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Abstract
Objectives To investigate whether interim changes in
hetereogeneity (measured using entropy features) on MRI
were associated with pathological residual cancer burden
(RCB) at final surgery in patients receiving neoadjuvant che-
motherapy (NAC) for primary breast cancer.
Methods This was a retrospective study of 88 consenting
women (age: 30–79 years). Scanning was performed on a
3.0 T MRI scanner prior to NAC (baseline) and after 2–3
cycles of treatment (interim). Entropy was derived from the
grey-level co-occurrence matrix, on slice-matched baseline/
interim T2-weighted images. Response, assessed using RCB
score on surgically resected specimens, was compared statis-
tically with entropy/heterogeneity changes and ROC analysis
performed. Association of pCR within each tumour
immunophenotype was evaluated.

Results Mean entropy percent differences between examina-
tions, by response category, were: pCR: 32.8%, RCB-I: 10.5%,
RCB-II: 9.7% and RCB-III: 3.0%. Association of ultimate pCR
with coarse entropy changes between baseline/interim MRI
across all lesions yielded 85.2% accuracy (area under ROC
curve: 0.845). Excellent sensitivity/specificity was obtained for
pCR prediction within each immunophenotype: ER+: 100%/
100%; HER2+: 83.3%/95.7%, TNBC: 87.5%/80.0%.
Conclusions Lesion T2 heterogeneity changes are associated
with response to NAC using RCB scores, particularly for
pCR, and can be useful across all immunophenotypes with
good diagnostic accuracy.
Key Points
• Texture analysis provides a means of measuring lesion het-
erogeneity on MRI images.

•Heterogeneity changes between baseline/interimMRI can be
linked with ultimate pathological response.

• Heterogeneity changes give good diagnostic accuracy of
pCR response across all immunophenotypes.

• Percentage reduction in heterogeneity is associated with
pCR with good accuracy and NPV.
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Introduction

Neoadjuvant chemotherapy (NAC) for primary breast cancer
is clinically useful to downstage locally advanced breast can-
cer and/or reduce the extent of surgery from mastectomy to
breast conservation. Response to NAC varies by subtype of
breast cancer and chemotherapy regimen [1, 2] but prediction
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of response remains clinically challenging [3, 4]. A patholog-
ical complete response (pCR) to NAC is intrinsically linked
with survival outcomes, particularly in triple negative and
hormone receptor positive disease [5–7] and, in the future,
where confidence is high that a pCR has been achieved,
post-treatment surgery might not be required [8, 9].
Therefore, early identification of such patients becomes cru-
cial for improving and personalising patient management.
Conversely, identification of patients unlikely to respond well
early in treatment may allow modification to the cytotoxic
regimen or dose, although the benefits of such a strategy
would need to be proven in prospective trials [10].

Breast magnetic resonance imaging (MRI) is increasingly
used tomonitor patients duringNAC therapy, allowing repeat-
ed examinations, with dynamic contrast-enhanced imaging
(DCE) providing a measure of tumour vascularity. However,
breast MRI can under- or overestimate the amount of residual
tumour in around 30% of women [11], and the accuracy of
response prediction is dependent on immunohistochemical
tumour subtype [12].

Quantitative imaging biomarkers play an important role in
repeat imaging studies [13], particularly when comparative
changes in response to a therapy require quantification. To this
end, a number of MRI metrics have been explored, including
MRI DCE parameters [14], volume changes [3, 15] and dif-
fusion changes [16].

The application of textural analysis (TA) to medical imag-
ing studies shows promise. TA statistically models spatial dis-
tributions of pixel grey-levels in order to classify or segment
the data [17] and has been used successfully in neuroimaging
for tissue differentiation and classification [18, 19]. For breast
MRI, TA has been used to differentiate between malignant
and benign lesions [20, 21] and in discrimination between
breast cancer subtypes [22–24].

Recently, heterogeneity, as assessed using TA, has found a
role in the diagnosis, characterization [25] and treatment re-
sponse assessment of various cancer types [26, 27], with ini-
tial reports suggesting an association with patient survival
[28]. Preliminary work utilising TA [29] indicates that hetero-
geneity changes in response to NAC may be seen using T2-
weighted imaging, as well as on DCE-MRI. T2-weighted im-
aging has the advantage that signal intensity is directly related
to underlying morphology (via intracellular and extracellular/
extravascular space) and can provide useful information in
cases where contrast material cannot be administered. T2-
weighted images are also less susceptible to degradation
(e.g. movement) and are likely to be easier to standardise
across multiple sites. As previous studies using TA have been
relatively small, we explored application of these principles in
a larger patient cohort, correlating with a recognised, validated
measure of pathological response to NAC for breast cancer-
the residual cancer burden score (RCB) [30]. Patients with a
pathologic complete response (pCR) have favourable survival

rates compared with those having minimal, moderate or ex-
tensive residual disease (RCB-I/RCB-II/RCB-III) [30].

This study sought to determine if changes in lesion hetero-
geneity could be linked with response to NAC, as measured
using ultimate pathological outcome and assess whether the
response assoc ia t ion was dependen t on cancer
immunophenotype. Measurement repeatability was also con-
sidered, as is essential when evaluating a potential quantitative
tool.

Methods

Subjects

This study comprised women with biopsy-proven primary
breast cancer, scheduled for NAC prescribed either to facilitate
breast conservation or render a locally advanced breast cancer
operable, according to national guidelines [31]. All women
gave written consent for use of their images for research pur-
poses. Informed consent and ethical approval was waived for
this retrospective analysis of anonymised data collected in the
course of routine clinical care. From 117 consecutive women
scanned over a 19-month period, 28 patients were excluded
from the study due toMRI timing, incomplete data, poor image
quality or non-standard management (Fig. 1). The remaining
88 patients (age range: 30–79, mean age 50.7 years) comprised
the study cohort, who underwent three routine MRI examina-
tions: after diagnosis but prior to NAC, mid treatment and
following completion of NAC, prior to surgery.

Patient and tumour characteristics are summarised in
Table 1.

In 88 patients, 26 cancers were oestrogen receptor (ER)
positive (Allred score >3), HER2 negative; 29 HER2 positive
(immunohistochemistry 3+ or immunohistochemistry 2+ and
fluorescence in situ hybridisation (FISH) amplified); 33 triple
negative breast cancer (TNBC) (Allred score <3 and HER2 0,
1+ or 2+with FISH non-amplified). The HER2 positive group
included women who were hormone-receptor positive (n =
22) and negative (n = 7). Eighteen patients received six cycles
of FEC (fluorouracil, epirubicin and cyclophosphamide); 41
women received three cycles of FEC followed by three cycles
of docetaxel. All 29 patients with HER2 positive disease had
three cycles of FEC followed by three cycles of docetaxel and
trastuzumab (n = 26) or docetaxel with trastuzumab-
emtansine (TDM1) (n = 3).

MR imaging

Patients were scanned prior to NAC, after NAC cycle 2 (n =
16) or 3 (n = 72) and prior to surgery to assess final imaging
response. At interim MRI examination, all patients had re-
ceived only FEC treatment. The median time between final

Eur Radiol (2017) 27:4602–4611 4603



MRI examination and surgical resection was 28 days (range:
6–57 days).

All MR examinations were carried out using a 32-
channel 3.0 Tesla (T) Siemens Magnetom Trio scanner
(Erlangen, Germany) and a 7-channel breast coil. A T2-

weighted sequence was acquired using a turbo-spin echo
sequence (TR/TE/α = 8,000 ms/86 ms/150°, field of
view = 340 × 340 mm, matrix = 320 × 320, voxel size
1.1 mm3), with parallel imaging factor × 2 and turbo fac-
tor × 21. The rest of the examination consisted of a T1
non-fat-saturated acquisition followed by the DCE
acquisition.

DICOM images were anonymised and exported off-line to
perform TA.

Texture analysis

Texture analysis was performed using MaZda version 4.7
[32] on baseline and interim T2-weighted images. Post-
contrast subtracted images from both examinations of
each patient were considered side-by-side to identify
maximum lesion diameter on each; subsequently these
slices were matched to the appropriate slice on the T2
acquisition for region of interest (ROI) positioning on
comparable slices (see Fig. 2). All image analysis was
performed blinded to patient outcome, clinical and pa-
thology information.

T2-weighted images were magnified to visualise the
tumour border and an ROI drawn around the entire tu-
mour on the imaging slice demonstrating maximum lesion
diameter, with no marker clip present. Histograms were
visualised to ensure no fat was erroneously present within

Assessed for eligibility

(n =117 patients)

Excluded (n = 29 patients) 

Received first cycle of NAC prior to 

MRI examination (n = 14)

Interim MRI examination performed 

after 4 cycles of NAC (n = 6) 

Excessive movement during MRI 

examination (n=4)

Proceeded to surgery after interim 

MRI examination (n=2)

No final pathologic information 

available (n=2)

Non-standard treatment (n=1)

6xDOC+TRA+TDM-1 (n=3)

RCB Score:

1 pCR; 2 RCB-II

6xFEC (n=18) 

RCB Score:

2 pCR; 1 RCB-I; 

14 RCB-II; 1 RCB-III

3xFEC; 3 DOC (n=41)

RCB Score:

10 pCR; 4 RCB-I; 

18 RCB-II; 9 RCB-III

3xFEC; 3xDOC+TRA (n=26) 

RCB Score:

6 pCR; 5 RCB-I; 

13 RCB-II; 2 RCB-III

NAC Study Cohort (n = 88 patients)

Fig. 1 Diagram of recruitment and study population including neoadjuvant chemotherapy (NAC) regime and response as measured using residual
cancer burden (RCB) score.FEC fluorouracil, epirubicin (75) and cyclophosphamide,DOC docetaxel, TRA trastuzumab, TDM-1 trastuzumab emtansine

Table 1 Patient and tumour characteristics

Patients (total n = 88)

Inclusion period November 2012–April 2016
Mean age in years (range) 51 (30–79)
Histological type
Invasive ductal 84
Invasive lobular 2
Other 2

Grade
Grade 2 19
Grade 3 69

Pre-treatment MRI size
< 20 mm 4
20–40 mm 54
> 40 mm 30

Immunohistochemistry
ER+ 26
HER2+ 29
TN 33

Neoadjuvant chemotherapy
6 × FEC 18
3 × FEC; 3 × DOC 41
3 × FEC; 3 × DOC + taxane 29
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the ROI (see Fig. 2). A 10 × 10 pixel ROI was placed in
healthy, normal contralateral breast parenchyma to ex-
clude systematic inter-scan differences (as shown in
Fig. 2(c,d)). These were placed in comparable regions of
breast parenchyma at baseline and interim to ensure con-
sistency and care was taken to exclude presence of vessels
within the ROI. Data was rescaled to 6 bits/pixel and the
image histogram normalized to within 3 standard devia-
tions of the mean to minimise brightness and contrast
variations. Entropy features, representing heterogeneity,
were derived from the grey-level co-occurrence matrix
[33], as these are reported in the literature as most appro-
priate for cancer imaging [29]. Inter-pixel distances of n =

2 and n = 5 were calculated to depict fine and coarse tex-
ture. Raw feature values were exported for statistical
analysis.

Intra- and interobserver error was calculated based on a
subset of 20 baseline images that were analysed twice by
SAH (8 years TA experience), with a 1-month interval, and
once by RAL (30+ years TA experience).

Assessment of response

RCB score [30], was calculated by a specialist breast pathol-
ogist (CP) using final pathology of resected specimen, based
on tumour bed dimensions, cellularity and axillary node

LesionLesion

a b

c d

e f

Fig. 2 Region of interest (ROIs)
(red) drawn for texture analysis
on two patients, with slices
matched between baseline (left
column) and interim (right
column) examinations. Insert
images highlight lesion locations
without ROI overlay. Image (a)
and (b) are from slice-matched
T2-weighted images from a
woman who had a RCB-III at
final pathology, while (c) and (d)
are from slice-matched images in
a patient that ultimately achieved
a pCR at end of treatment. Images
(e) and (f) highlight the
importance of correlation with the
subtracted dynamic contrast-
enhanced imaging (DCE) images,
particularly in the case of
non-mass enhancement, as shown
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burden and reported in terms of the RCB index [30]. Patients
were categorised in terms of whether they achieved a pCR
post treatment, or had residual disease (RCB-I, RCB-II,
RCB-III).

Statistics

All statistics were calculated using SPSS (v21; IBM
Corporation, New York, NY, USA) with p < 0.05 considered
significant, and p < 0.001 highly significant.

Intra- and interobserver measurement error of entropy fea-
tures were calculated using coefficients of variation (CoVs)
and Pearson’s intraclass correclation coefficient (ICC).

Data was not normally distributed therefore non-parametric
tests were used throughout. Absolute baseline and interim
entropy values were compared using Wilcoxon tests in both
normal and lesion tissue, and percentage changes between
examinations assessed using Kruskal-Wallis tests (across all
response categories) and Mann-Whitney U-tests (between re-
sponse categories).

Receiver operating characteristic (ROC) curves were
generated and areas under the curve (AUCs) calculated.
Optimal thresholds were derived using Youden’s index,
and resultant sensitivity, specificity, accuracy, and posi-
tive and negative predictive values (PPVs and NPVs)
calculated.

Results

Patient cohort

Of 88 patients analysed, 107 lesions were identified; however,
TAwas restricted to the largest, index lesion in each case. At
final pathological examination, 16 patients were categorized
as pCR, 12 as RCB-I, 43 as RCB-II and 17 as RCB-III
(Fig. 1).

Reproducibility

Intra-observer ICC values demonstrated a high correlation for
entropy features (ICC = 0.813, p < 0.001) with corresponding
CoV value of 5.4%. Inter-observer ICC values demonstrated
similar correlations, with entropy ICC = 0.790 (p < 0.001) and
a slightly poorer CoV value of 8.0%.

RCB response

Mean baseline ROI size was 795 pixels (range: 202–1,995),
corresponding to a physical size of 962 mm2 (244–
2,414 mm2); interim ROI size was 454 pixels (77–1,561) with
physical size 549 mm2 (93–1,889 mm2). There were no

significant differences in baseline TA features between re-
sponse categories (p > 0.866; Kruskal-Wallis).

No significant differences were found within normal paren-
chyma between baseline and interim examinations (p > 0.419;
Wilcoxon test) or in pair-wise comparisons of difference in
entropy features between response groups (p > 0.166; Mann-
Whitney U-test) (Fig. 3), suggesting no random or systematic
inter-scan temporal differences.

Patients with pCR, RCB-I or RCB-II scores had decreases
in fine and coarse entropy features between baseline and in-
terim examinations (p < 0.006; Wilcoxon test), indicating le-
sion image heterogeneity reduction. No significant differences
were found for RCB-III patients (p > 0.397; Wilcoxon test)
(Table 2, Fig. 3). Median decreases in coarse entropy between
baseline and interim MRI were pCR: 32.8%, RCB-I: 10.5%,
RCB-II 9.7% and RCB-III: 3.0% (Fig. 4). For both entropy
features, patients with pCR had a significantly greater reduc-
tion than those patients with residual disease (p < 0.014;
Mann-Whitney U-test).

The ROC curve for fine and coarse entropy is shown in
Fig. 5, with calculated AUC for pCR classification of 0.834
using fine features and 0.845 using coarse features. Optimal
thresholds for pCR identification were derived as 11% (fine
entropy) and 20% (coarse entropy) using Youden’s index.
Resulting sensitivities, specificities, accuracies, NPVs and
PPVs are shown in Table 3.

Tumou r s we r e t h en con s i d e r e d i n t e rms o f
immunophenotype. There were significant differences be-
tween pCR and residual disease groups when considered
across all immunophenotypes (ER+: p < 0.001; HER2+: p <
0.007; TNBC: p < 0.001; Mann-Whitney U-test). Median per-
centage changes in coarse entropy categories for ER+, HER2+
and TNBC (Table 4) confirmed reduction in lesion image
heterogeneity was associated with pathological response as
assessed by RCBwith changes in heterogeneity being greatest
in the pCR group with ER+ tumours. Patients with TNBC
who ultimately achieved a pCR had a lower reduction in het-
erogeneity with a median 23% reduction indicating a likely
pCR post-NAC. Optimal thresholds were derived using
Youden’s index as ER: 28%, HER2+: 30% and TNBC:
18%. These resulted in good diagnostic characteristics, as pre-
sented in Table 5.

Discussion

Neoadjuvant chemotherapy is increasingly used in breast can-
cer management, particularly for TNBC and HER2+ disease,
and a pCR is directly related to overall survival [5–7, 34].
Image analysis carries potential to assess response during ther-
apy, prior to surgical resection, but most studies using breast
MRI have focused on changes in DCE or apparent diffusion
coefficient [16, 35]. This study considered changes in T2-
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weighted MRI entropy features (representing heterogeneity)
during NAC and correlated with pathological RCB score post-
treatment. We demonstrate a significant association between

heterogeneity changes and RCB, and thus, indirectly, with
clinical outcome [30, 34]. Importantly, the technique has per-
formed well for each immunophenotype and thus further in-
vestigation is of real clinical importance.

Absolute differences in fine entropy features between
baseline and interim examinations dichotomised data into
two statistically distinct and clinically important groups;
pCR and RCB-I, II and III (residual disease). ROC anal-
ysis demonstrates that a threshold reduction of 20% in
coarse entropy resulted in an association of patients who
would ultimately have a pCR, with an accuracy of 85.2%
(AUC 0.845). Importantly, these thresholds result in a
very good NPV for pCR (Tables 3 and 5), therefore cli-
nicians could potentially identify at interim MRI patients
unlikely to achieve a pCR on therapy completion, with
over 95% accuracy.

Based on our results, coarse entropy features perform better
than fine features, with greater differences between baseline
and interimMRI. This larger threshold in heterogeneity reduc-
tion for pCR leads to improved diagnostic accuracy (Table 3,
Fig. 5). Fine and coarse entropy use has been reported else-
where [29] and relates to the scale at which structural features
are enhanced within textural findings. Previous hypotheses

Table 2 Median differences between baseline and interim
examinations for coarse and fine entropy in each residual cancer burden
(RCB) response category, and Wilcoxon statistical tests (*indicates
significance at p < 0.05 level)

Entropy

fine coarse

pCR Median (range) 0.485
(-0.064–1.477)

0.862
(-0.447–2.360)

p = 0.002* p < 0.001*
RCB-I Median (range) 0.200

(-0.236–0.584)
0.206
(-0.225–0.780)

p = 0.060 p = 0.061
RCB-II Median (range) 0.143

(-0.279–1.058)
0.218
(-0.231–1.819)

p = 0.006* p < 0.001*
RCB-III Median (range) 0.118

(-0.569–0.414)
0.164
(-0.536–0.510)

p = 0.557 p = 0.397

pCR pathological complete response

3.0

2.5

1.5

2.0

0.5

1.0

0.0

pCR RCB-I RCB-II RCB-III
Response

Baseline Interim

Normal
Lesion

Fig. 3 Coarse entropy features at
baseline and interim examinations
in both normal tissue and lesion in
each response category. Within
normal tissue there were no
significant differences between
visits for any of the residual
cancer burden (RCB) response
categories (p > 0.419; Wilcoxon
test), while within the lesion
entropy features demonstrate a
reduction in lesion heterogeneity
at the interim examination
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suggest fine features relate to parenchyma while coarser fea-
tures represent underlying vasculature; however these are
based on CT images and have not been validated in MR
imaging.

No significant differences were found in heterogeneity of
the contralateral breast, lending weight to findings being at-
tributable to therapeutic effects. While chemotherapy-induced

changes have been reported within normal breast tissue [36],
most likely relating to vascular damage [37], these are less
likely to affect T2-weighted images.

There is scant literature concerning repeatability of TA in
clinical cohorts; however, our intra-observer measurement er-
ror of CoV = 5.4% is in line with Carballido-Gamio et al. who
report 2.8–6.6% intra-observer repeatability in entropy

Fig. 5 Receiver operating
characteristic (ROC) curve for
fine and coarse entropy features in
the classification of pathological
complete response (pCR). Areas
under the curve are 0.834 and
0.845, respectively

Fig. 4 Percentage reduction in
coarse entropy features between
baseline and interim examinations
for each response category as
measured using the residual
cancer burden (RCB) score.
Statistical comparisons are
indicated (#p < 0.05, ##p < 0.001;
Mann-Whitney U-test)
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measures of knee cartilage [38] and Mathias et al. who quote
1.1% within the spinal cord [39]. We can find no studies that
consider inter-observer repeatability measures, however, esti-
mate our CoV at 8%. With estimated error below 10%, this
could potentially mean the technique could be comparable
across multicentre studies.

The reduction in entropy has previously been reported [29];
however, we have extended this work to consider the associ-
ation of pCR versus residual disease at the end of treatment.
While this was a pilot study, our patient numbers were larger
than comparable studies [29, 40, 41], an accepted measure-
ment of pathological response was used [30] and the impor-
tant consideration of immunophenotype was included.

Although baseline prediction of ultimate response to NAC
would have real clinical importance, we found no link in our
cohort of patients. Reports in the literature on baseline hetero-
geneity response prediction are contradictory; with Ahmed
et al. reporting increased pre-treatment entropy in association
with poor NAC response [42], whereas studies by Teruel [40]
and Michoux [41] suggest the opposite. It should be noted,
howeve r , t h a t none o f t h e s e s t ud i e s con s i d e r
immunophenotype, which is particularly relevant in the
NAC response setting.

Prediction of pCR at interim MRI has been widely inves-
tigated, and two recent papers have considered various metrics
for this purpose. O’Flynn et al. evaluated a range of

parameters including volumes, pharmacokinetics and en-
hancement ratios. They found the best pCR predictor was
volumetric changes, which resulted in an area under the
ROC curve of 0.773 and sensitivity/specificity of 71.4%/
76.9% [43]. Li et al. focused on optimising enhancement
thresholds for calculating tumour volumes and obtained a val-
ue of AUC = 0.73 [44]. This group also considered
immunophenotype with a good AUC of 0.77 (ER+/HER2-),
0.75 (HER2+) and 0.85 (TNBC). Our study has shown higher
diagnostic accuracies, and it would therefore be of great inter-
est to evaluate the two combined techniques in future studies.

Given the association with RCB score, TA has the potential
to support trial development where, after an imaging assess-
ment of complete response to NAC, no resection would be
performed, only percutaneous sampling of the tumour bed and
radiotherapy treatment to the breast. Such a concept, while not
new [9, 45], may have a resurgence of interest given the in-
creasing efficacy of NAC, if a sufficiently accurate non-
invasive modality for monitoring, such as MRI TA, were
available.

Texture analysis has wide application in cancer imaging for
differentiation, classification and treatment monitoring
[22–29, 40, 42]. Spatial resolution is key in generalisability
across scanners [46], and while the technique is computation-
ally demanding, both in analysis and interpretation, incorpora-
tion into commercial, validated post-processing software
should be possible. Presently, different software applications
result in entropy values with different orders of magnitude and
therefore utility of absolute entropy features in diagnosis is
unlikely to come to fruition until standardisation occurs.
However, the most useful, and perhaps clinically relevant,
utility is in comparative studies – be that comparison of tissue
types or in follow-up studies, such as treatment monitoring.
Currently, the precise correlate of TAwith underlying anatom-
ical or pathological structures is unknown and other groups
are working on linking imaging heterogeneity with underlying
histopathological and genetic heterogeneity [24].

While most TA of breast images have been performed on
post-contrast images, these are subject to movement, and reg-
istration algorithms can introduce artificial texture into the

Table 3 Test performance results in the identification of pathological
complete responders (pCRs) when using reduction in entropy features –
both coarse and fine

Entropy coarse Entropy fine
(20% reduction) (11% reduction)

AUROC 0.845 0.834

Sensitivity 87.5% 87.5%

Specificity 84.7% 81.9%

Accuracy 85.2% 83.0%

PPV 56.0% 51.8%

NPV 96.8% 96.7%

AUROC area under the receiver operating characteristic curve, PPV pos-
itive-predictive value, NPV negative-predictive value

Table 5 Test performance results in the identification of pathological
complete responders (pCRs) when using reduction in coarse entropy
features for ER+, HER2+ and triple negative breast cancers (TNBCs)

ER+ (n = 26) HER2+ (n = 29) TNBC (n = 33)

pCR 42.9% (2) 35.3% (6) 22.8% (8)

RCB-I 8.4% (3) 8.4% (5) 14.6% (4)

RCB-II 8.1% (10) 4.2% (16) 11.1% (14)

RCB-III 6.8% (11) 9.5% (2) 4.5% (7)

a threshold derived using Youdens index

PPV positive predictive value, NPV negative predictive value

Table 4 Median percentage changes in lesion image heterogeneity as
assessed using coarse entropy features for ER+, HER2+ and TNBC in
each response category (n = number of cancers per group)

ER+ (n = 26) HER2+ (n = 29) TNBC (n = 33)

pCR 42.9% (2) 35.3% (6) 22.8% (8)

RCB-I 8.4% (3) 8.4% (5) 14.6% (4)

RCB-II 8.1% (10) 4.2% (16) 11.1% (14)

RCB-III 6.8% (11) 9.5% (2) 4.5% (7)

TNBC triple negative breast cancer, ER oestrogen receptor, RCB residual
cancer burden
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images. In a recent comparative study, TA of T2 images was
found to be more discriminatory between clinical response
groups in patients undergoing NAC than DCE-MRI [29].
The underlying mechanism for signal intensity distributions
in DCE-MRI and T2-weighted imaging is entirely different.
Signal intensity in DCE-MRI is derived from contrast agent
distribution and vascular leakage, while T2-weighted imaging
is predominantly influenced by intracellular and extracellular/
extravascular space and is therefore more likely to directly
reflect tumour morphology.

The heterogeneous nature of cancer subtypes included in
this study led to the use different chemotherapy regimes,
which reflects clinical reality. However, interim analysis was
performed on patients who had only undergone FEC treat-
ment. Another potential weakness of the study is that interim
scans were performed after two or three cycles of NAC, yet
despite this variability we were still able to show statistically
significant differences between response categories. Finally,
there is a potential for a slight mismatch in analysed imaging
slice between baseline and interim MRI examination. This
mismatch is likely to be small, especially in relation to tumour
size changes, imaging slice thickness and the use of anatom-
ical landmarks and marker clips for localisation of ROI
positioning.

In conclusion, lesion heterogeneity changes are associated
with response to NAC using RCB scores, and could be useful
in identification of patients likely to achieve a pCR, across all
immunophenotypes. These data suggest changes in MRI en-
tropy features may provide a clinically useful early indication
of response to NAC and warrants further investigation and
consideration in multivariate analyses for prediction of patho-
logical results.
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