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Abstract
Objectives This retrospective cohort study developed a prog-
nostic model incorporating PET texture analysis in patients
with oesophageal cancer (OC). Internal validation of the mod-
el was performed.
Methods Consecutive OC patients (n = 403) were chronolog-
ically separated into development (n = 302, September 2010-
September 2014, median age = 67.0, males = 227, adenocar-
cinomas = 237) and validation cohorts (n = 101, September
2014-July 2015, median age = 69.0, males = 78, adenocarci-
nomas = 79). Texture metrics were obtained using a machine-
learning algorithm for automatic PET segmentation. A Cox
regression model including age, radiological stage, treatment
and 16 texture metrics was developed. Patients were stratified
into quartiles according to a prognostic score derived from the

model. A p-value < 0.05 was considered statistically signifi-
cant. Primary outcome was overall survival (OS).
Results Six variables were significantly and independently
associated with OS: age [HR =1.02 (95% CI 1.01-1.04),
p < 0.001], radiological stage [1.49 (1.20-1.84), p < 0.001],
treatment [0.34 (0.24–0.47), p < 0.001], log(TLG) [5.74
(1.44–22.83), p = 0.013], log(Histogram Energy) [0.27
(0.10–0.74), p = 0.011] and Histogram Kurtosis [1.22 (1.04–
1.44), p = 0.017]. The prognostic score demonstrated signifi-
cant differences in OS between quartiles in both the develop-
ment (X2 143.14, df 3, p < 0.001) and validation cohorts (X2

20.621, df 3, p < 0.001).
Conclusions This prognostic model can risk stratify patients
and demonstrates the additional benefit of PET texture analy-
sis in OC staging.
Key points
• PET texture analysis adds prognostic value to oesophageal
cancer staging.

• Texture metrics are independently and significantly associ-
ated with overall survival.

• A prognostic model including texture analysis can help risk
stratify patients.
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Introduction

Medical imaging is a fundamental component of cancer stag-
ing worldwide and forms a substantial part of current prog-
nostic stratification tools. Innovative radiological techniques
are expected to have a substantial role in developing future
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risk stratification models, which may subsequently influence
clinical decision-making.

Cross-sectional imaging allows three-dimensional (3D) tu-
mour visualisation, enabling non-invasive, quantitative analy-
sis of tumour heterogeneity [1]. Texture analysis of medical
images, together with other feature extraction algorithms, pro-
vides ‘radiomic’ data, which contain first-, second- and
higher-order statistics that quantify the spatial distribution
and intensity values of voxels within the tumour [2, 3].

Multiple sub-clonal populations of cells are known to co-
exist within tumours [4]. Texture analysis could act as a 3D
surrogate marker of underlying tumour heterogeneity. This, in
combination with traditional staging methods, may improve
decision tools and optimise treatment pathways [1].

Retrospective studies have investigated the ability of PET
texture analysis to predict treatment response and survival in
different solid cancers including lung, oesophageal, cervical,
and head and neck [5–7]. A large multi-centre study including
1019 patients with lung and head and neck cancer conducted
retrospective radiomic analysis on external data sets and dem-
onstrated the additional benefit of CT texture analysis in the
staging pathway. Radiomic data were combined with genomic
data to produce a prognostic signature resulting in improved
prognostic performance compared to traditional Tumour
Node Metastasis (TNM) staging alone [1].

This study aimed to demonstrate the additional prognostic
value of PET texture analysis compared with the current stag-
ing methods by developing a prognostic model in patients
with oesophageal cancer (OC). We aimed to calculate a prog-
nostic score that can stratify patients accordingly and perform
internal validation of the prognostic model in an independent
cohort of patients.

Materials and methods

Patient cohort

This is a retrospective cohort study of consecutive patients
with biopsy-proven OC, including gastro-oesophageal junc-
tional (GOJ) tumours, radiologically staged between 16
September 2010 and 31 July 2015. All patients were identified
at the Regional Upper Gastro-intestinal (GI) Cancer multi-
disciplinary team (MDT) meeting. Institutional Review
Board approval was granted and the requirement for informed
consent was waived.

Overall, 550 patients were considered for inclusion.
Exclusion criteria were non- or poorly FDG-avid tumours
[SUVmax <3 (n = 60)], an MTV <5 ml (n = 52), histology oth-
er than adenocarcinoma or squamous cell carcinoma (n = 21),
a synchronous primary malignancy (n = 7) or an oesophageal
stent in situ (n = 7).

Following exclusions, 403 patients were included and
chronologically separated into two independent cohorts. The
first (development) cohort included 302 patients radiological-
ly staged between 16 September 2010 and 15 September
2014. The second (validation) cohort included 101 patients
radiologically staged between 16 September 2014 and 31
July 2015.

All patients were deemed to have potentially curable dis-
ease following contrast-enhanced CT (CECT) staging inves-
tigation. All PET/CT examinations were performed separate-
ly, following the initial CECT, and reported in the same centre
by Consultant Radiologists with an interest in Nuclear
Medicine. Clinical, radiological, histological and outcome da-
ta were recorded in a prospectively maintained database and
were updated in July 2016. Radiological staging was per-
formed according to the Union for International Cancer
Control (UICC) TNM 7th edition [8].

PET/CT protocol

Patients were fasted for at least 6 hours prior to tracer admin-
istration. Serum glucose levels were routinely checked and
confirmed as less than 7.0 mmol/L prior to imaging. Patients
received a dose of 4MBq of 18F-FDG/kg. Uptake time was 90
min, standard practice at our institution. A GE 690 scanner
(GE Healthcare, Buckinghamshire, UK) was used. CT images
were acquired in a helical acquisition with a pitch of 0.98 and
tube rotation speed of 0.5 s. Tube output was 120 kVp with
output modulation between 20 and 200 mA. Matrix size for
the CT acquisition was 512 × 512 pixels with a 50-cm field of
view. No oral or intravenous contrast was administered. PET
images were acquired at 3 min per field of view. The length of
the axial field of view was 15.7 cm (skull base to mid-thigh).
Images were reconstructed with the ordered subset expecta-
tion maximisation algorithm, with 24 subsets and 2 iterations.
Matrix size was 256 × 256 pixels, using the VUE Point™ time
of flight algorithm.

Treatment protocols

Patients had surgery alone (SA), neo-adjuvant chemotherapy
(NACT) or neo-adjuvant chemoradiotherapy (NACRT) prior
to surgery, definitive chemo-radiotherapy (dCRT) or palliative
therapy. The optimum treatment strategy was decided by con-
sensus at the MDT. In general, fit patients with tumours pre-
operatively staged as T3/T4a, N0/N1 were pre-operatively
treated with NACTor NACRT. Less fit patients, or those with
T1/2 N0 disease, had surgery alone. Patients deemed
unsuitable for surgery because of co-morbidity and/or
performance status, extensive loco-regional disease or
personal choice received dCRT.
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Data preparation and PET segmentation

Texture analysis of PET images is dependent on the segmen-
tation method used to define the metabolic tumour volume
(MTV) [3]. A novel tool called ATLAAS (Automatic
Decision Tree Learning Algorithm for Advanced
Segmentation) has been developed to standardise segmenta-
tion of PET images [9]. Data preparation was performed by a
radiology resident (KF) with 4 years’ experience of PET re-
search who was blinded to clinical data. ATLAAS segmenta-
tion was applied using a graphical user interface (GUI) written
in the MatLab language as a plug-in to the Computational
Environment for Radiotherapy Research (CERR) [10]
(Fig. 1). ATLAAS segmentation first requires creation of a
bounding box, which was manually performed in each case.
The time taken to perform this process varies, depending on
the MTV and proximity to other FDG-avid organs, but can
take just a few minutes. Adjustment of the window level and
colour of displayed PET images was performed at the discre-
tion of the user, but no pre-defined levels were used since
these have no influence on ATLAAS segmentation. The ade-
quacy of ATLAAS segmentation was confirmed by visual
assessment in each case. PET images were re-sampled into
0.5 SUV bins. This method is recommended because SUVs
are distributed into equally sized intensity bins [11].

Prognostic variables

Nineteen variables were included in the Cox regression mod-
el. Age (number of years) and stage group (I A or B = 1, II
A or B = 2, III A, B or C = 3, IV = 4) were included. Treatment
was divided into curative (=1) and palliative (=2) groups prior
to data analysis. SUVmax and SUVmean are the maximum and
mean SUV, respectively [12]. MTV derived from ATLAAS
and tumour lesion glycolysis (TLG), the product of SUVmean

and MTV, were calculated [12]. First-order histogram metrics

including Histogram Standard Deviation, Histogram Entropy,
Histogram Energy, Histogram Skewness and Histogram
Kurtosis, were implemented as in Orlhac et al. [5]. Grey-
level co-occurrence matrix-based (GLCMs) metrics including
Homogeneity, Entropy and Dissimilarity were implemented
as in Haralick et al. [13]. Coarseness, implemented as in
Amadasun et al. [14], was calculated, along with grey-level
size zone matrices (GLSZMs), Intensity Variability, Large
Area Emphasis and Zone Percentage, which were implement-
ed as in Thibault et al. [15]. These texture metrics have
been selected for inclusion in this study as they have
shown prognostic and predictive significance in other
texture analysis studies investigating OC [16–18].

Transformation of variables

Visual inspection of continuous variable histograms was per-
formed before model development to assess for normal distri-
bution and skewness. Specific normality tests were not used
but logarithmic transformation of variables with significant
long tails was performed prior to analysis to reduce the lever-
age created from outlying data. Four texture variables were
transformed: TLG [log(TLG)], Histogram Energy
[log(Energy)], Coarseness [log(Coarseness)] and
Homogeneity [log(Homogeneity)]. Repeat inspection of the
transformed histograms revealed the four variables had a more
normalised distribution.

Metabolic tumour volume and texture metrics

An important consideration in texture analysis is the range of
tumour volumes assessed. Tumours with small volumes may
provide redundant texture information because of highly cor-
related variables [19]. Some authors have suggested excluding
tumours withMTV less than 5 ml [5]. Therefore, patients with
MTVs <5 ml were excluded from the analysis.

Fig. 1 Fused axial, sagittal and
coronal FDG-PET/CT images of
an oesophageal tumour outlined
with ATLAAS segmentation tool
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Outcome data

The primary outcome of the study is OS, defined as number of
months survived from date of diagnosis. Patients are followed
up 3 monthly for the 1st year, 6 monthly until 5 years then
annually thereafter, or until death. All included patients were
followed-up for at least 12months. Date of death was obtained
from the Cancer Network Information System Cymru data-
base (CaNISC, Velindre NHS Trust, Wales).

Statistical analysis

Categorical variables were described as frequency
(percent) and continuous variables as median (range)
and differences assessed with appropriate non-
parametric tests. Cumulative survival was calculated by
the Kaplan-Meier life-table method. A Cox Regression
Model with a backward conditional method was con-
structed by an experienced medical statistician. Model
power was based on an event-to-variable ratio (EPV),
recommended to be a minimum level of 10 [20]. EPV
is defined as the ratio of the number of patient deaths
compared to the number of variables in the model. The
prognostic score was calculated by summation of the
products of variables and their corresponding parameter
estimate. Using this, patients were separated into quar-
tiles and a log-rank test evaluated significant differences
in OS. The effect of curative or palliative treatment on
the performance of the prognostic score was assessed
with a test of interaction. Furthermore, the Akaike in-
formation criterion (AIC) statistic evaluated the estimat-
ed quality of three incremental models: (1) a model
including age, radiological stage group and treatment;
(2) a model including these variables plus newer prog-
nostic indicators SUVmax, SUVmean and MTV; (3) a
model including the additional texture metrics. AIC is
calculated by −2*log(L) + 2k, where k is the number of
parameters and L is the likelihood of the model [21].
The model with the lowest AIC value is considered the
better model. Internal validation of the prognostic model
was performed retrospectively in a separate cohort of
patients. A p-value of < 0.05 was considered statistically
significant. Statistical analysis was performed using SAS
version 9.4 (SAS, Cary, NC, USA) and SPSS version
23.0 (IBM, Chicago, IL, USA).

Results

Baseline characteristics of patients included in the develop-
ment and validation cohorts are detailed in Table 1. The
median OS of the development and validation cohorts was
16.0 months [95% confidence interval (95% CI) 13.8-18.2]

and 14.0 months (95% CI 10.4-17.6), respectively. Median
follow-up was 43.0 months (95% CI 35.3-50.7) in the de-
velopment cohort and 17.0 months (95% CI 15.7-18.3) in
the validation cohort. Overall 1- and 2-year survival in the
development cohort was 66.9% and 33.3%, respectively, and
1-year OS in the validation cohort was 57.4%. Classification
of the radiological EUS and PET/CT TNM stage is detailed
in electronic supplementary material, S1.

Prognostic model development

The final step of the prognostic model is presented in Table 2.
Descriptive statistics for all calculated PET metrics are de-
tailed in electronic supplementary material, S2. There were
232 events and 19 variables in the model, providing 12.2
EPV. In addition to known important prognostic factors in
OC (age, radiological stage and treatment), the model identi-
fied 3 texture metrics that were independently and significant-
ly associated with survival. The significant variables were
log(TLG), log(Histogram Energy) and Histogram Kurtosis.
Their inclusion in the model illustrates their additional prog-
nostic value compared with current prognostic factors. TLG is
calculated as the product of SUVmean and MTV [12].
Histogram Energy [5] was calculated using Eq. 1:

Histogram Energy ¼ Σi P ið Þð Þ2 ð1Þ

where P ið Þ ¼ Ni
N ; with Ni the number of voxels of intensity I

and N the total number of voxels. Histogram Kurtosis [5] was
calculated using Eq. 2:

Histrogram Kurtosis ¼
1

N
Σi I ið Þ−μð Þ4

1
N Σi I ið Þ−μð Þ2

� �2 ð2Þ

where N is the number of voxels in the image, I(i) is the
positive intensity value in the 3D matrix, and μ is the mean
intensity value.

Prognostic score calculation

The equation used to calculate the prognostic score in the
development cohor t was (Stage Group*0.397) -
(Treatment*1.094) + (Age*0.024) - (log(Histogram
Energy)*1.320) + (log(TLG)*1.748) + (Histogram
Kurtosis*0.198). This calculation was derived using pub-
lished methods [22]. The median score of quartile 1 was
−0.73 (n = 76, range −1.66 to −0.45), quartile 2 was −0.14
(n = 76, −0.45 to 0.29), quartile 3 was 0.76 (n = 75, 0.31 to
1.06) and quartile 4 was 1.38 (n = 75, 1.08 to 2.15). There was
a significant difference in OS between quartiles (X2 143.14,
df 3, p < 0.001) (Fig. 2). Median OS of quartiles 1 to 4 was
36.0 months (95% CI 31.1-40.9), 21.0 months (16.1-25.9),
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14.0 months (11.7-16.3) and 8.0 months (5.9-10.1), respec-
tively. The interaction test revealed no statistical difference in
performance of the prognostic score between curative and
palliative treatments (X2 1.344, df 1, p = 0.246).

Comparison of estimated model performance

The AIC of the traditional model including the radiological
stage group, treatment and age was 2247.693. The AIC of the

Table 1 Baseline characteristics
of patients in development and
validation cohorts

Frequency (%) Development cohort (n = 302) Validation cohort (n = 101) p-value*

Median age 67.0 years (range 39–83) 69.0 years (range 39–84) 0.179

Gender (M:F) 227 (75.2): 75 (24.8) 78 (77.2): 23 (22.8) 0.676

Histology 0.956

Adenocarcinoma 237 (78.5) 79 (78.2)

Squamous cell Carcinoma 65 (21.5) 22 (21.8)

Tumour location 0.003

Oesophagus 192 (63.6) 47 (46.5)

Upper third 6 (3.1) 3 (6.4)

Middle third 53 (27.6) 10 (21.3)

Lower third 133 (69.3) 34 (72.3)

Junction 110 (36.4) 54 (53.5)

Siewert I 41 (37.3) 24 (44.5)

Siewert II 30 (27.3) 18 (33.3)

Siewert III 39 (35.4) 12 (22.2)

Stage groups 0.238

Stage 1 17 (5.6) 2 (2.0)

Stage 2 56 (18.5) 24 (23.8)

Stage 3 160 (53.1) 57 (56.4)

Stage 4 69 (22.8) 18 (17.8)

Treatment 0.624

Curative 158 (52.3) 50 (49.5)

SA 24 (15.2) 4 (8.0)

NACT 67 (42.4) 23 (46.0)

NACRT 13 (8.2) 7 (14.0)

dCRT 54 (34.2) 16 (32.0)

Palliative 144 (47.7) 51 (50.5)

Overall survival <0.001

Alive 70 (23.2) 43 (42.6)

Dead 232 (76.8) 58 (57.4)

SA surgery alone; NACT neo-adjuvant chemotherapy; NACRT neo-adjuvant chemoradiotherapy; dCRT definitive
chemo-radiotherapy; *chi-square or Mann–Whitney U test

Table 2 Results of the Cox
regression model Prognostic variable p-value Parameter estimate Hazard ratio 95% Confidence limits

Lower Upper

TNM stage <0.001 0.397 1.49 1.20 1.84

Treatment <0.001 −1.094 0.34 0.24 0.47

Age 0.001 0.024 1.02 1.01 1.04

log(Histogram Energy) 0.011 −1.320 0.27 0.10 0.74

log(TLG) 0.013 1.748 5.74 1.44 22.83

Histogram Kurtosis 0.017 0.198 1.22 1.04 1.44
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model that also included SUVmax, SUVmean and MTV was
also 2247.693. The AIC of the development prognostic model
including additional texture metrics was 2238.007, which was
the lowest value. This suggests that incorporation of PET var-
iables and texture metrics improves current prognostic models
in OC.

Internal validation of prognostic model

The prognostic model was applied to the validation cohort.
Again, there was a significant difference in OS between pa-
tient quartiles (X2 20.621, df 3, p < 0.001) (Fig. 3). Results of
PET metrics obtained from the validation cohort are detailed
in electronic supplementary material, S3. Mean OS of patients
in quartiles 1 and 2 was 16.6 months (95% CI 13.9-19.3) and
17.4 months (15.4-19.4), respectively. Patients in quartile 1
had lower mean OS than those in quartile 2, but the difference
between quartiles was not significant (X2 = 0.219, df =1, p =
0.640). The median OS for quartiles 3 and 4 was 11.0 months
(6.1-15.9) and 9.0 months (4.1-13.9). Three of 26 (11.5%)
patients were treated with palliative intent in quartile 2, and
2 of 25 (8.0%) patients were treated with curative intent in
quartile 3. The AIC of the validation model including PET

variables and texture metrics was lower (464.671) than in
models including the radiological stage group, treatment and
age (470.420), and SUVmax, SUVmean and MTV (470.420),
respectively.

Discussion

This study has developed a prognostic model that provides
new and important results for OC staging. Internal validation
of the model demonstrated a continued difference in OS
(p < 0.001) between quartiles in an independent cohort of pa-
tients. The results of this study show that PET texture analysis
may enhance the prognostic TNM staging model in OC.

The prognostic model has identified three PET metrics:
log(TLG), log(Histogram Energy) and Histogram Kurtosis,
which are significantly and independently associated with
OS. These metrics have added value over and above currently
known prognostic factors: age, radiological stage and treat-
ment. These findings indicate the additional value of novel
texture analysis methods in modern staging pathways, which
was confirmed with the AIC statistic. Improved risk-
stratification could identify sub-groups of patients in which a

Fig. 2 Kaplan-Meier plot
demonstrating overall survival
curves of prognostic score
quartiles in the development
group (X2 143.14, df 3,
p < 0.001). Q1 quartile; Q2
quartile 2; Q3 quartile 3; Q4
quartile 4. Median OS of Q1 to
Q4 was 36.0 months (95% CI
31.1-40.9), 21.0 months (16.1-
25.9), 14.0 months (11.7-16.3)
and 8.0 months (5.9-10.1),
respectively
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certain treatment may improve OS [23] or where a therapeutic
intervention may be ineffective or harmful [24].

According to the model, patients with increased log(TLG)
and Histogram Kurtosis, and reduced log(Histogram Energy),
have an increased likelihood of mortality. Raised TLG repre-
sents larger, more FDG-avid tumours. The correlation of
Histogram Kurtosis and log(Histogram Energy) suggests that
tumours with less intensity variation have a worse prognosis.
This is an unexpected finding, since it is thought that tumours
withmore intensity variation result in poorer outcome. Further
studies correlating texture features with underlying tumour
biology are required to fully understand the interpretation of
these metrics [25].

The AIC was identical for traditional TNM and models
including SUVand MTV in both the development and valida-
tion cohorts. This suggests that SUVand MTV have no addi-
tional prognostic value over current staging methods.
However, this study has not been designed to test this hypoth-
esis and cannot draw this conclusion.

Our findings concur with other studies in which texture
metrics derived from histograms demonstrated significant as-
sociations with OS, stage of disease and likelihood of treat-
ment response in OC [16, 26, 27]. However, such studies

included fewer patients and used different texture analysis
software packages.

Texture metrics are dependent on several parameters [28].
The technical implementation of each metric, the segmenta-
tion method used, scan acquisition, image smoothing, influ-
ence of quantisation and reconstruction parameters all influ-
ence the texture analysis results [3, 11, 29]. There are also
limitations specific to PET images, given the relatively large
voxel volume and presence of noise artefact [30].
Standardisation of texture analysis techniques are essential
for multi-centre comparison studies and development of ex-
ternally validated prognostic models [11, 31].

In this study, the texture metrics were derived using the
ATLAAS algorithm and a standardised workflow was imple-
mented to ensure reproducible and consistent methods. The
benefit of ATLAAS is that the best fitting PET automatic
segmentation (PET-AS) method is selected in each individual
case from a range of segmentation methods that are built into
the ATLAAS algorithm. Commonly used PET-AS methods
built into the ATLAAS algorithm include adaptive
thresholding, Fuzzy C-means (FCM) and region-growing
(RG) methods [9]. ATLAAS was originally designed and test-
ed on patients with FDG-avid head and neck tumours.

Fig. 3 Kaplan-Meier plot
demonstrating overall survival
curves of prognostic score
quartiles in the validation group
(X2 20.621, df 3, p < 0.001). Q1
quartile; Q2 quartile 2; Q3
quartile 3; Q4 quartile 4. Mean
OS of patients in Q1 and Q2 was
16.6 months (95% CI 13.9-19.3)
and 17.4 months (15.4-19.4),
respectively. Median OS for Q3
and Q4 was 11.0 months (6.1-
15.9) and 9.0 months (4.1-13.9),
respectively
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However, it is also applicable to other FDG-avid tumour sites
and validation studies are on-going at our institution.
Although a new version of ATLAAS had not specifically been
designed for this prognostic OC model, visual inspection of
the segmented tumour was performed in each case to ensure
an appropriate contour had been produced. A benefit of
ATLAAS is that tumour segmentation occurs within seconds
once the bounding box has been created.

Strengths of study

This study provides development and internal validation
of a prognostic model incorporating PET texture metrics
in 403 patients with OC. ATLAAS is a novel machine-
learning method that provides robust segmentation re-
sults and removes variability by standardising image
segmentation. Appropriate statistical methods have been
used in this study [23]. The regional upper GI cancer
MDT covers a large population of approximately 1.4
million and benefits from the input of highly experi-
enced radiologists, oncologists and surgeons [32].

Limitations of study

As this study is retrospective, treatment was included in the
model and simplified into two groups, curative and palliative.
However, the test for interaction showed that the prognostic
score could be used in both curative and palliative cohorts
with no significant difference in performance. This prognostic
model excludes patients with an MTV of less than 5 ml be-
cause the quality of the additional data obtained from these
models in uncertain [19]. This criterion excludes 11.6% of
potential patients from this study. Another prognostic model
including small tumour volumes should be developed for
these patients but this model is applicable to many patients
with FDG-avid oesophageal tumours.

In conclusion, this large study has developed and
validated a prognostic model that demonstrates the ad-
ditional value of PET texture analysis in OC staging.
Three PET metrics, log(TLG), log(Histogram Energy)
and Histogram Kurtosis, were identified as potentially
important variables. These metrics were derived using
ATLAAS, a novel machine-learning method designed
to optimise and standardise image segmentation. This
prognostic model requires further internal and external
validation but may be used as a ‘benchmark’ for further
studies investigating the value of PET texture analysis
in OC. This study highlights the additional benefit of
quantitative imaging techniques in cancer staging, which
have the potential to improve patient risk stratification.
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