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Abstract
Objectives Oxygen 6-methylguanine-DNAmethyltransferase (MGMT) promoter methylation is a significant prognostic biomarker
in astrocytomas, especially for temozolomide (TMZ) chemotherapy. This study aimed to preoperatively predictMGMTmethylation
status based on magnetic resonance imaging (MRI) radiomics and validate its value for evaluation of TMZ chemotherapy effect.
Methods We retrospectively reviewed a cohort of 105 patients with grade II-IV astrocytomas. Radiomic features were extracted
from the tumour and peritumoral oedema habitats on contrast-enhanced T1-weighted images, T2-weighted fluid-attenuated inver-
sion recovery images and apparent diffusion coefficient (ADC) maps. The following radiomics analysis was structured in three
phases: feature reduction, signature construction and discrimination statistics. A fusion radiomics signature was finally developed
using logistic regression modelling. Predictive performance was compared between the radiomics signature, previously reported
clinical factors and ADC parameters. Validation was additionally performed on a time-independent cohort (n = 31). The prognostic
value of the signature on overall survival for TMZ chemotherapy was explored using Kaplan Meier estimation.
Results The fusion radiomics signature exhibited supreme power for predicting MGMT promoter methylation, with area under
the curve values of 0.925 in the training cohort and 0.902 in the validation cohort. Performance of the radiomics signature
surpassed that of clinical factors and ADC parameters. Moreover, the radiomics approach successfully divided patients into high-
risk and low-risk groups for overall survival after TMZ chemotherapy (p = 0.03).
Conclusions The proposed radiomics signature accurately predictedMGMT promoter methylation in patients with astrocytomas, and
achieved survival stratification for TMZ chemotherapy, thus providing a preoperative basis for individualised treatment planning.
Key Points
• Radiomics using magnetic resonance imaging can preoperatively perform satisfactory prediction of MGMT methylation in
grade II-IV astrocytomas.

• Habitat-based radiomics can improve efficacy in predicting MGMT methylation status.
• Multi-sequence radiomics signature has the power to evaluate TMZ chemotherapy effect.
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Abbreviations
ADC Apparent diffusion coefficient
AUC Area under the curve
DCA Decision curve analysis
GBM Glioblastoma
IDH Isocitrate dehydrogenase
MGMT Oxygen 6-methylguanine-

DNA methyltransferase
MRI Magnetic resonance imaging
OS Overall survival
ROC Receiver operating characteristic
ROI Region of interest
T1-WI T1-weighted imaging
T2-FLAIR T2-weighted fluid-attenuated inversion recovery

images
TMZ Temozolomide

Introduction

Astrocytoma is the most common type of glioma, and carries a
poor prognosis [1, 2]. The average survival time ranges from 17
weeks to 3 years [2, 3]. Fortunately, a subgroup of grade II-IV
astrocytoma patients with oxygen 6-methylguanine-DNA
methyltransferase (MGMT) promoter methylation show good
responses to temozolomide (TMZ) chemotherapy and im-
proved survival after treatment, which underscored the role of
MGMT as a judicious molecular biomarker with a prognostic
implication [4–7]. Preoperative identification of MGMT pro-
moter methylation would be of great clinical significance in
selecting potential patients benefiting from TMZ chemothera-
py, thus assisting with planning the therapy regime. However,
the standard approach for MGMT status confirmation requires
a large tissue sample that is usually obtained through surgery.
For patients with unresectable tumours, biopsy runs the risk of
neurological deficits and can accordingly jeopardise the quality
of life of the patient [8, 9]. Thus, there is an urgent need in
clinical practice for preoperative and non-invasive prediction
of MGMT promoter methylation in grade II-IV astrocytomas.

Magnetic resonance imaging (MRI), as a powerful non-
invasive diagnostic imaging tool for astrocytoma manage-
ment [10], opens up the possibility of having this preop-
erative prediction. Previous studies have verified that cer-
tain radiological characteristics on MR images such as
tumour necrosis, enhancement patterns and tumour loca-
tion are associated with MGMT promoter methylation
[11, 12]. However, subjective judgements by radiologists
are vulnerable to inter-observer variability and generally
lack power and accuracy. In contrast, a newly emerging
technology termed radiomics could resolve this problem
by quantitative imaging analysis. Radiomics converts
encrypted medical images into usable data by extracting
high-throughput imaging features and relating imaging

feature data to targeted clinical outcomes [13, 14].
Regions of interest (ROIs) are delineated on the tumour
and sub-regions of the lesion known as habitats. Thus,
radiomics not only offers holistic imaging information,
but also explores the microenvironment of the tumour
by analysing explicit sub-regional features that describe
genetic heterogeneity more granularly [15]. For gliomas,
radiomics studies on molecular subtype prediction have
demonstrated sufficient predictive accuracy for isocitrate
dehydrogenase (IDH) and 1p19q codeletion [16, 17].
Habitat-based radiomics have also been shown to have
the capability to identify survival stratification in glioblas-
tomas (GBMs) [18]. These studies suggest that habitat-
based radiomics may be similarly useful for the preoper-
ative prediction of MGMT promoter methylation in pa-
tients with astrocytomas.

In this study, we investigated the utility of a multi-sequence
and multi-habitat MR radiomics signature as a preoperative
and non-invasive biomarker of MGMT methylation predic-
tion in patients with grade II–IV astrocytomas, and discuss
the prognostic implications for survival stratification on
TMZ chemotherapy response.

Materials and methods

Patients

This retrospective study was approved by the institutional
review board. We reviewed 105 patients who were newly
diagnosed with grade II–IV astrocytoma from October 2011
to March 2017. The inclusion and exclusion criteria are given
in the Online Supplemental Appendix E1. The patient recruit-
ment pathway is shown in Online Supplemental Fig. 1.

A total of 105 patients met the study criteria and were divid-
ed into a training dataset (31 December 2011 to 2 November
2015, n = 74) and a time-independent validation dataset (16
November 2015 to 21 March 2017, n = 31). Demographic
and clinical data were acquired from medical reports, including
sex, age, grade and radiological characteristics (Table 1).

For evaluation of the TMZ chemotherapy effect, the
inclusion criteria were further expanded in the 105 pa-
tients: (1) patients receiving adjuvant treatment following
surgery consisting of either (a) concomitant radiation plus
TMZ followed by adjuvant TMZ or (b) TMZ; (2) overall
survival (OS) was categorised according to death or sur-
vival exceeding the median survival of patients with each
tumour grade (605 days for grade II, 398 days for grade
III and 169 days for grade IV). Twenty-two patients met
the inclusion criteria for the TMZ survival analysis.
Demographic and clinical data of the 22 patients are
shown in Table 2.
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Table 1 Clinical characteristics in the training and validation cohorts

Characteristic Training cohort
N=74

Validation cohort
N=31

p (Inter)

MGMT (+) MGMT (-) p (Intra) MGMT (+) MGMT (-) p (Intra)

Gender 0.674 0.139 0.902

Male 32 (43.2) 10 (13.5) 8 (25.8) 10 (32.3)

Female 23 (31.1) 9 (12.2) 10 (32.3) 3 (9.7)

Age, y 0.225 0.701 0.195

≤52 32 (43.2) 8 (10.8) 13 (41.9) 8 (25.8)

>52 23 (31.1) 11 (14.9) 5 (16.1) 5 (16.1)

Grade 0.258 0.509 0.905

II 24 (32.4) 5 (6.8) 7 (22.6) 4 (12.9)

III 22 (29.7) 8 (10.8) 9 (29.0) 5 (16.1)

IV 9 (12.2) 6 (8.1) 2 (6.5) 4 (12.9)

Tumour size 0.508 1.000 0.073

≤6cm 27 (36.5) 11 (14.9) 6 (19.4) 4 (12.9)

>6cm 28 (37.8) 8 (10.8) 12 (38.7) 9 (29.0)

Tumour centre location 0.350 1.000 0.980

Left hemisphere 25 (33.8) 11 (14.9) 9 (29.0) 6 (19.4)

Right hemisphere 30 (40.5) 8 (10.8) 9 (29.0) 7 (22.6)

Frontal lobe 0.674 0.013* 0.902

Yes 32 (43.2) 10 (13.5) 14 (45.2) 4 (12.9)

No 23 (31.1) 9 (12.2) 4 (12.9) 9 (29.0)

Occipital lobe 0.702 0.497 0.742

Yes 5 (6.8) 3 (4.1) 2 (6.5) 0 (0.0)

No 50 (67.6) 16 (21.6) 16 (51.6) 13 (41.9)

Parietal lobe 0.264 0.023* 0.116

Yes 13 (17.6) 7 (9.5) 0 (0.0) 4 (12.9)

No 42 (56.8) 12 (16.2) 18 (58.1) 9 (29.0)

Temporal lobe 0.706 0.710 0.728

Yes 35 (47.3) 6 (8.1) 6 (19.4) 6 (19.4)

No 20 (27.0) 13 (17.6) 12 (38.7) 7 (22.6)

Insular lobe 0.140 0.625 0.817

Yes 9 (12.2) 0 (0.0) 2 (6.5) 3 (9.7)

No 46 (62.2) 19 (25.7) 16 (51.6) 10 (32.3)

Involving cortex matter 0.635 1.000 0.742

Yes 48 (64.9) 18 (24.3) 17 (54.8) 12 (38.7)

No 7 (9.5) 1 (1.4) 1 (3.2) 1 (3.2)

Involving deep white matter 0.910 0.497 0.238

Yes 46 (62.2) 15 (20.3) 16 (51.6) 13 (41.9)

No 9 (12.2) 4 (5.4) 2 (6.5) 0 (0.0)

Involving pial matter 1.000 1.000 1.000

Yes 48 (64.9) 16 (21.6) 16 (51.6) 11 (35.5)

No 7 (9.5) 3 (4.1) 2 (6.5) 2 (6.5)

Involving ependymal membrane 0.555 1.000 0.600

Yes 19 (25.7) 8 (10.8) 8 (25.8) 5 (16.1)

No 36 (48.6) 11 (14.9) 10 (32.3) 8 (25.8)

Tumour cross midline 0.949 1.000 0.735

Yes 11 (14.9) 3 (4.1) 3 (9.7) 2 (6.5)

No 44 (59.5) 16 (21.6) 15 (48.4) 11 (35.5)
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MGMT methylation testing

The methylation status of the MGMT promoter was assessed
using pyrosequencing analysis as described elsewhere [19].
Briefly, each tumour specimen was histologically investigated
by macro-dissection to guarantee a tumour cell content of at
least 80%. DNAwas extracted using the Simlex OUP® FFPE
DNA extraction kit (TIB, China) and quantified by spectro-
photometry using a NanoDrop 2000 (Thermo Fisher
Scientific, Loughborough, UK). Bisulphite modification of
the extracted DNA was performed using the BisulFlash™

DNA modification kit (EpiGentek, Farmingdale, NY, USA).
The PCR amplification and conditions are given in Online
Supplemental Appendix E2.

MRI acquisition

Preoperative MRI was performed with a 3.0-T scanner (Signa
HDxt, GE Healthcare, USA) using an 8-channel array coil.
The acquisition protocols for CE-T1-WI, T2-FLAIR and
DWI are in given in Online Supplemental Appendix E3.

Table 1 (continued)

Characteristic Training cohort
N=74

Validation cohort
N=31

p (Inter)

MGMT (+) MGMT (-) p (Intra) MGMT (+) MGMT (-) p (Intra)

Oedema cross midline 1.000 1.000 0.416

Yes 12 (16.2) 4 (5.4) 5 (16.1) 4 (12.9)

No 43 (58.1) 15 (20.3) 13 (41.9) 9 (29.0)

Border 0.171 0.099 0.455

Well-defined 14 (55.4) 8 (10.8) 2 (6.5) 5 (16.1)

Ill-defined 41 (18.9) 11 (14.9) 16 (51.6) 8 (25.8)

Haemorrhage 0.254 1.000 0.134

Yes 11 (14.9) 1 (1.4) 5 (16.1) 4 (12.9)

No 44 (59.5) 18 (24.3) 13 (41.9) 9 (29.0)

Cystic and necrosis 0.751 1 0.053

No 15 (20.3) 5 (6.8) 7 (22.6) 5 (16.1)

≤25% 21 (28.4) 5 (6.8) 4 (12.9) 3 (9.7)

25%-50% 11 (14.9) 5 (6.8) 1 (3.2) 1 (3.2)

≥50% 8 (10.8) 4 (5.4) 6 (19.4) 4 (12.9)

Oedema degree 0.011* 0.275 0.563

≤1.6 33 (44.6) 5 (6.8) 10 (32.3) 4 (12.9)

>1.6 22 (29.7) 14 (18.9) 8 (25.8) 9 (29.0)

Enhancement style 0.010* 0.034* 0369

No 15 (20.3) 3 (4.1) 4 (19.4) 0 (0.0)

Ring enhancement 20 (27.0) 15 (20.3) 8 (25.8) 8 (25.8)

Nodular enhancement 11 (14.9) 0 (0.0) 6 (19.4) 2 (6.5)

Irregular reinforcement 9 (12.2) 1 (1.4) 0 (0.0) 3 (9.7)

Enhancement degree 0.287 0.211 0.401

No 15 (20.3) 3 (4.1) 4 (12.9) 0 (0.0)

Slight 5 (6.8) 0 (0.0) 2 (6.5) 1 (3.2)

Obvious 35 (47.3) 16 (21.6) 12 (38.7) 12 (38.7)

Signal characteristics 1.000 0.497 0.904

Homogeneous 5 (6.8) 2 (2.7) 2 (6.5) 0 (0.0)

Heterogeneous 50 (67.6) 17 (23.0) 16 (51.6) 13 (41.9)

MGMT(+) patients with oxygen 6-methylguanine-DNA methyltransferase (MGMT) methylation, MGMT(-) patients without MGMT methylation, p
(Intra) the result of uni-variable analyses between methylated and unmethylated groups, p(Inter) significant difference between training and validation
cohorts

Unless otherwise specified, data are numbers of patients, with percentages in parentheses
* p < 0.05
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Demographic and clinical characteristic analysis

Differences between the training and validation cohorts and
between the intra- MGMT methylated and unmethylated
groups in terms of demographic and clinical factors were
assessed with Pearson’s chi-square tests or Fisher’s exact tests
for categorical variables and Student’s t-tests or Mann-
Whitney U tests for continuous variables.

Sample size and power calculation

According to the thumb rule, the sample size needed to cover
10–15 observations per predictor variable to yield a stable
estimate [20]. In our study, the maximum number of included
features for radiomics signature construction was 5 (T2-
FLAIR sequence on tumour area). Thus, the training dataset
needed to include at least 50 patients. For the validation
dataset power calculation, a sample of > 11 patients was re-
quired to provide 80% power and a type I error rate of 5%
[21]. Our study cohort included 105 patients with 74 in the
training dataset and 31 in the validation dataset, which met the
sample size requirement.

Process of radiomics analysis

The radiomics analysis was structured into four parts: ROI
segmentation, feature extraction, feature selection and model
construction (Fig. 1). In brief, we performed a manual ROI
with overlapped area by two radiologists (10 and 15 years of
experience, respectively) on tumour and oedema habitats from
T1-WI, T2-FLAIR and ADC maps, and the two radiologists
were blinded to the final diagnosis and the MGMT methyla-
tion status. Examples of six typical segmentation cases ac-
cording to grade and MGMT methylation status are shown
in Fig. 2. The median ROI of each habitat and sequence is
shown in Online Supplemental Table 3. A set of 3,051
imaging features was extracted including textural and
non-textural features. Feature stability and reproducibil-
ity was estimated by Intra-class correlation coefficients
and concordance correlation coefficients. Further feature
selection was performed based on minimum redundancy
and maximum relevance algorithm. Single radiomics
signatures from each sequence and habitat, and a fusion
radiomics signature were finally constructed using logis-
tic regression modelling. A detailed description is given
in Online Supplemental Appendix E4.

Clinical and radiological factors for MGMT prediction

Clinical factor analysis and ADC parameter calculation A uni-
variate analysis was initially applied to select useful clinical
factors (p < 0.1). Then, a forward selection (likelihood ratio)
multi-variable analysis was performed to select clinical
factors with p < 0.05. Additionally, we introduced ADC
parameters (mean tumour ADC values and mean
peritumoral oedema ADC values) associated with
MGMT promoter methylation as reported in the litera-
ture [22]. Tumour and oedema ADC values were addi-
tionally integrated as a clinical model by logistic regres-
sion based on the training cohort.

Combined model with radiomics signature, clinical factor,
and ADC values To achieve a holistic information-gathered
network, we generated a comprehensive model including the
fusion radiomics signature, the selected clinical factor (oede-
ma degree), and two ADC values (the tumour and oedema
areas). Considering a correlation between the radiomics sig-
nature and other factors as well as the model complexity, we
adopted the Akaike information criterion (AIC) to select op-
timal incorporated factors and used logistic regression model-
ling to perform model construction.

Performance evaluation

Receiver operating characteristic (ROC) curves were plotted
and area under the curve (AUC), specificity and sensitivity

Table 2 Clinical characteristics and MGMT predicted outcome for
patients with TMZ chemotherapy

Characteristic Patients
N=22

Gender

Male 13 (59.1)

Female 9 (40.9)

Age, y

≤49 12 (54.5)

>49 10 (45.5)

Grade

II 6 (27.3)

III 11 (50.0)

IV 5 (22.7)

MGMT

+ 17 (77.2)

– 5 (22.8)

Predicted MGMT

MGMT(+) 14 (82.3)

MGMT(-) 3 (17.7)

MGMT(+) patients with oxygen 6-methylguanine-DNA methyltransfer-
ase (MGMT) methylation, MGMT(-) patients without MGMT
methylation

Unless otherwise specified, data are numbers of patients, with percent-
ages in parentheses

The average age was 49 years, thus we divided patients into an age ≤ 49
years group and an age > 49 years group
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were calculated for the fusion radiomics signature, selected
clinical factor and ADC parameter. We further performed
stratification analysis for the fusion radiomics signature by
grouping the cohorts according to age, gender and grade. We
chose decision curve analysis (DCA) to estimate the clinical
usefulness of the developed fusion radiomics signature and
used the Delong test to explore whether the fusion radiomics
signature performed better than the traditional clinical model
and ADC parameter.

Prognostic value analysis

A Kaplan-Meier curve was plotted based on the fusion
radiomics signature in order to stratify the OS in patients treat-
ed with adjuvant TMZ chemotherapy. The log-rank test was
used to determine whether there were statistical differences
between the two survival groups.

Statistical analysis

We performed the statistical analysis with PASW Statistics,
version 18.0 (SPSS Inc., Chicago, IL, USA) and R software,

version 3.4.1 (www.R-project.org). The threshold for
statistical significance was a two-sided p < 0.05.

Results

Patient demographic data, clinical characteristics
and molecular subtypes

The baseline characteristics of the patients are shown in
Table 1. There were no differences between the training and
validation cohorts in terms of demographic or clinical charac-
teristics (p = 0.053–1.000).

In total, we included 73 (69.5%) patients with MGMT
promoter methylation and 32 (30.5%) patients without
MGMT promoter methylation. No significant difference was
shown for the MGMT methylation status distribution in the
training and validation cohorts (p = 0.156).

Feature stability and reproducibility estimation

The statistical results of feature numbers after stability and repro-
ducibility analysis are shown in Online Supplemental Fig. 2.

Fig. 1 Radiomics workflow. The radiomics process included four parts:
region of interest (ROI) segmentation on each habitat and sequence,
feature extraction, feature selection and model construction. ROI was
delineated on both the tumour and the peritumoral habitats on contrast-
enhanced T1-weighted images and T2-FLAIR images. On each ROI, a
set of 3,051 features were extracted. We performed fundamental stability

and reproducibility analysis before using maximum relevance and
minimum redundancy algorithm. The radiomics signature was
generated by logistic regression with Bayesian information criteria as
the stopping rule. Further performance evaluation was explored
including receiver operating characteristics, decision curve analysis and
survival stratification

882 Eur Radiol (2019) 29:877–888
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Features extracted from tumour habitats exhibited statistically
better performance than those extracted from peritumoral oede-
ma habitats (reproducibility, p < 0.001; stability, p < 0.001).

Single radiomics signatures formula and evaluation

The selected features and integration formulas for single
radiomics signatures derived from each sequence and habitat

are shown in Online Supplemental Table 1 and Appendix E5,
respectively. A detailed explanation of each selected feature is
shown in Online Supplemental Table 2. Single radiomics sig-
natures from T1-WI-tumour, T1-WI-oedema, T2-FLAIR-tu-
mour, and T2-FLAIR-oedema were verified as eligible
radiomics signatures with AUCs > 0.7 in both the training
and validation cohorts (Table 3). These four single radiomics
signatures all showed significant differences (p < 0.05) in the

Fig. 2 Tumour and oedema area segmentations are shown by the red and green lines, respectively. Oedema degree was obvious in the MGMT
unmethylated group compared to the MGMT methylated group, especially for higher-grade astrocytomas (III and IV)

Table 3 Diagnostic performance of single radiomics signatures, fusion radiomics signature, clinical factors and ADC values

Models Training cohort
N=74

Validation cohort
N=31

Sensitivity Specificity Accuracy AUC (95% CI) Sensitivity Specificity Accuracy AUC (95% CI)

Tumour T1 0.789 0.691 0.716 0.706 (0.567–0.845) 0.615 0.667 0.645 0.739 (0.558–0.921)

Tumour T2 0.947 0.782 0.824 0.916 (0.852–0.979) 0.538 0.889 0.742 0.701 (0.494–0.908)

Tumour ADC 0.895 0.655 0.716 0.815 (0.714–0.917) 0.692 0.389 0.516 0.590 (0.381–0.799)

Oedema T1 0.632 0.782 0.743 0.738 (0.601–0.875) 0.615 0.667 0.645 0.709 (0.519–0.900)

Oedema T2 0.684 0.727 0.716 0.778 (0.654–0.902) 0.615 0.778 0.710 0.752 (0.567–0.937)

Oedema ADC 0.632 0.782 0.743 0.678 (0.534–0.822) 0.615 0.889 0.774 0.816 (0.667–0.965)

Fusion radiomics 0.872 0.842 0.865 0.925 (0.861–0.989) 0.944 0.539 0.774 0.902 (0.785–1.000)

Clinical factors 0.737 0.600 0.6351 0.668 (0.548–0.789) 0.692 0.556 0.613 0.624 (0.448–0.800)

ADC values 0.632 0.691 0.676 0.649 (0.511–0.787) 0.615 0.722 0.677 0.603 (0.382–0.823)

95% CI 95% confidence interval, AUC area under curve, T1 contrast-enhanced T1-weighted sequence, T2 T2-FLAIR sequence
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MGMT methylated and unmethylated groups in both the
training and the validation cohorts. Boxplots describing the
distribution of the four radiomics signatures in the MGMT
methylated and unmethylated groups are shown in Online
Supplemental Fig. 3. However, neither ADC-tumour nor
ADC-oedema performed with satisfactory results for
MGMT identification. ADC-tumour did not perform well in
the validation cohort (AUC = 0.590) while ADC-oedema did
not perform well in the training cohort (AUC = 0.678).
Detailed predictive indicators (AUC, accuracy, sensitivity
and specificity) of each single radiomics signature are shown
in Table 3.

Fusion radiomics signature formula and evaluation

The fusion radiomics signature combining the four single
radiomics signatures was constructed with a Rad-score calcu-
lated as follows:

Rad‐score fusionð Þ ¼ −6:785−1:026*SignatureOedema−T1
þ 3:950*SignatureOedema−T2

þ 2:907*SignatureTumour−T1
þ 5:427* SingatureTumour−T2

The optimum cut-off value of the fusion radiomics was
1.077 as per the Youden index. Patients were divided into
predicted MGMT methylated (Rad-score ≥ 1.077) and
unmethylated groups (Rad-score < 1.077) based on fusion
Rad-scores.

Barplots depicting the classification performance of the
fusion signature in the training and validation cohorts are
shown in Fig. 3. The fusion radiomics signature achieved
optimal AUC values of 0.925 and 0.902 in the training and
validation cohorts, respectively. Detailed predictive indicators

(accuracy, sensitivity and specificity) of the fusion radiomics
signature are shown in Table 3.

The fusion radiomics signature also had an outstanding per-
formance in the stratification analysis, considering age, gender
and grade (Table 4). It is noteworthy that the proposed
radiomics signature does not require a priori knowledge of
grading information because it behaved well for distinguishing
MGMTmethylation status not only in a grade II-IV cohort, but
also in grade II, III and IVastrocytomas, separately.

Clinical model and ADC parameter evaluation

Only oedema degree was significantly different between
the MGMT methylated and unmethylated groups in the
training cohort (p = 0.0015). The AUCs of this clinical
factor were 0.668 and 0.624 in the training and valida-
tion cohorts, respectively. The ADC parameter achieved
AUC values of 0.649 and 0.603 in the training and
validation cohorts, respectively. Detailed predictive indi-
cators (sensitivity and specificity) of the clinical model
and ADC parameter are shown in Table 3.

Performance comparison

The fusion radiomics signature achieved the highest AUC
among the three models. The Delong test showed a significant
difference between the fusion radiomics signature and the
clinical model (p = 0.008 and 0.011), and between the fusion
radiomics signature and ADC parameter (p = 0.003 and
0.027) in the training and validation cohorts, respectively.

Combined model construction and evaluation

During the combined model construction process, the AIC
value was minimum when only taking the fusion radiomics

Fig. 3 Barplots depicting the
classification performance of the
fusion radiomics signature. The
red bar with a prediction value > 0
indicates that the signature
successfully classifies the MGMT
methylation patients; the red bar
with a prediction value < 0
indicates that the signature fails to
classify the MGMT methylation
patients. For the green bar, the
contrary applies
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signature into account. The AIC values were 48.79, 49.79,
51.25 and 53.11 when subsequently adding oedema degree,
ADC of tumour area and ADC of oedema area to the fusion
radiomics signature. Notwithstanding, we calculated the AUC
of the combined model integrating all factors and the result
was concordant with the AIC value; the combined model
achieved an AUC of 0.921 in the training cohort and 0.868
in the validation cohort, which were slightly lower than those
for the fusion radiomics signature alone.

Prognostic value of the fusion radiomics signature

The fusion radiomics signature successfully divided patients
treated with adjuvant TMZ chemotherapy into high-risk and
low-risk OS groups with p = 0.03 (Fig. 4a). Moreover, the
DCA showed that the fusion radiomics signature performed
with higher net benefit (net benefit = 0.441) compared to
simple stratification assuming that no patients had MGMT
methylation or all patients had MGMT methylation (Fig. 4b).

Discussion

In this study, a preoperative and low-cost radiomics analysis
was used to integrate imaging features from tumour and
peritumoral oedema habitats on CE-T1-WI and T2-FLAIR
images to predict MGMT promoter methylation in patients
with grade II-IVastrocytoma. Moreover, we verified the prog-
nostic value of the fusion radiomics signature for patients who
underwent resect ion fol lowed by adjuvant TMZ
chemotherapy.

Compared to clinical and conventional radiological factors
[23, 24], our proposed radiomics signature exhibited excellent
prediction performance. Additionally, the fusion radiomics
signature integrating synergistic information outperformed
each single radiomics signature from a simple habitat or se-
quence. Potential reasons for this observation are as follows:
first, the fusion signature included more comprehensive infor-
mation reflecting granular textural differences in the microen-
vironments and took in important archetypal imaging charac-
teristics associated with MGMT methylation. Previous litera-
ture supports the value of the multi-habitat radiomics for
predicting survival in patients with GBM [25–27]. Second,
most of the effective features extracted in our study were tex-
tural features from Gabor transformation images, which con-
ducted noise removal and filtration. Thus, these transformed
images more effectively captured key tumour heterogeneity
[25]. These findings agree with the radiomics hypothesis that
gene phenotypic information of the tumour is reflected in ra-
diological images [28, 29].

In previous work, Xi et al. showed that a radiomics signa-
ture derived from T1-WI, T2-WI and enhanced T1-WI was a
potential imaging marker for the prediction of MGMTTa

bl
e
4

St
ra
tif
ic
at
io
n
an
al
ys
is
of

th
e
fu
si
on

ra
di
om

ic
s
si
gn
at
ur
e
on

tr
ai
ni
ng

an
d
va
lid

at
io
n
co
ho
rt
s

Su
bg
ro
up
s

Fu
si
on

ra
di
om

ic
s
si
gn
at
ur
e,
m
ed
ia
n
(I
Q
R
)

T
ra
in
in
g
co
ho
rt

V
al
id
at
io
n
co
ho
rt

M
G
M
T
(+
)

M
G
M
T
(-
)

A
U
C
(9
5%

C
I)

p
M
G
M
T
(+
)

M
G
M
T
(-
)

A
U
C
(9
5%

C
I)

p

A
ge
,y

≤5
2

3.
02
4
(2
.2
15
–3
.7
06
)

0.
84
6
(-
0.
69
2–
1.
76
9)

0.
91
8
(0
.8
14
9–
1)

0.
00
22

*
2.
85
9
(2
.6
81
–3
.1
35
)

0.
38
1
(-
0.
79
1–
1.
88
5)

0.
91
35

(0
.7
75
–1
)

0.
00
12

*

>
52

2.
79
8
(1
.5
00
–3
.1
36
)

-2
.0
88

(-
2.
77
7–
0.
46
1)

0.
94
47

(0
.8
64
9–
1)

<
0.
00
1*

2.
62
6
(2
.1
08
–3
.3
64
)

1.
17
7
(-
0.
67
5–
1.
95
0)

0.
92

(0
.7
36
1–
1)

0.
05
2

G
en
de
r

M
al
e

2.
98

(2
.2
19
–3
.3
71
)

-1
.8
99

(-
2.
75
2–
0.
21
8)

0.
94
69

(0
.8
83
5–
1)

<
0.
00
1*

2.
55
4
(1
.9
22
–3
.0
25
)

1.
17
7
(-
0.
37
3–
2.
28
)

0.
76
25

(0
.5
13
6–
1)

0.
06
7

Fe
m
al
e

2.
74
1
(1
.9
3–
3.
28
1)

-0
.5
3
(-
2.
08
8–
0.
75
1)

0.
98
02

(0
.7
84
9–
1)

<
0.
00
1*

2.
93
8
(2
.7
22
–3
.3
16
)

-0
.9
57

(-
1.
07
1–
0.
23
6)

1
(1
–1
)

0.
00
69

*

G
ra
de

II
2.
99
1
(2
.2
15
–3
.5
55
)

0.
44
4
(-
0.
46
–0
.9
42
)

0.
94
17

(0
.8
47
3–
1)

<
0.
00
1*

3.
13
5
(2
.7
47
–3
.3
09
)

0.
90
5
(0
.0
46
–1
.6
57
)

0.
96
43

(0
.8
65
3–
1)

0.
01
2*

II
I

2.
68
9
(1
.9
92
–3
.2
65
)

-2
.3
83

(-
3.
11
9–
-0
.6
92
)

0.
90
91

(0
.7
70
8–
1)

<
0.
00
1*

2.
85
9
(2
.6
26
–3
.0
17
)

1.
50
0
(-
0.
62
5–
2.
1)

0.
84
44

(0
.6
22
4–
1)

0.
04
2*

IV
2.
79
8
(0
.8
3–
3.
07
2)

–1
.5
78

(-
2.
73
9–
-0
.2
64
)

0.
94
44

(0
.8
22
7–
1)

0.
00
28

*
2.
55
4
(2
.4
77
–2
.6
32
)

-0
.1
65

(-
1.
22
7–
1.
25
7)

0.
87
5
(0
.5
28
5–
1)

0.
27

—
—

2.
80
7
(2
.0
26
–3
.3
09
)

-1
.1
74

(-
2.
72
7–
0.
59
8)

0.
92
54

(0
.8
61
1–
0.
98
96
)

<
0.
00
1*

2.
85
3
(2
.6
31
–3
.1
62
)

0.
85
5
(-
0.
95
8–
2.
10
0)

0.
90
17

(0
.7
85
3–
1)

<
0.
00
1*

M
G
M
T(
+
)p
at
ie
nt
s
w
ith

ox
yg
en

6-
m
et
hy
lg
ua
ni
ne
-D

N
A
m
et
hy
ltr
an
sf
er
as
e
(M

G
M
T
)
m
et
hy
la
tio

n,
M
G
M
T(
-)
pa
tie
nt
s
w
ith

ou
tM

G
M
T
m
et
hy
la
tio

n,
IQ

R
in
te
rq
ua
rt
ile

ra
ng
e

p-
va
lu
e
<
0.
05

in
di
ca
te
s
si
gn
if
ic
an
td

if
fe
re
nc
e
in

th
e
m
ed
ia
n
ra
di
om

ic
s
sc
or
e
be
tw
ee
n
th
e
M
G
M
T
(+
)
an
d
M
G
M
T
(-
)
gr
ou
ps

*
p
<
0.
05

Eur Radiol (2019) 29:877–888 885



promoter methylation in GBMs, with prediction accuracy of
86.59% in the training cohort and 80% in the validation cohort
[30]. However, MGMT methylated patients not only behaved
well in GBM, but also presented with prolonged survival in
lower-grade astrocytomas [4, 31]. Our study used an expand-
ed cohort that included grade II-IV astrocytomas, and per-
formed with superior AUCs of 0.926 and 0.902 in the training
and validation datasets, respectively. Notably, our proposed
fusion radiomics signature has the power to distinguish
MGMT methylation in separate grade II, III and IV (GBM)
cohorts, as well as in a grade II-IV cohort. It can predict
MGMT methylation status directly without the need for a
pathological grading prerequisite. Considering that the most
significant advantage of radiomics is its non-invasive charac-
teristics, pre-knowledge of grading that requires biopsy criti-
cally limits the clinical application of radiomics, while our
results showed great advances on the previous study with
improved high accuracy. This finding will strongly promote
radiomics application in clinical practice.

Furthermore, we also investigated whether a combined
model integrating clinical factors, radiological factors and
fusion radiomics signature would outperform the signature
alone. However, adding oedema degree and ADC values to
the fusion radiomics signature caused minor deterioration
rather than improvement in prediction performance. This
indicated that adding clinical and radiological factors to the
radiomics signature increased the complexity without

increasing the prediction accuracy. The oedema degree and
ADC values, as kinds of semi-quantitative clinical and quan-
titative radiological factors, partially depended on the sub-
jective judgement of radiologists (sometimes with strong
reservations), and their prediction performance were poorer
compared with the radiomics signature. Thus when incorpo-
rating these factors into the radiomics signature, there was
no additional positive effect on the improvement of the pre-
diction performance, but rather an increased complexity of
the prediction model. Additionally, even though it was re-
ported that ADC values were correlated with MGMT pro-
moter methylation and prognosis in GBM [22, 32, 33], our
results indicated that radiomic features extracted from T1-
CE and T2-FLAIR sequences performed better than those
extracted from the ADC sequence. A potential reason for
this observation is the relatively poor imaging resolution of
ADC, which limited the stability and robustness of the de-
rived radiomics features.

MGMT promoter methylation has been shown to be asso-
ciated with longer OS, [34]. In our study, MGMT promoter
methylation status successfully stratified astrocytoma patients
treated with adjuvant TMZ chemotherapy into two groups
with significant prognostic differences, consistent with previ-
ous research [6]. We also validated the proposed fusion
radiomics signature for assessing TMZ chemotherapy effect.
Using the cut-off value of the fusion Rad-score, patients with
positive radiomics scores after TMZ chemotherapy had

Fig. 4 (a) Kaplan-Meier curve verifying the prognostic value of the
fusion radiomics signature. Patients were successfully divided into high-
risk (red line) and low-risk (green line) groups (p = 0.0308). (b) Decision
curve analysis for the fusion radiomics signature on the overall cohort. The

y-axis represents the net benefit and the x-axis represents the threshold
probability. The threshold probability of the decision curve is 26% and
the corresponding net benefit is 0.441. * p < 0.05
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significantly longer OS than patients with negative scores
(p = 0.03), revealing another possible clinical application of
this genetic prediction tool.

The present study had several limitations. First, our model
was trained and validated using retrospective data collected
from a single institution. A large-scale prospective and
multicentre validation cohort collection is currently underway.
Second, our radiomics analysis only predicted MGMT pro-
moter methylation prediction from T1-CE, T2-FLAIR and
ADC map images, which are the most common structural
MR images. Additional scanning sequences such as dynamic
susceptibility contrast, susceptibility-weighted imaging and
diffusional kurtosis imaging will be included in future studies
to further improve predictive performance. Third, the relation-
ship between imaging features and critical molecular markers
such as IDH and 1p19q should also be studied in future re-
search. Finally, the manual segmentation method used to de-
lineate ROIs in this study (tumour and oedema) was quite time
consuming. Semi-automatic or deep learning-based automatic
segmentation methods may enhance the objectivity of our
method and promote the seamless integration of this technol-
ogy into clinical application.

In conclusion, habitat-based MRI radiomics could provide
a non-invasive imaging strategy for the preoperative predic-
tion of MGMT promoter methylation in patients with grade
II–IVastrocytomas, and has prognostic implications for TMZ
chemotherapy, which may serve as a tool for guiding
individualised treatment decision making.
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