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Abstract
Objectives This review describes the current status and progress of immune checkpoint targets for imaging of malignancies.
Immune checkpoint blockade holds great potential for cancer treatment, and clinical implementation into routine is very rapidly
progressing. Therefore, it is an urgent need to become familiar with the vocabulary of immunotherapy and with the evaluation of
immune checkpoint and related treatments through noninvasive molecular imaging. Currently, immune target-associated imag-
ing mainly includes PET, SPECT, optical imaging, and MRI. Each imaging method has its own inherent strengths and weak-
nesses in reflecting tumor morphology and physiology. PD-1, PD-L1, CTLA-4, and LAG-3 are the most commonly considered
targets. In this review, the current status and progress of molecular imaging of immune checkpoint targets are discussed.
Conclusion Molecular imaging is likely to become a major tool for monitoring immunotherapy. It can help in selecting patients
who are suitable for immunotherapy, and also monitor the tumor response.
Key Points
• Immune checkpoint blockade holds great promise for the treatment of different malignant tumors.
• Molecular imaging can identify the expression of immune checkpoint targets in the tumor microenvironment at the molecular
and cellular levels, and therefore helps selecting potential responders, suitable for specific immunotherapy.

•Molecular imaging can also monitor immunotherapeutic effects, and therefore participates in the evaluation of tumor response
to treatment.
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Abbreviations
CTLA-4 Cytotoxic T lymphocyte-associated protein 4
IC Immune checkpoint

LAG-3 Lymphocyte activation gene 3
mAbs Monoclonal antibodies
PD-1 Programmed cell death receptor 1
PD-L1 Programmed death ligand 1
TIL Tumor-infiltrating lymphocytes
TREGS Regulatory T cells
TNBC Triple-negative breast cancer

Introduction

Immune checkpoints (IC) refer to inhibitory pathways in
immunoreactions that are momentous for self tolerance.
These pathways can suppress T cell effector function lead-
ing tumors to evade immune surveillance [1, 2]. IC inhibi-
tors targeting programmed cell death receptor 1 (PD-1) and
its ligand (PD-L1), cytotoxic T lymphocyte-associated pro-
tein 4 (CTLA-4), and lymphocyte activation gene-3 (LAG-
3) are over-expressed in several cancers, such as lung cancer
[3], melanoma [4], and triple-negative breast cancer
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(TNBC) [5]. As summarized in Table 1, some IC target
inhibitors have been tested in clinical trials. It is reported
that IC as PD-1/PD-L1 expression is associated with the
poor prognosis of tumors and also with the efficacy of im-
munotherapy [6].

Molecular imaging is a real-time approach of tumor
biomarkers that can accurately monitor the dynamic
changes of the target expression and differentiate tumor
from normal tissue [7]. The specific radionuclides or op-
tical probes have been developed for the visualization of
the immunotherapeutic targets at the molecular and cellu-
lar levels. Moreover, molecular imaging can be used for
repeated assessment of the same individual before and
after the treatment. Immune checkpoint target-associated
imaging in the current basic research mainly includes
MRI, PET, SPECT, and optical imaging [8]. As every
modali ty has i ts own strengths and limitat ions,
multimodality imaging is considered to be potentially
more powerful. In this review, the current status and fu-
ture directions of molecular imaging of IC targets on ma-
lignancies are discussed (Fig. 1).

PD-1

PD-1 is an immunosuppressive receptor expressed on im-
mune cells, including activated T cells, regulatory T cells,
B cells, monocytes, and dendritic cells (DCs), probably
due to stimulation by chronic antigens [9]. There are two
PD-1 ligands: PD-L1 and PD-L2. PD-L1 is more widely
expressed in cancers than PD-L2. The PD-L1/PD-1 inter-
action results in the inhibition of T cell activation [10]. PD-
1/PD-L1 signaling pathway not only inhibits the activation
and function of CD8+ T cells but also enhances the tumor
immunosuppressive environment by regulatory T cells
(TREGS) [11]. Nivolumab and pembrolizumab are anti-
PD-1 mAbs that have been approved by the US Food and
Drug Administration (FDA) for the clinical treatment of
metastatic melanoma and non-small cell lung cancers
[12]. It has been elucidated that PD-1+/FOXP3+ TREGS
were detected in the tumor microenvironment, and that
PD-1/PD-L1 expression was correlated with poor progno-
sis of tumors [13]. Hence, PD-1 represents a potential im-
mune target for molecular imaging in cancers. Studies have

Table 1 The application of immune checkpoints in clinical trials and the imaging of immune checkpoint targets in malignancies
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reported that PD-1 expression can be detected with 64Cu-
labeled anti-PD-1 mAb on tumor-infiltrating lymphocytes
(TILs) of B16-F10 melanoma tumors using PET scans.
PET imaging has been demonstrated to possess a prognos-
tic value for immunotherapy of PD-1 checkpoint blockade
[11]. This was the foundation for PD-1-targeted imaging.
Moreover, Du et al synthesized a dual PET and optical dual
imaging agents labeled anti-PD-1 mAb, anti-PD-1 mAb-
labeled liposomes conjugated with IRDye800CW, and
64Cu-DOTA to image mouse breast 4T1 tumor with near-
infrared fluorescence imaging and PET [14]. A relatively
higher PET signal was found in the anti-PD-1 mAb-
targeted group compared to the IgG control group, which

was consistent with the near-infrared fluorescence (NIRF)
imaging (Fig. 2a, b). The data suggested that anti-PD-1
mAb-targeted nanoparticle can effectively target the PD-1
expressing TILs in breast tumor [14].

PD-L1

PD-L1, also called CD274, is an immunoinhibitory mole-
cule that suppresses the activation of T cells when binding
to the PD-1. It is not only expressed on the surface of
tumor cells, but also on antigen-presenting cells in various
solid malignancies [16, 17]. There is a close correlation

Fig. 1 Targeted molecular imaging of immune checkpoints from
preclinical to clinical studies. In tumor micro-envirenment,
radionuclide, fluorescent dye, or magnetic agent labeled monoclonal
antibodies as anti-PD-L1, anti-PD-1, anti-CTLA4 et al were performed

using SPECT, PET/CT, MRI, or optical imaging. Cytotoxic T lympho-
cytes were activated by immune checkpoint blocking treatment causing a
higher releasing of granzyme B; radionuclide-labeled granzyme B was
utilized as a target for PET imaging
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between PD-L1 expression and poor prognosis of tumors,
especially the digestive system malignancy, urogenital
neoplasms, and TNBC [18]. PD-L1-targeted imaging is
most frequently studied in malignancies to quantify PD-
L1 expression.

SPECT/PET-CT imaging of PD-L1 expression

Heskamp S et al investigated the biodistribution of PD-L1.3.1
mAbs through radiolabeling with indium-111 (111In) for SPECT/
CT imaging. 111In-PD-L1.3.1 specifically bound to the high PD-
L1-expressing TNBCs (MDA-MB-231 cells) with a heteroge-
neous distribution [19]. The highest accumulation was observed
in the periphery of MDA-MB-231 tumors, whereas the lowest
accumulation was found in the tumor center with necrosis.
Moreover, 111In-PD-L1-mAb was monitored for specificity
using five breast cancer cell lines, and different PD-L1 expres-
sion levels were observed (Fig. 2c, d). It has been proven that
PD-L1-targeted SPECT/CT imaging is a viable option that can
predict the anti-PD-L1 IC therapeutic response in TNBC [15].

PET imaging also provides a noninvasive approach to as-
sess the pharmacokinetics of radiolabeled antibody drugs,
which exhibit high affinity for specific antigens. PET imaging
commonly used radionuclides that include 64Cu (half-life of
12.7 h), 68Ga (half-life of 68.1 min), and 89Zr (half-life of
3.7 days). Atezolizumab is an anti-PD-L1 antibody used for
treating several malignant tumors like non-small cell lung
cancer [20], melanoma [21], and TNBC [22]. Lesniak WG
et al reported the biodistribution and specific expression of
PD-L1 in breast cancer cells using 64Cu-labeled atezolizumab
with PET/CT imaging [23]. PET imaging also detected a sig-
nificantly increased uptake of 64Cu-labeled atezolizumab in
MDA-MB-231 tumors compared to SUM149 tumors (low
PD-L1-expressing TNBC).

A recent study also showed in vivo dynamic PET imaging
of 18F-radiolabeled affibody ligands (NOTA-ZPD-L1_1) in
PD-L1-expressing melanoma tumors. The results showed a
rapid uptake of the tracer in the PD-L1-positive tumors [24].
Donnelly et al showed PET imaging of mice bearing bilateral
PD-L1-positive human lung malignant tumor and PD-L1-
negative colon malignant tumor with 18F-BMS-986192 (18F-
fluorine labeled anti-PD-L1 adnectin). In vivo PET imaging
showed a 3.5-fold higher uptake in PD-L1-positive lung tu-
mor than PD-L1-negative tumor 2 h after injection [25].
Maute et al developed high affinity consensus (HAC) PD-1,
a 14-kD protein with high affinity to human PD-L1, and
radiolabeled with 64Cu as a PET imaging tracer to measure
the expression of PD-L1 on CT-26 colorectal tumor-bearing
mice [26]. Mayer et al developed six HAC-PD-1 radiotracer
variants to detect human PD-L1 expression, and the data
showed that 64Cu-NOTA-HACA-PD1 was the best tracer for

monitoring the human PD-L1 expression in vivo. The uptake
of 64Cu-NOTA-HACA-PD1was significantly increased in the
PD-L1-positive CT26 tumor and decreased in the nonspecific
tissues, but it stays in vessels for a longer time. In order to
decrease the blood clearance time, they found that the short
half-life 68Ga variants can significantly reduce liver signal
when compared with 64Cu variants because 68Ga is known
to accumulate in the bone. This study may promote translation
of IC imaging into clinical routine [27].

Hettich et al also reported noninvasive PET imaging of PD-1
and PD-L1 tracers in melanoma. Evaluation of 64Cu-NOTA-
PD-L1 mAb uptake was performed in mice bearing PD-L1-
positive B16F10 melanoma cells and PD-L1-deficient B16F10
cells on the opposing flank. Uptake of 64Cu-NOTA-PD-L1 trac-
er was detected in the region of PD-L1-positive melanoma, as
well as the spleen, the lymph nodes, and the brown adipose
tissues, but not in the PD-L1-deficient melanoma [28].

Optical imaging of PD-L1 expression

Optical imaging is widely used to image the abnormalities at
the molecular, cellular, and tissue levels in both preclinical and
clinical settings. Fluorescent proteins and dyes play important
roles in fluorescent molecular imaging studies. The Licor800
dye-conjugated PD-L1-mAb (NIR-PD-L1-mAb)-based imag-
ing probes were utilized to monitor PD-L1 expression in dif-
ferent breast cancer cells. Samit et al found higher fluorescence
signal intensities with NIR-PD-L1-mAb in MDA-MB-231 tu-
mors (27% PD-L1-positive tumor cells) compared to SUM149
tumors (0.1% PD-L1-positive cells) (Fig. 2e, f). It demonstrat-
ed that the PD-L1-positive expression in TNBC can be specif-
ically detected using a NIR-PD-L1 mAb probe [15].

Optical and MRI dual-modality imaging of PD-L1
expression in tumor

Fluorescence andMRI imaging have the capacity to complement
each other. To compensate the insufficiency of each imaging
modality, Du et al performed dual-modality MRI and optical
fluorescence imaging of PD-L1 expression in breast tumors.
Du et al developed a novel theranostic nanoprobe, a PD-L1
mAb-targeted nanoparticle labeled with MRI contrast agent of
Gd-DOTA and NIRF fluorescence dye (PD-L1-PCI-Gd). The
fluorescence imaging revealed constantly higher fluorescent in-
tensity in PD-L1-targeted nanoparticles in 4T1 tumors compared
to the non-targeted control group. The tumor also showed ap-
proximately 2-fold higher PD-L1-targeted fluorescence intensity
than the background. Similarly, MRI imaging revealed signifi-
cantly higher signal intensity clearly and persistently in the 4T1
tumors compared to the control group [29].
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CTLA-4

CTLA-4 has been identified as the first IC receptor, also called
cluster of differentiation 152 (CD152). CTLA-4 is an
immune-inhibitory checkpoint that suppresses T cell-
mediated immune responses, leading to the development of

tumors. CTLA-4 has naturally become a clinically relevant
target for imaging that relies on the activation and
biodistribution of T cells in vivo. CD28 (cluster of differenti-
ation 28) is one of the proteins expressed on the surface of T
cell that promote Tcell activation; CTLA-4 and CD28 possess
identical ligands: CD80 and CD86 (B7.1 and B7.2). CTLA-4
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has a higher affinity for CD80 and CD86 than CD28 that
prevents and inhibits the interactions between B7 molecules
and CD28 and dampens T cell activation, leading to the inhi-
bition of intracellular signaling [30]. Ipilimumab, an anti-
CTLA-4, was approved by the FDA for the treatment of met-
astatic and high-risk resected melanoma in 2011, and
tremelimumab is currently under investigation as another po-
tential anti-CTLA-4.

Initially, Higashikawa et al developed a radionuclide-labeled
murine CTLA-4 antibody for imaging CTLA-4-expressing

TILs in CT26 tumors. PET imaging was performed to examine
the biodistribution and pharmacokinetic properties of 64Cu-
DOTA-anti-CTLA-4 mAb, and the data showed a significantly
higher accumulation in the tumor [31]. Recent studies evaluated
the biodistribution of 64Cu-labeled ipilimumab using PET im-
aging (Fig. 3), with a persistent high accumulation in CTLA-4-
expressing lung cancer xenografts. Ipilimumab was found to
bind to the CTLA-4-expressing tumor cells [32].

Other immune checkpoints

LAG-3

LAG-3 is a newly discovered immune checkpoint target
expressed by activated T lymphocytes, which reduced T cell
function [33]. LAG-3-positive TILs were significantly corre-
lated with large mass volume of malignancies, high prolifera-
tion, and poor prognosis. The majority of PD-1/PD-L1-posi-
tive tumors concurrently show positive LAG-3 expression
[34]. The application of multi-target IC blockade is a prospec-
tive treatment strategy for malignancies, and imaging of LAG-
3 expression may provide evidence for the guidance of
immunotherapy.

Fig. 3 Representative maximum
intensity projection images of
longitudinal PET imaging of
CTLA-4-expressing A549 lung
cancer. PET imaging was
acquired at 6, 24, and 48 h after
injection with 64Cu-DOTA-
ipilimumab. PET imaging
showed the higher intensity in
lung cancer (from Ehlerding EB,
with permission of [32])

�Fig. 2 Multimodality molecular imaging of PD-1/PD-L1 expressing
cancer. a, b PET images of 4T1 mammary tumor-bearing mice at 12
and 24 h postinjection of PD-1-Liposome-DOX-DOTA-64Cu, and
biodistribution of PD-1-Liposome-DOX-DOTA-64Cu in 4 T1 tumors
24 h postinjection. c, d SPECT images were acquired at 24, 72, and
120 h after the injection with 14.8 MBq (400 uCi) of 111In-PD-L1-
mAb. The SPECT images showed the higher intensity biodistribution
of 111In-PD-L1-mAb in the MDA-MB-231 tumor compared to
SUM149 tumor in the same tumor-bearing mice, and ex vivo
biodistribution analysis of [111In] radioactive tracer intensity in the differ-
ent tissues at 24 h, 72 h, and 120 h postinjection. e, f Optical images
showed specific fluorescence biodistribution of NIR-PD-L1-mAb in the
MDA-MB-231 tumor compared to SUM149 tumor in the same tumor-
bearing mice, and the ex vivo biodistribution analysis of fluorescence
intensity in the different tissues at 120 h postinjection (a and b from
Du, with permission of [14]. c–f [15] by Chatterjee S is licensed under
CC BY 3.0)
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Granzyme B

Checkpoint blocking treatment causes a higher expression
of granzyme B, a reliable early-response biomarker for
immunotherapy. The study utilized a novel probe 68Ga-
NOTA-GZP to detect granzyme B using PET imaging
[35]. Granzyme B is a serine protease released by active
tumoral cytotoxic T cells. The immune synapses release
granzymes, perforins, and granulysins to the synaptic cleft
while binding to the tumor cells. Granzymes and perforins
are death-inducing proteins causing the apoptosis of tumor
cells [36]. Granzyme B-specific PET imaging was closely
associated with granzyme B expression in CT26 colon tu-
mors. The study reported higher radionuclide signal inten-
sity with 68Ga-NOTA-GZP in tumor with combination
treatment of anti-CTLA-4 and anti-PD-1 antibodies, com-
pared to mono immune checkpoint therapy and untreated
mice. It was proved that the probe can be utilized to dif-
ferentiate nonresponders from responders who are suitable
for immune checkpoint therapy in a sensitive manner [35]
(Fig. 4). Moreover, the study also used an anti-human
granzyme B antibody to analyze the human melanoma tu-
mor of patients treated with anti-PD-1 immune checkpoint
therapy by immunohistochemistry (IHC). It provides a
promising clinical translation for targeted immune check-
point imaging.

Conclusion and future perspectives

Until now, only a fraction of receptors and ligands inhibiting
immune responses have been identified and imaged. New gen-
eration of IC targets are potentially functional for malignant
tumor therapy, such as OX40 (tumor necrosis factor receptor
superfamily, also known as CD134), IDO, and TIM3 (T cell
immunoglobulin and mucin domain-containing-3). Further im-
aging studies are needed to explore and monitor their dynamic
expression in vivo and also immunotherapeutic effects more
accurately. Imaging of immune checkpoint targets may provide
further insight into immune therapeutic mechanisms, and is
needed for the clinical translation. Moreover, the development
of new and more functional imaging techniques is urgently
needed to more precisely identify the expression of IC at the
molecular and cellular levels. Imaging is helpful for the early
diagnosis, cancer staging, and therapeutic effect evaluation.
The advent of the new imaging modalities such as magnetic
particle imaging (MPI), photoacoustic imaging (PAI), and the
combination of several imaging methods is promising for
immune-targeted imaging in patients with cancer. Last but not
the least, most current studies of molecular imaging of IC tar-
gets are still at preclinical stage, and we can expect that clinical
trials will develop and multiply in the near future. For this
reason, and because we can anticipate that imaging will be a
major tool for the evaluation of immunotherapy, imaging

Fig. 4 PET imaging of granzyme
B following immune checkpoint
blocking. The coronal and axial
maximal intensity projection
imaging of PET images of anti-
PD-1 and anti-CTLA-4
combination-treated (a), anti-PD-
1-treated (b), and vehicle-treated
(c) colon tumor-bearing mice
acquired 1 h postinjection of
68Ga-NOTA-GZP. The PET
imaging showed high
radionuclide signal intensity with
68Ga-NOTA-GZP in tumor with
combination treatment of anti-
CTLA-4 and anti-PD-1
antibodies. T tumors, K kidneys.
(From Larimer BM, with
permission of [35])
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specialists need to become familiar with the mechanism of IC
and the development of specific drugs, as well as with the
technical implementation that will help them to play an impor-
tant role in this rapidly evolving field.
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