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The influence of microvascular injury on native T1 and T2*
relaxation values after acute myocardial infarction: implications
for non-contrast-enhanced infarct assessment
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Abstract
Objectives Native T1 mapping and late gadolinium enhance-
ment (LGE) imaging offer detailed characterisation of the
myocardium after acute myocardial infarction (AMI). We
evaluated the effects of microvascular injury (MVI) and
intramyocardial haemorrhage on local T1 and T2* values in
patients with a reperfused AMI.
Methods Forty-three patients after reperfusedAMI underwent
cardiovascular magnetic resonance imaging (CMR) at 4 [3-5]
days, including native MOLLI T1 and T2* mapping, STIR,
cine imaging and LGE. T1 and T2* values were determined in
LGE-defined regions of interest: the MI core incorporating
MVI when present, the core-adjacent MI border zone (without
any areas of MVI), and remote myocardium.
Results Average T1 in the MI core was higher than in the MI
border zone and remote myocardium. However, in the 20
(47%) patients with MVI, MI core T1 was lower than in pa-
tients without MVI (MVI 1048±78ms, no MVI 1111±89ms,
p=0.02). MI core T2* was significantly lower in patients with
MVI than in those without (MVI 20 [18-23]ms, no MVI 31
[26-39]ms, p<0.001).

Conclusion The presence ofMVI profoundly affects MOLLI-
measured native T1 values. T2* mapping suggested that this
may be the result of intramyocardial haemorrhage. These find-
ings have important implications for the interpretation of na-
tive T1 values shortly after AMI.
Key points
• Microvascular injury after acute myocardial infarction af-
fects local T1 and T2* values.

• Infarct zone T1 values are lower if microvascular injury is
present.

• T2* mapping suggests that low infarct T1 values are likely
haemorrhage.

• T1 and T2* values are complimentary for correctly assessing
post-infarct myocardium.
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Introduction

Cardiovascular Magnetic Resonance (CMR) imaging with na-
tive T1 mapping is a novel technique that allows direct
voxelwise measurement of T1 values within the myocardium
and has been proposed as a new tool for depicting the infarcted
myocardium, without the need for contrast agents, thus provid-
ing an alternative for the use of gadolinium in patients with renal
impairment [1, 2]. While some studies show a relation between
increased myocardial T1 mapping values and adverse outcome,
recent studies suggest that decreased values in the MI core are
associated with worse outcome [3, 4]. Studies using late gado-
linium enhancement (LGE) have shown that the infarcted myo-
cardium consists of heterogeneous tissue with different
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gradations of injury, ranging from ruptured myocytes to more
severely damaged myocardium, containing haemorrhage and/or
microvascular obstruction, better described as microvascular in-
jury (MVI) [5–9]. The influence of this infarct heterogeneity on
local T1 values has not yet been fully elucidated. In ST-elevation
myocardial infarction (STEMI), T1 values have been shown to
increase due to the ischaemic damage and oedema formation
[3], but the presence of MVI due to ischaemia-reperfusion in-
duced myocardial haemorrhage may alter T1-related parameters,
which may be detected with T2* mapping tools [4, 10]. These
conflicting changes may well be a potential pitfall in the inter-
pretation of T1 mapping parameters. The aim of this study was
to assess whether local T1 and T2* values change within the
myocardial tissue early after reperfused STEMI and whether
these changes are altered if local haemorrhage is present. We
hypothesised that the presence of microvascular injury (MVI)
significantly affects local T1 and T2* values to warrant an ad-
justment in interpreting T1 and T2* values, if MVI is present.

Methods

Patient population

This single-centre study was approved by our local institution-
al review board and is in concordance with the Declaration of
Helsinki. Written informed consent was obtained from all pa-
tients. Between December 2011 and February 2013, 60 con-
secutive patients presenting with a first STEMI were enrolled.
This study is a substudy of our main trial, from which we
recently published our main findings [11]. In short, patients
were eligible for the study if they were admitted within 6
hours after the onset of symptoms with persisting ST-
segment elevation on 12-lead electrocardiography (ECG)
and if they underwent a successful primary PCI. Exclusion
criteria were hemodynamic instability (Killip classes III and
IV)[12, 13], prior myocardial infarction in the culprit coronary
artery, prior coronary artery bypass graft (CABG) surgery or
general contraindications for CMR. All patients were treated
with medication according to current ESC guidelines [14].

Of the 60 participating patients, eight were excluded for
this substudy. In one patient, the MRI examination was termi-
nated due to software malfunction halfway during the acqui-
sition, upon which the patient refused further MRI examina-
tion. Four patients refused informed consent for CMR because
of anxiety or claustrophobia and two patients did not fit into
the CMR scanner due to obesity. In one patient, a proximal
dissection of a coronary artery occurred during angiography.

Cardiovascular Magnetic Resonance

CMRwas performed between 4-6 days after PCI using a clinical
1.5 Tesla MR-scanner (Magnetom Avanto, Siemens, Erlangen,

Germany) with a dedicated 12-element phased-array cardiac re-
ceiver coil. A segmented T2 weighted turbo spin echo (T2w)
sequence with fat suppression (Short-tau inversion recovery,
STIR) was performed in a short-axis orientation with full LV
coverage from mitral valve annulus to the apex. Using the
STIR images, the centre of the infarcted myocardium containing
oedema (defined as regional high signal) and, if present, haem-
orrhage (defined as attenuated signal within the area of high
signal intensity[15–17]) was visually identified. At this specific
slice position, a native T1 measurement was performed with a
Modified Look-Locker Inversion-recovery (MOLLI) sequence
(typical parameters: single breath-hold, voxel size 2.1x2.1x8
mm, field-of-view 360-400 mm, time of repetition 2.2 ms, echo
time 1.1ms, 11 inversion delays obtained in a 3-3-5 scheme in 17
heartbeats [2, 18]. Directly after the T1 measurement, a T2*
measurement was acquired at the same slice position (typical
parameters, voxel size 1.6x3.1x10 mm, field-of-view 400 mm,
TR 32 ms, 12 echos, TE range of 2.6-30 ms) [19]. After admin-
istration of 0.2 mmol/kg Gd-DOTA (Dotarem, Guerbet,
Villepinte, France), functional imaging was performed by using
a retrospectively ECG-gated steady-state free precession (SSFP)
cine imaging sequence with breath-holding at similar short-axis
slice positions as the STIR images. At least 10 minutes after
contrast administration, LGE images were acquired, using a 2-
dimensional segmented inversion-recovery spoiled gradient-
echo pulse sequence, with individual adjustment of the inversion
time to suppress the signal of normal myocardium.

T1 measurements, T2* measurements, cine, STIR and LGE
images within one examination were matched by slice position.

CMR analysis and definitions

Analysis was performed with dedicated software (QMass MR
v.7.5, Medis, Leiden, the Netherlands). Left ventricular vol-
umes, ejection fraction (EF), end-diastolic myocardial mass
and infarct size were calculated as previously described [20].
Infarct size was calculated from the LGE images by using the
full-width at half-maximum (FWHM) technique [21]. MVI,
defined as a hypo-intense region within the hyperenhanced
infarcted myocardium, was incorporated in the infarcted area.
Volumes, mass and infarct size were indexed for body surface
area. Additionally, infarct size was also expressed as % of the
LV myocardium by dividing it by end-diastolic mass.

By matching the T1 and T2* images with the LGE images,
three regions of interest (ROI) were visually identified in the left
ventricular myocardium as follows: core: the infarcted area with
the largest extent of transmural hyperenhancement, including
MVI (when present); border zone: the adjacent infarcted area
with hyperenhancement on LGE imaging, but without MVI;
remote: a myocardial area in a different coronary territory with-
out wall motion abnormalities, oedema or contrast enhance-
ment. After matching the LGE images with the corresponding
T1 and T2* maps by slice position, measurements were
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performed on the T1 and T2* maps in the LGE-defined regions
of interest. On the T1 maps and T2* maps, ROI contours were
drawn in the area of interest as defined on LGE images.
Between the maps, contours were copied to keep the ROI po-
sitions in similar positions as much as possible, with manual
correction for motion. From the ROIs, the T1 relaxation values
were assessed from the MOLLI images as previously described
[18]. The calculated values were corrected for heart rate depen-
dency of the technique by the formula T1corrected ¼ T1raw �
2:7� HR� 70½ �ð Þ [22]. T2* values were determined using a
single exponential fit of the signal intensities versus echo time.
An example of the matching and the T1 and T2* analyses is
shown in Fig. 1. All CMR analyses were performed by an
experienced CMR reader (LR, 6 years of CMR experience),
blinded to all patient data and outcomes.

Statistical analysis

Categorical data are presented as frequencies (percentage) and
continuous data as mean ± SD for normally distributed vari-
ables or median with [IQR]. Normally distributed variables
were compared between groups using Student’s T-tests. Log-
transformation was applied for the T2* relaxation values to
achieve a normal distribution. Pearson correlation coefficients
were calculated to quantify the strength of the association
between variables. Intra- and inter-observer variability was
tested in a sample of the studies by using an intraclass corre-
lation coefficient with two-way measures and absolute agree-
ment. For comparison of infarct core, MI border zone and
remote T1 and T2* values, a repeated measures ANOVA
was used with post-hoc Bonferroni correction for pairwise
comparisons. Post-hoc tests were only performed in case of
a significant overall effect between the three regions.
Differences in maximal Creatin Kinase MB-fraction (CK-
MB) levels were compared between groups using the non-
parametric Mann-Whitney U tests as skewness could not be
resolved by a transformation. All p-values are two-sided and
statistical significance was set at p<0.05. Statistical analysis
was done with the Statistical Package for Social Sciences soft-
ware (IBM SPSS Statistics 20 for Windows).

Results

General characteristics of the population

Of the 52 patients included, nine were excluded from analysis
because of insufficient quality of either T1 or T2* maps,
which was mainly caused by the length of the breath hold.
Exclusion was performed in consensus by two experienced
readers. The maximal CK-MB levels of excluded patients
were not significantly different from the levels of included
patients.

All 43 patients underwent CMR examination at a median
of 4 [3-5] days after PCI. Patient demographics are listed in
Table 1 and all functional and mapping parameters are
displayed in Tables 2 and 3. Twenty patients (47%) had
MVI on the LGE images. Patients with MVI had significantly
lower LVEF (MVI: 46±6% vs. noMVI: 55±8%, p<0.001) and
larger infarct areas (MVI: 25±11% vs. no MVI: 10±7%,
p<0.001).

T1 and T2* mapping values in all patients

Intra-observer variability (T1 values: ICC = 0.62, T2* values:
ICC = 0.73, p=0.002) and inter-observer variability (T1
values: ICC = 0.92, T2* values: ICC = 0.69) were good
(Appendix). For the group as a whole, mean T1 was found
to differ between the MI core and remote zone (MI core: 1081
±89 ms; MI border zone 1093±85 ms; remote 977±61 ms),
with post-hoc test revealing averaged MI core and MI border
zone T1 to be significantly longer than T1 in the unaffected,
remote myocardium (both p-values <0.001). T1 did not differ
between MI core and MI border zone (p=0.50). T2* MI core
values were also found to differ between the zones (MI core:
25 [20-34] ms; MI border: 30 [26-36] ms; remote: 27 [23-32]
ms; overall p=0.003), with post-hoc test showing T2* to be
lower in the MI core zone and remote zone compared to the
MI border zone (p= 0.001 and p = 0.006, respectively). T2*
values did not differ significantly between the MI core and
remote zone (p=0.32).

T1 and T2* mapping values in patients with and
without MVI

In patients withMVI, the MI core T1 was significantly shorter
than in patients without MVI (MVI: 1048±78 ms, vs. noMVI:
1111±89 ms, p=0.02). Patients with MVI also had lower MI
core T2* values (MVI: 20 [18-23] ms vs. no MVI: 31 [26-39]
ms, p<0.001). MI border zone T1 was significantly longer in
patients with MVI than in patients without MVI (MVI: 1129
±74 ms, vs. no MVI: 1063±83 ms, p=0.009), but T2* values
did not differ (MVI: 30 [26-36] ms vs. no MVI: 30 [26-36]
ms, p=0.74). Figure 2A and B show the differences in T1 (2A)
and T2* (2B) values between the regions for patients with and
without MVI.

Discussion

After reperfusion of acutely ischaemic myocardium, previous
studies showed that average T1 and T2* values change in the
affected area as the result of infarction-related oedema [1, 4, 8,
23].Our study confirmed these findings and shows that patients
with microvascular injury have decreased T1 and T2* values in
the MI core. This has implications for the interpretation of
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native T1 mapping values shortly after AMI as, without the
proper use of T2* mapping, myocardium with MVI may be
incorrectly classified as normal, unaffected myocardium.

LGE studies have shown that microvascular injury may af-
fect up to 30 to 50% of patients with AMI [24–26]. MVI is
associated with increased infarct size, and is a well-established
predictor of impaired functional recovery, remodelling and in-
creased incidence of major adverse cardiac events [25–27].
Histological studies of MVI show that intramyocardial haem-
orrhage is a major component of the injury, due to disruption of
the microvasculature and extravasation of blood cells upon re-
perfusion [7, 28–30]. A number of erythrocyte haemoglobin

breakdown products, most notably deoxyhaemoglobin and
methaemoglobin, induce paramagnetic effects, effectively alter-
ing the tissue relaxation times in the area ofMVI [31, 32]. From
brain ischaemia studies, it is known that local T1 and T2 relax-
ation time values shorten due to fibrin clot formation and re-
traction, erythrocyte dehydration, and changes in the water hy-
dration layer due to resorption of water from the protein solu-
tions in the haemorrhagic area [31, 33]. Previous studies already
suggested that T1 values might be suggestive of the severity of
injury in the reperfused MI core [3, 4]. Dall’armellina et al.
showed how T1 values rise in more severe forms of myocardial
infarction, but did not incorporate the presence or absence of

Fig. 1 T2* maps, T1 maps and
the corresponding LGE image,
showing the different regions; MI
core (orange), the adjacent MI
border zone (pink) and remote
myocardium (blue).
MVI=Microvascular Injury,
ms=millisecond

Eur Radiol (2018) 28:824–832 827



MVI [3]. Carrick et al. demonstrated in a large cohort that
decrease in T1 values in the MI core is associated with worse
outcome and postulated that it is most likely caused by haem-
orrhage [4]. However, no cine images or STIR-targeted T1
maps of the MI core were made. Our study confirms the afore-
mentioned findings and demonstrates that T2*mapping corrob-
orates that the changes in T1 values are likely caused by the
effects of haemorrhage [7]. T2* is considered even more sen-
sitive to the effects of the haemoglobin breakdown and haem-
orrhage than T2-weighted imaging [34]. During spin echo

signal creation in T2 weighted imaging, magnetic spins are
refocused and rephased using 180 degree RF pulses prior to
signal detection, thus correcting the loss of signal due to static
susceptibility influences. T2* imaging on the other hand, is
sensitive to static susceptibility effects and strongly decreases
due to iron in haemoglobin breakdown products. T2* mapping
is a well-established technique to detect myocardial iron depo-
sition in transfusion dependent patients, [35–37] with values
below 20 ms considered to be abnormal. It has been shown that
lower T2* values are associated with lower LVEF and adverse
remodelling [8]. We confirmed that T2* values in the MI core
of patients with MVI are around this lower limit of normal, and
clearly lower than in patients without MVI, or in remote areas.
Comparable to T2 relaxation, T2* increases in the presence of
myocardial oedema, which explains the higher values in theMI
border zones of the infarction.

The magnetic susceptibility effects related to the presence of
haemorrhage in the MI core are a potential pitfall in the inter-
pretation of T1 measurements in patients with a recently reper-
fused AMI. MI border zone T1 was higher in patients with
MVI, reflecting more severe myocardial injury and inflamma-
tion. Interestingly, previous studies have found that increased
T1 values were associated with more severe myocardial injury
and less functional improvement [3, 38]. In these studies, the T1
relaxation times were averaged for the entire myocardium, and
the high T1 found in theMI border zone of the infarct may have
more than offset the lower values in theMI cores of the patients
with MVI. Our results support earlier findings that local differ-
ences in T1 relaxation due to the presence of MVI and haem-
orrhage need to be considered [4]. A wide range of T1 values
was found for remote myocardium, which may be explained by
differences in myocardial perfusion [39]. However, further
studies are needed to investigate this phenomenon and its cause.
An inherent limitation of MOLLI acquisitions are its relatively
long breath-holds (17 heart beats) which make it sensitive to
motion artefacts. This led to an exclusion of nine of our 52
participating patients, making it the most common reason for
study exclusion. This could, theoretically, be tackled by using a
shorter acquisition technique, such as ShMolli [40, 41].
However, as remote T1 values were similar in both patient
groups, a significant measurement error seems unlikely.
Although our study group was relatively small, T2* values

Table 1 General demographics of patients

Total (n=43)

Parameter

General demographics

Age (years) 59 ±9

Body Mass Index (g/m2) 27 ±3

Infarct-related artery

LAD 26 (61%)

RCA 12 (28%)

LCx 5 (12%)

Male gender (%) 33 (77%)

Type 2 diabetes (%) 4 (9%)

Hypertension (%) 7 (16%)

Smoking (%) 35 (81%)

Hypercholesterolemia (%) 7 (16%)

Positive family history for CAD (%) 22 (51%)

Medication at discharge

Aspirin (%) 42 (98%)

Thienopyridine (%) 43 (100%)

Coumadin (%) 4 (10%)

Beta blocker (%) 39 (95%)

Statin (%) 43 (100%)

Ace inhibitor (%) 31 (74%)

Angiotensin receptor blocker (%) 4 (10%)

Aldosterone receptor blocker (%) 4 (10%)

Calcium antagonist (%) 1 (2%)

Diuretics (%) 4 (10%)

LAD=Left Anterior Descending coronary artery, RCA=Right Coronary
Artery, LCx=Left Circumflex coronary artery

Table 2 Functional
characteristics of patients with
and without MVI

Total (n=43) MVI (n=20) No MVI (n=23) p-value

Functional parameters

Indexed end-diastolic volume (ml/m2) 91 ± 19 95 ± 14 88 ± 23 0.23

Indexed end-systolic volume (ml/m2) 46 ± 17 52 ± 12 41 ± 20 0.04

LV Ejection fraction (%) 51 ± 8 46 ± 6 55 ± 8 <0.001

Infarct size (% of LV) 17 ± 12 25 ± 11 10 ± 7 <0.001

LV=Left Ventricle, Functional parameters are compared between patients with MVI and without MVI using
Student’s T-tests
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showed a correlation with volumes and ejection fraction where
T1 values did not. This supports earlier findings that T2* values
may confer additional prognostic value [8]. Further studies in
larger study populations are necessary to define the prognostic
significance of T1 and T2* values.

Limitations

As our study group was relatively small, subgroup analyses on
differences in T1 and T2* values for infarcts in different cor-
onary territories was not possible. Earlier findings suggest that
T2* values may confer prognostic value on cardiac function
[8]. However, the numbers in our study are too small for
creating a reliable model with proper correction for confound-
ing factors. Further studies with a larger number of patients are
necessary to assess the prognostic significance of T1 and T2*
values.

MOLLI T1 mapping causes a systematic underestimation
of T1 relaxation in tissues with short T2 values [42]. As the T2
and T2* relaxation are interdependent, it is expected that
MOLLI underestimates T1 relaxation in tissues with short
T2* values. Whether the shortened T1 values in the areas with
MVI are based on a MOLLI-specific artefact or ‘genuinely’
shortened T1 values remains to be investigated using a tech-
nique like SACHA, [40, 43] but for clinical purposes the pres-
ence of MVI should be considered when using MOLLI-
measured T1 maps, as the MOLLI technique is one of the
most widely applied techniques for myocardial T1 assessment
today [44]. Additionally, it should be noted that the MOLLI
sequence parameters have been improved in the last years [40,
41]. However, our study was performed with the MOLLI se-
quence parameters that were used at the start of the study, in
2011 [40].

Finally, we did not assess myocardial T2 relaxation in our
study, which poses a limitation to our data as T2 mapping
would have given us additional insight in the tissue

Fig. 2 A and B T1 (A) and T2* (B) values for the myocardial areas of
interest between patients with MVI and patients without MVI.
MVI=Microvascular Injury, ms=millisecond. Whiskers represent 5th-
95th percentile. p-values for T2* values were calculated after log-trans-
formation. Comparisons between different areas was done with repeated
measures ANOVAwith post-hoc Bonferroni correction. Test of between-
subject effects for T1: all p-values <0.001, for T2: p=0.03 without MVI,
p<0.001 with MVI

Table 3 Mapping characteristics
of patients with and without MVI Total (n=43) MVI (n=20) No MVI (n=23) p-value

Mapping parameters

Heart rate during acquisition (bpm) 65 ± 12 70 ± 13 61 ± 10 0.01

T1 relaxation

MI Core (ms) 1081 ± 89 1048 ± 78 1111 ± 89 0.02

MI Border (ms) 1093 ± 85 1129 ± 74 1063 ± 83 0.009

Remote (ms) 977 ± 61 991 ± 38 964 ± 75 0.16

T2* relaxation

MI Core (ms) 25 [20-34] 20 [18-23] 31 [26-39] <0.001

MI Border zone (ms) 30 [26-36] 30 [26-36] 30 [26-36] 0.74

Remote (ms) 27 [23-32] 28 [24-34] 27 [21-30] 0.23

MVI=Microvascular Injury. T1 and T2* values are compared between patients with MVI and without MVI using
Student’s T-tests after log-transformation of T2* values
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characteristics. However, a robust version of this sequence
was not available at the time of initiation.

Conclusion

In conclusion, infarcted areas of MVI within the reperfused
myocardium have shorter T1 relaxation and T2* relaxation
than infarcted areas without MVI. In the adjacent MI border
zone; T1 relaxation is longer in patients withMVI. This can be
a potential pitfall in the interpretation or quantification of na-
tive T1 mapping values using the MOLLI technique, without
the use of T2* mapping. Combining T1 and T2* mapping
may provide a new approach to differentiate between normal
myocardium, infarcted myocardium, and infarcted myocardi-
um with microvascular injury, without the use of contrast
agents, but further studies are warranted to assess the diagnos-
tic value of this potential new biomarker.
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