time points at a 1.5-s temporal resolution for 45 s and
a 5-s temporal resolution thereafter for 120 s. To minimise
bowel peristaltic movement, 20 mg of the spasmolytic agent
hyoscine butylbromide (Buscopan; Boehringer Ingelheim)
was administered intravenously prior to data acquisition un-
less contraindicated. The contrast agent was administered as
follows: 50 mL of 370 mg/mL iodinated contrast agent
(Niopam, Bracco) via a pump injector (Medrad Stellant dual
syringe, Bayer Healthcare) at a rate of 5 mL/s, followed by a
50 ml saline chaser at the same rate. Mean CTDIVol and DLP
were 137.8 ± 15.3mGy and 551.0 ± 61.2mGy cm, respective-
ly. The dynamic acquisition was reconstructed at the scanner
with six different ASIR percentages: 0%, (equivalent to FBP)
20%, 40%, 60%, 80% and 100%, resulting in six separate
datasets per patient (Fig. 1).

Image analysis

Image analysis was carried out by two readers in consensus (a
clinical oncologist and a radiologist with 5 and 10 years CT
experience, respectively) using the CTacquisition correspond-
ing to peak tumour enhancement, in order to maximise the
tumour contrast-to-noise ratio. A free-hand region of interest
(ROI) was drawn around the tumour on 0% ASIR reconstruc-
tions to generate two datasets per patient: (1) a single axial
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image corresponding to the largest tumour area; (2) five con-
tiguous axial images including tumour. ROIs were then copied
onto 20–100% ASIR reconstructions to ensure these were
identical.

Radiomics features were extracted using an in-house soft-
ware based onMatlab (Mathworks), previously validated on a
digital phantom developed as part of the Image Biomarker
Standardisation Initiative [30]. A medium smoothing filter
and 32 bin width were applied to the native DICOM images.

First-order (histogram), second-order (grey-level co-
occurrence matrix, GLCM; grey-level difference matrix,
GLDM) and high-order (neighbourhood grey-tone difference
matrix, NGTDM; grey-level run length, GLRL; grey-level
zone-size matrix, GLZSM) statistical, as well as model-
based fractal features were extracted. The extracted features
are summarised in Table 1.

Statistical analysis

All radiomics features were regarded as continuous in na-
ture. To allow for the fact that measurements from the
same subject were likely to be more similar than from
different subjects, the analysis was performed using mul-
tilevel linear regression. Two-level models were used,

with individual measurements nested within patients. The
shape of the relationship between ASIR levels and
radiomics parameter values was examined. Initially, cubic,
squared and linear terms for ASIR were included in the
analysis. If the higher order terms (i.e. cubic and squared
terms) were not found to be statistically significant, they
were omitted and a simple linear relationship between var-
iables was assumed. The distributions of the majority of
radiomics parameters were such that the assumptions of
the statistical methods were met. However, one parameter
(fractal dimension lacunarity) had a particularly positively
skewed distribution, and was thus analysed on the log
scale. Regression coefficients along with corresponding
confidence intervals were reported, representing the
change in the CT parameter value for a 20% increase in
ASIR. Standardised effect sizes (B) were calculated by the
absolute regression coefficient divided by the between-
subject standard deviation for a 20-unit increase in
ASIR. Conventionally, B values ≤ 0.3 are considered rep-
resentative of a small effect; B values > 0.3 and < 0.8 are
considered a moderate effect; ≥ 0.8, a large effect. All
analyses were undertaken by a statistician using Stata,
version 13.1 (StataCorp LP). A p value < 0.05 was taken
to represent statistical significance.

Fig. 1 Representative axial CT image reconstructed at 0%, 20%, 40%,
60%, 80% and 100% ASIR, showing a reduction in image noise with
increasing ASIR weighting. Corresponding tumour ROI surface

histograms, representing voxel values in Hounsfield units (scale − 200
to 200), demonstrate progressive smoothing of the surface as ASIR
weighting increases
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Results

Participants

No tumour was identified on CT in 1 participant (confirmed
histological diagnosis of colorectal adenocarcinoma based on
a resected polyp). Voxel spatial mismatch between 0% ASIR
and subsequent ASIR reconstructed series precluded the anal-
ysis in 3 further participants. Therefore, 28 CT datasets were
suitable for single-slice (2D) radiomics analysis. Multi-slice
(3D) analysis was only possible in a subset of 23 participants,
as 5 tumours were not sufficiently large or appropriately ori-
ented to allow segmentation on at least 5 consecutive axial
slices. Tumours had a mean diameter of 5.7 ± 1.74 cm and
were located as follows: caecum, n = 4; ascending colon,
n = 2; sigmoid colon, n = 7; rectum, n = 15. Radiological tu-
mour (T) and nodal (N) staging, evaluated on CT images and
based on the AJCC/UICC TNM classification of malignant
tumours (8th edition), was as follows: T2, n = 9; T3, n = 17;
T4, n = 2; N0, n = 16; N1, n = 10; N2, n = 2.

Radiomics analysis

Absolute regression coefficients, standardised effect sizeB values
and corresponding p values for first-order, second-order and frac-
tal radiomics features from single-slice and multi-slice datasets
are summarised in Table 2; values for high-order features from
multi-slice datasets are summarised in Table 3.

Single-slice analysis

All first-order, second-order and fractal features varied signifi-
cantly and according to a linear relationship with increasing
ASIR values, with the exception of GLCM sum entropy
(Table 2). Some features significantly increased; others
decreased.

The relative effect was small on all first-order features (medi-
an standardised effect size B = 0.08; range, 0.02–0.24). Most
second-order features, including all grey-level difference matrix
(GLDM) and the majority of grey-level co-occurrence matrix
(GLCM) features, were moderately affected (median B = 0.36;

Table 1 Summary and brief description of the CT radiomics features extracted

Feature type Method Parameters

First-order Describe the histogram distribution of
voxel signal intensity values without
spatial information

Mean, maximum, minimum, range, standard
deviation, coefficient of variation, skewness,
kurtosis, energy, entropy

Second-order grey-level
co-occurrence matrix (GLCM)

Describe the statistical interrelationships
between grey-level pairs with similar
or dissimilar signal intensity values
within an imaging plane

Autocorrelation, cluster prominence, cluster shade,
contrast, correlation, difference entropy, difference
variance, dissimilarity, entropy, energy, homogeneity,
information measure correlation, inverse difference
moment normalised, inverse difference normalised,
maximum probability, sum average, sum entropy,
sum of squares variance

Second-order grey-level
difference matrix (GLDM)

Describe the grey-level differences of all
possible pairs of grey-level distance (d)
apart at angle (Θ)

Mean, entropy, variance, contrast

High-order neighbourhood
grey-tone difference matrix
(NGTDM)

Describe the signal intensity and spatial
interrelationship between each voxel
with its direct 26 neighbours

Coarseness, contrast, busyness, complexity,
texture strength

High-order grey-level run
length (GLRL)

Describe the spatial interrelationship
between neighbouring runs of voxels
with the same intensity

Run percentage, high grey-level run emphasis,
short-run low grey-level emphasis, short-run high
grey-level emphasis, short-run emphasis, long-run
emphasis, grey-level non-uniformity, run length
non-uniformity, low grey-level run emphasis,
long-run low grey-level run emphasis, long-run
high grey-level run emphasis, intensity variability,
run length variability

High-order grey-level
zone-size matrix (GLZSM)

Describe signal intensity and spatial
interrelationship between neighbouring
zones with the same intensity

Short-zone emphasis, short-zone low-intensity
emphasis, short-zone high-intensity emphasis,
long-zone low-intensity emphasis, long-zone
high-intensity emphasis, long-zone emphasis,
intensity non-uniformity

Model-based fractal features Describe repetitive patterns within
an image extracted by using filter grids

Fractal dimension mean, fractal dimension SD,
fractal lacunarity, Hurst exponent, blanket mean,
blanket max
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Table 2 Summary of results for first-order, second-order and fractal
features from single-slice (2D) and multi-slice (3D) analysis. For each
radiomics feature, the regression coefficients (95% confidence intervals

[CI]) and standardised effect size (B) for a 20% increase in ASIR, and the
corresponding p values, are presented. Significant p values are marked in
italics

CT radiomics 2D regression coefficient
(95% CI)

2D Β
value*

2D p
value

3D regression coefficient
(95% CI)

3D Β
value*

3D p
value

First-order features

Mean − 0.05 (− 0.06, − 0.03) 0.01 < 0.001 − 0.18 (− 0.30, − 0.05) 0.01 0.005

Maximum − 5.9 (− 6.3, − 5.2) 0.24 < 0.001 − 6.1 (− 6.8, − 5.3) 0.27 < 0.001

Minimum 3.9 (3.0, 4.8) 0.04 < 0.001 − 8.0 (− 13.6, − 2.5) 0.04 0.005

Range − 9.8 (− 11.2, − 8.3) 0.09 < 0.001 2.0 (− 3.6, 7.6) 0.01 0.48

Standard deviation − 1.27 (− 1.44, − 1.10) 0.18 < 0.001 − 0.78 (− 1.04, − 0.52) 0.06 < 0.001

Coefficient of variation − 0.022 (− 0.025, − 0.018) 0.10 < 0.001 − 0.010 (− 0.019, − 0.002) 0.02 0.02

Kurtosis 0.33 (0.21, 0.45) 0.05 < 0.001 2.1 (1.4, 2.8) 0.10 < 0.001

Skewness − 0.064 (− 0.078, − 0.052) 0.08 < 0.001 − 0.18 (− 0.23, − 0.13) 0.12 < 0.001

Energy 0.0010 (0.0007, 0.0015) 0.04 < 0.001 0.005 (0.004, 0.007) 0.11 < 0.001

Entropy − 0.008 (− 0.013, − 0.003) 0.02 0.003 − 0.047 (− 0.060, − 0.035) 0.10 < 0.001

Second-order features

GLCM Autocorrelation 8.5 (7.2, 9.9) 0.19 < 0.001 68 (54, 82) 0.11 < 0.001

GLCM Cluster prominence 787 (555, 1018) 0.07 < 0.001 − 70 (− 92, − 48) 0.10 < 0.001

GLCM cluster shade − 28 (− 35, − 20) 0.12 < 0.001 4147 (2692, 5602) 0.09 < 0.001

GLCM contrast − 2.9 (− 3.2, − 2.5) 0.35 < 0.001 − 2.4 (− 3.0, − 1.8) 0.10 < 0.001

GLCM correlation 0.038 (0.034, 0.042) 0.50 < 0.001 0.017 (0.014, 0.020) 0.31 < 0.001

GLCM difference entropy − 0.053 (− 0.060, − 0.048) 0.44 < 0.001 − 0.05 (− 0.06, − 0.04) 0.16 < 0.001

GLCM difference variance − 2.9 (− 3.2, − 2.5) 0.35 < 0.001 − 2.4 (− 3.0, − 1.8) 0.10 < 0.001

GLCM dissimilarity − 0.23 (− 0.26, − 0.20) 0.38 < 0.001 − 0.20 (− 0.24, − 0.16) 0.14 < 0.001

GLCM entropy − 0.056 (− 0.063, − 0.050) 0.37 < 0.001 − 0.09 (− 0.11, − 0.07) 0.13 < 0.001

GLCM energy 0.0003 (0.0003, 0.0004) 0.30 < 0.001 0.0010 (0.0008, 0.0012) 0.16 < 0.001

GLCM homogeneity 0.012 (0.011, 0.014) 0.43 < 0.001 0.013 (0.011, 0.015) 0.19 < 0.001

GLCM Information measure correlation 1 − 0.010 (− 0.012, − 0.009) 0.24 < 0.001 − 0.008 (− 0.010, − 0.007) 0.35 < 0.001

GLCM information measure correlation 2 0.017 (0.014, 0.019) 0.16 < 0.001 0.013 (0.010, 0.015) 0.15 < 0.001

GLCM Inverse difference moment
normalised

0.0024 (0.0021, 0.0027) 0.36 < 0.001 0.0006 (0.0004, 0.0007) 0.11 < 0.001

GLCM inverse difference normalised 0.0052 (0.0046, 0.0057) 0.39 < 0.001 0.0027 (0.0022, 0.0032) 0.14 < 0.001

GLCM maximum probability 0.0009 (0.0007, 0.0010) 0.40 < 0.001 0.0024 (0.0019, 0.0029) 0.17 < 0.001

GLCM sum average 0.40 (0.33, 0.47) 0.17 < 0.001 1.40 (1.11, 1.68) 0.11 < 0.001

GLCM sum entropy 0.000 (− 0.001, 0.002) 0.01 0.76 − 0.026 (− 0.035, − 0.018) 0.07 < 0.001

GLCM Sum of squares variance 7.1 (5.9, 8.3) 0.17 < 0.001 67 (53, 81) 0.11 < 0.001

GLDM mean − 0.23 (− 0.26, − 0.20) 0.38 < 0.001 − 0.20 (− 0.24, − 0.16) 0.14 < 0.001

GLDM entropy − 0.054 (− 0.060, − 0.048) 0.44 < 0.001 − 0.05 (− 0.06, − 0.04) 0.16 < 0.001

GLDM variance − 0.96 (− 1.08, − 0.84) 0.36 < 0.001 − 0.64 (− 0.83, − 0.44) 0.08 < 0.001

GLDM contrast − 2.86 (− 3.21, − 2.50) 0.35 < 0.001 − 2.38 (− 2.96, − 1.81) 0.10 < 0.001

Fractal features

Fractal lacunarity + 0.09 (0.08, 0.10) 0.55 < 0.001 – – 0.12

Fractal dimension mean − 0.029 (− 0.033, − 0.026) 0.82 < 0.001 – – 0.69

Fractal dimension SD 0.011 (0.010, 0.013) 0.43 < 0.001 – – 0.77

Hurst exponent 0.029 (0.026, 0.033) 0.82 < 0.001 – – 0.69

Blanket mean − 0.056 (− 0.062, − 0.050) 0.25 < 0.001 – – 0.41

Blanket max − 0.056 (− 0.062, − 0.050) 0.25 < 0.001 – – 0.41

*Calculated as absolute regression coefficient divided by between-subject standard deviation; + Variable analysed on the log scale
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range, 0.01–0.44). The relative effect onmost fractal features was
moderate to large (median B = 0.49; range, 0.25–0.82).

Multi-slice analysis

Nearly all first-order, second-order and high-order features varied
significantly with increasing ASIR values: some increasing,
others decreasing. Exceptions were first-order range,
neighbourhood grey-tone differencematrix (NGTDM) complex-
ity and 3 out of 13 grey-level run length (GLRL) features
(Tables 2 and 3).

A small effect was confirmed on first-order statistical features
(medianB = 0.08; range, 0.01–0.27). Second-order features were

affected to a lesser degree than from single-slice analysis (median
B = 0.13; range, 0.07–0.35): 21 out of 23 features were affected
in small measure, compared to 9 out of 23 from single-slice
analysis. ASIR effect was small on high-order features (median
B = 0.09; range, 0.01–0.31). In contrast to single-slice analysis
and to all other features, multi-slice fractal features did not
change significantly with increasing ASIR levels.

Discussion

Despite the rising number of studies investigating the clinical
potential of radiomics in cancer imaging, relatively little is known

Table 3 Summary of results for
high-order features obtained from
multi-slice (3D) analysis. For
each texture feature, the
regression coefficients (95%
confidence intervals [CI]) and
standardised effect size (B) for a
20% increase in ASIR, and the
corresponding p values, are
presented. Significant p values are
marked in italics

CT radiomics Regression coefficient

(95% CI)

Β value* p value

High-order features

NGTDM coarseness − 0.07 (− 0.09, − 0.05) 0.05 < 0.001

NGTDM contrast − 0.004 (− 0.006, − 0.002) 0.04 0.001

NGTDM busyness 0.025 (0.016, 0.034) 0.04 < 0.001

NGTDM complexity – – 0.16

NGTDM texture strength 0.039 (0.024, 0.054) 0.08 < 0.001

GLRL run percentage − 0.010 (− 0.012, − 0.009) 0.22 < 0.001

GLRL high grey-level run emphasis 0.25 (0.17, 0.32) 0.01 < 0.001

GLRL short-run low grey-level emphasis # – – 0.85

GLRL short-run high grey-level emphasis 0.16 (0.10, 0.22) 0.006 < 0.001

GLRL short-run emphasis 0.0004 (0.0003, 0.0005) 0.02 < 0.001

GLRL long-run emphasis 48 (37, 58) 0.11 < 0.001

GLRL grey-level non-uniformity − 209 (− 273, − 146) 0.06 < 0.001

GLRL run length non-uniformity – – 0.27

GLRL low grey-level run emphasis − 0.009 (− 0.010, − 0.007) 0.22 < 0.001

GLRL long-run low grey-level emphasis 18.9 (11.1, 26.7) 0.06 < 0.001

GLRL long-run high grey-level emphasis 344 (279, 410) 0.24 < 0.001

GLRL intensity variability − 37,623 (− 56,176; − 19,070) 0.05 < 0.001

GLRL run length variability – – 0.53

GLZLSM short-zone emphasis + 0.05 (0.04, 0.06) 0.17 < 0.001

GLZLSM short-zone low-intensity emphasis # 5.3 (2.9, 7.7) 0.13 < 0.001

GLZLSM short-zone high-intensity emphasis 0.048 (0.033, 0.063) 0.17 < 0.001

GLZLSM long-zone low-intensity emphasis − 9.8 (− 16.4, − 3.2) 0.04 0.004

GLZLSM long-zone high-intensity emphasis 544,100 (368,325; 719,875) 0.18 < 0.001

GLZLSM long-zone emphasis 47 (35, 59) 0.09 < 0.001

GLZLSM intensity non-uniformity − 145 (− 190, − 102) 0.14 < 0.001

GLZLSM zone length non-uniformity − 11.5 (− 15.3, − 7.7) 0.10 < 0.001

GLZLSM zone percentage − 0.25 (− 0.028, − 0.021) 0.20 < 0.001

GLZLSM low-intensity zone emphasis − 0.015 (− 0.017, − 0.013) 0.31 < 0.001

GLZLSM high-intensity zone emphasis 161 (110, 212) 0.17 < 0.001

GLZLSM intensity variability − 3503 (− 5140, − 1866) 0.14 < 0.001

GLZLSM size zone variability − 339 (− 511, − 167) 0.13 < 0.001

* Calculated as absolute regression coefficient divided by between-subject standard deviation; + variable analysed
on the log scale. # Figures reported in units of 10−5
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on how the shift of CT image reconstruction from filtered back
projection to hybrid iterative algorithms might affect radiomics
features quantitation. In our prospective study, we found that the
application of incremental ASIR levels altered most statistical
(first-, second- and high-order) features according to a linear
relationship, both in single-slice and multi-slice analysis. Fractal
features changed significantly only in single-slice datasets.While
first-order features underwent small relative effects across all
datasets, second-order features underwent a greater change in
single-slice than in multi-slice analysis.

A fundamental aspect of CT is the assignment of an atten-
uation value to a voxel. Analytical reconstruction algorithms,
namely filtered back projection, have long been the backbone
of CT reconstruction. However, as image noise from the
Poisson statistical variation across an image is not accounted
for by FBP; this has been a limiting factor for low-dose CT
imaging [31]. Iterative reconstruction algorithms have thus
risen to the fore with advances in scanner hardware and in-
creasing computing power [31]. Hybrid algorithms such as
ASIR combine both analytical and iterative methods,
optimising image characteristics by decreasing image noise.
However, there is a perceptive alteration in image character-
istics with high ASIR increments often described as a ‘waxy’
appearance. Given this, we hypothesised that radiomics fea-
tures may be altered by using ASIR compared to FBP and the
ASIR weighting.

To date, only one other clinical study has compared the
effect of different reconstruction algorithms on quantitative
CT data including a limited number of histogram and
second-order GLCM features. The effect of FBP, 50% ASIR
and model-based iterative reconstruction (MBIR) was com-
pared for volumes of interest in 20 patients with liver lesions
(n = 13), lung nodules (n = 9) or renal calculi (n = 25) who
underwent either non-enhanced CT or contrast-enhanced CT
at a fixed 120 kVp but 2 different dose levels (full and half-
dose) [32]. MBIR had the highest impact on features. Fifty
percent ASIR had a significant effect on standard deviation
(SD) but not on other first-order (entropy, kurtosis or skew-
ness) or second-order GLCM features studied. These differ-
ences in part reflect a difference in study design, i.e. assess-
ment of an incremental effect of ASIR as opposed to a com-
parison of a single ASIR percentage to FBP and MBIR.

We acknowledge that the reconstruction algorithm is only
one of several factors that potentially affect CT radiomics
features. Other factors include acquisition factors, e.g. kVp,
mAs, reconstruction kernel, voxel size, grey-level
discretisation and contrast administration [32–39]. For exam-
ple, Zhao et al investigated the effect of reconstruction kernel
on 89 unenhanced CT radiomics features including shape,
first-order, second-order statistical, wavelet and fractal fea-
tures for 32 lung cancers using 2D and 3D images. The recon-
struction kernel had a significant effect on extracted features,
with smooth images having a smaller effect than noisier

images. 3D images were also more reproducible than 2D im-
ages [34]. This was also echoed in our study where 3D fea-
tures were more stable.

He et al assessed the effects of reconstruction slice thick-
ness, reconstruction kernel and contrast-enhancement on the
diagnostic performance of 150 radiomics features in 240 pa-
tients with solitary pulmonary nodules (malignant, n = 180;
benign, n = 60). This study demonstrated better discrimination
and classification for malignant versus benign nodules when
based on unenhanced versus contrast-enhanced CT, thin-
(1.25 mm) versus thick-slice CT (5mm) and standard versus
lung reconstruction kernel [35]. In a further study, Shafiq-Ul-
Hassan et al found that voxel size and discretisation were also
important factors affecting radiomics features including shape,
intensity, GLCM, GLZSM, GLRL, NGTDM, fractal and
wavelet features in a digital phantom [39].

From our study and published data, minimisation of varia-
tion in reconstruction kernel, reconstruction algorithm, voxel
size and grey-level discretisation would improve the quantifi-
cation and stability of CT radiomics features.

We acknowledge some limitations to our study. Firstly, the
study cohort was small (n = 28) but with the advantage of
fixed acquisition parameters, including kVp and mAs, recon-
struction kernel, and voxel size, allowing us to focus on the
effect of the reconstruction algorithm alone. Secondly, we did
not assess the effect of other iterative reconstruction algo-
rithms as these were not available to us at the time of acquisi-
tion; we acknowledge that this would be of value going for-
ward in future studies.

In conclusion, we confirmed that the application of a hy-
brid reconstruction algorithm versus traditional FBP affects
CT radiomics quantification. The use of multi-slice (3D) rath-
er than single-slice (2D) data will minimise this effect, partic-
ularly for second-order statistical and model-based fractal fea-
tures. The reconstruction algorithm should be taken into ac-
count and standardised when acquiring data for future
multicentre CT radiomics studies.
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