
MUSCULOSKELETAL

Differences in tibial subchondral bone structure evaluated
using plain radiographs between knees with and without cartilage
damage or bone marrow lesions - the Oulu Knee Osteoarthritis
study

Jukka Hirvasniemi1,2 & Jérôme Thevenot1,3 & Ali Guermazi4 & Jana Podlipská1,3 &

Frank W. Roemer4,5 & Miika T. Nieminen1,2,3,6
& Simo Saarakkala1,2,3,6

Received: 3 October 2016 /Revised: 13 March 2017 /Accepted: 20 March 2017 /Published online: 24 April 2017
# The Author(s) 2017. This article is an open access publication

Abstract
Objectives To investigate whether subchondral bone structure
from plain radiographs is different between subjects with and
without articular cartilage damage or bone marrow lesions
(BMLs).
Methods Radiography-based bone structure was assessed
from 80 subjects with different stages of knee osteoarthritis
using entropy of Laplacian-based image (ELap) and local bi-
nary patterns (ELBP), homogeneity index of local angles
(HIAngles,mean), and horizontal (FDHor) and vertical fractal di-
mensions (FDVer). Medial tibial articular cartilage damage and
BMLs were scored using the magnetic resonance imaging
osteoarthritis knee score. Level of statistical significance was
set to p < 0.05.
Results Subjects with medial tibial cartilage damage had sig-
nificantly higher FDVer and ELBP as well as lower ELap and
HIAngles,mean in the medial tibial subchondral bone region than

subjects without damage. FDHor, FDVer, and ELBP were signif-
icantly higher, whereas ELap and HIAngles,mean were lower in
the medial trabecular bone region. Subjects with medial tibial
BMLs had significantly higher FDVer and ELBP as well as
lower ELap and HIAngles,mean in medial tibial subchondral
bone. FDHor, FDVer, and ELBP were higher, whereas ELap and
HIAngles,mean were lower in medial trabecular bone.
Conclusions Our results support the use of bone structural
analysis from radiographs when examining subjects with os-
teoarthritis or at risk of having it.
Key points
• Knee osteoarthritis causes changes in articular cartilage
and subchondral bone

• Magnetic resonance imaging is a comprehensive imaging
modality for knee osteoarthritis

• Radiography-based bone structure analysis can provide ad-
ditional information of osteoarthritic subjects
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Abbreviations
BML bone marrow lesion
ELap entropy of Laplacian-based image
ELBP entropy of grouped Local Binary Patterns
FDHor fractal dimension of horizontal structures
FDVer fractal dimension of vertical structures
FSA fractal signature analysis
HI homogeneity index
HIAngles HI for orientation of local patterns
HIAngles,Perp HI perpendicularly to the bone trabeculae
HIAngles,Paral HI along the trabeculae
KL Kellgren–Lawrence
LBP local binary patterns
MOAKS MRI OA knee score
MRI magnetic resonance imaging
OA osteoarthritis
PD proton density
TSE turbo spin-echo
ROI region of interest
2-D two-dimensional
3-D three-dimensional

Introduction

Bony changes, including osteophytes or subchondral cyst for-
mation, are clearly seen on plain radiographs and are provid-
ing useful morphologic information in diseases affecting bone
density and structure, such as osteoarthritis (OA) or osteopo-
rosis. Although, the plain two-dimensional (2-D) radiograph
is a projection (summation) through the actual three-
dimensional (3-D) structure, bone density and bone structure
as depicted by plain radiographs is significantly related with
the actual 3-D structure of bone [1–5].

Diagnosis of OA is based on a subject’s history and
symptoms, physical findings, and characteristic changes on
plain radiographs. Typically, the severity of OA is evaluated
from radiographs using the Kellgren–Lawrence (KL) grad-
ing scale, which is based on the visual evaluation of joint
space narrowing, subchondral bone sclerosis, presence of
osteophytes, and deformation of bone ends [6]. As ordinal
grading using the KL scale gives only a summary score of
overall disease severity with varying intra- and inter-rater
reliability [7–9], development of quantitative and user-
independent image analysis algorithms that exploit addition-
al radiographic information is important to potentially en-
hance the clinical value of plain radiographs in OA
diagnostics.

Joint space width is the most common parameter measured
quantitatively from plain knee radiographs [10, 11]. Other
parameters related to subchondral bone structure have also
potential to be used as an additional measure in OA diagnos-
tics and characterization with potential relevance for predic-
tion of disease progression. Fractal analysis is the most popu-
lar method to assess bone structure from radiographs in OA
research and a method called fractal signature analysis (FSA)
has been shown to predict disease progression [12, 13].
Furthermore, it has been reported that bone structure assessed
from plain radiographs using Laplacian-based method, local
binary pattern (LBP)-based methods, and FSA is significantly
related with the 3-D microstructure of bone [5]. Recently,
subchondral and trabecular bone structures evaluated using
LBP-based and Laplacian-based methods have shown to dif-
fer between subjects with different KL grades [14]. In that
study, the KL grading and structure analysis of bonewas made
for the same images making the measurements dependent on
each other to some extent, since features evaluated in the KL
grading, for instance, bone sclerosis, affect the structural pa-
rameters as well. In order to study further the potential rele-
vance of the radiography-based bone structural analysis
methods, these should be compared with independent refer-
ence methods.

Magnetic resonance imaging (MRI) is considered the most
comprehensive imaging modality for assessment of knee OA
in a research context [15]. Semi-quantitative scoring systems
that evaluate features related with or altered in the knee OA
process have been developed and used for the assessment of
structural deterioration of tissues within the knee joint [16].
Among many different features, MRI enables direct evalua-
tion of cartilage damage and subchondral bone marrow le-
sions (BMLs) that are known to be related with OA incidence
and progression [17–21]. However, the differences in
subchondral bone structure from radiographs among subjects
with and without morphological changes of articular cartilage
or BMLs has not been thoroughly clarified yet. Given the fact
that the local biomechanics are altered as a result of structural
damage, radiographic bone structural changes are expected
with prevalent cartilage damage and BMLs or both.
Therefore, the aim of our study was to investigate whether
subchondral bone structure from plain radiographs is different
between subjects with and without articular cartilage damage
and between subjects with and without BMLs focusing on the
medial tibia.

Methods

Study subjects

This cross-sectional (level 3) study is part of the Oulu Knee
OA (OKOA) study [22] and includes 80 subjects (49 women,
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31 men) with different stages of symptomatic knee OA (KL
grades from 0 to 4; Table 1). Written informed consent was
obtained from each participant. The study was carried out in
accordance with the Declaration of Helsinki and approved by
the Ethical Committee of Northern Ostrobothnia Hospital
District, Oulu University Hospital (number 108/2010).

Acquisition of radiographs

Weight-bearing posterior-anterior fixed-flexion radiographs
of both knees with the X-ray beam angle at 10 degrees were
obtained from all subjects. Since the original pixel size varied
between images (mean: 138 μm, standard deviation: 20 μm,
range: 100–168 μm), all images were resampled to the pixel
size of 143 × 143 μm2 using bicubic interpolation to ensure
comparability of the structural parameters, without producing
as much artifacts as bilinear or nearest neighbor interpolation
algorithms.

Selection of regions of interests

Two rectangle-shaped regions of interests (ROIs) were de-
fined (Fig. 1). The locations of the ROIs were based on pre-
vious literature [5, 14, 23, 24]. One ROI (size: 14mm× 6mm)
was placed into the subchondral trabecular bone in the middle
of the medial tibial plateau immediately below the cartilage-
bone interface. This ROI is referred to as the subchondral bone
ROI in this study, although different bone types are mixed in
the ROI [25, 26]. Furthermore, another ROI (14 mm ×
14 mm), referred to as trabecular bone ROI, was placed im-
mediately below the dense subchondral trabecular bone.
Trabecular bone ROIs were aligned horizontally with the
subchondral bone ROIs. Anatomical landmarks for the ROIs
were tibial spine, subchondral bone plate, and outer borders of
the proximal tibia. A custom-made MATLAB software (ver-
sion R2014b, The MathWorks, Inc., Natick, MA, USA) was

used for the manual placement (JH) of the ROIs.
Reproducibility of the texture parameters from the aforemen-
tioned locations has been shown to be high [14].

Structural analysis of bone

Prior to the bone structural analysis, radiographs weremedian-
filtered (3 × 3 pixels) to remove high-frequency noise and
grayscale values of the image were expanded to full dynamic
range. Bone structure was evaluated from the radiographs
using Laplacian-based methods [5, 14, 27], LBP-based
methods [5, 28] and FSA [5, 23, 29].

Laplacian-based analysis

The Laplacian-based method [5, 27] enhances the appearance
of bone trabeculae and quantifies the variation in the grayscale
values of the Laplacian-based image. Laplacians were calcu-
lated in the horizontal and vertical directions and summed into
the one matrix. Subsequently, the unprocessed ROI was mul-
tiplied by the square root of the Laplacian matrix to enhance
the bone, and grayscale values were expanded to the full dy-
namic range to obtain the final Laplacian-based image. To
measure the randomness of the grayscale values in the
Laplacian-based image, entropy of the image (ELap) was cal-
culated using the following equation:

E ¼ −
X

i

Pilog2Pi; ð1Þ

Table 1 Description of the subjects (n = 80)

Parameter Mean (standard deviation) Min – max

Anthropometric variables

Age (years) 60 (7.7) 34 – 70

Height (cm) 169 (7.6) 153 – 185

Weight (kg) 83 (14.3) 56 – 118

Body mass index (kg/m2) 29 (4.3) 21 – 42

Number of female subjects 49 (61.3%)

KL grade distribution

KL 0 2

KL 1 21

KL 2 20

KL 3 20

KL 4 17

Fig. 1 Location of regions of interest (ROIs). One ROI (black rectangle
with continuous line) was placed in subchondral trabecular bone
immediately below the cartilage-bone interface in the middle part of the
medial tibial plateau. Another ROI (black square with dashed line) was
placed immediately below the dense subchondral trabecular bone area.
The purpose of the white dashed lines is to help place the ROIs in the
middle of the tibial spine and outer border
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where Pi contains the normalized count of the grayscale value
i occurring in the image. If ELap = 0, all pixel values in the
Laplacian-based image are the same, while higher values in-
dicate higher variation in the pixel values of the image.

Local binary patterns (LBP)-based methods

LBP-based methods were used to measure the randomness of
local patterns and the variations in the orientation of ad-
jacent local patterns. First, the image was divided into
bone and non-bone regions by determining a local thresh-
old for every image pixel using the Otsu method [30]
with a 9 × 9-pixel window size. Next, the LBP operator
(eight-neighborhood on a circle with a radius of 1) was
applied in the bone regions and the bone edges (i.e., non-
bone regions next to the bone). The pixel was considered
to be an edge pixel if at least one of the eight neighbors
of the center pixel was a bone pixel. To reduce the num-
ber of irrelevant patterns, grouping of patterns was carried
out by determining the main orientation and the number
of valid neighbors (i.e., markers) for each pattern. The
main orientation angle was calculated using principal com-
ponent analysis. The angles (0°, 45°, 90°, and 135°) were
calculated only for the patterns consisting of two to five
consecutive markers; otherwise, the patterns were assigned
as non-uniform.

To measure the randomness of the patterns occurring in the
image, entropy of the grouped patterns (ELBP) was determined
using the Eq. 1. If ELBP = 0, there is only a single pattern
occurring in the image.

The homogeneity index for the orientation of the valid
patterns was derived from the co-occurrence matrix of the
angles. The co-occurrence matrices were calculated in 0°,
45°, 90°, and 135° directions with one pixel distance. The
non-uniform and non-bone areas were excluded from the co-
occurrence matrices. To take into account the orientation of
bone trabeculae in the analysis, co-occurrence matrices of 0°
and 135° directions were combined together as well as 45°
and 90° directions to calculate the homogeneity index perpen-
dicularly to the bone trabeculae (HIAngles,Perp) and along the
trabeculae (HIAngles,Paral), respectively. Furthermore, the mean
homogeneity index (HIAngles,mean) was calculated from the co-
occurrence matrix as the sum of the four possible directions.
The interpretation of the HIAngles parameters used in this study
is the following: If all adjacent patterns have similar orienta-
tion, HIAngles is equal to one, while a large variation in the
orientation of local patterns results in a low HIAngles value.

Fractal signature analysis (FSA)

To estimate fractal dimension, related to roughness and com-
plexity of an image, the FSA method was used [23, 29]. In

brief, the image was dilated and eroded in horizontal and
vertical directions with a rod-shaped one-pixel-wide structur-
ing element and the volume, V, between dilated and eroded
images was calculated. Calculations were repeated by varying
the element length r from two to four pixels. The surface area,
A(r), was calculated using the Eq. 2:

A rð Þ ¼ V rð Þ−V r−1ð Þ
2

; ð2Þ

Subsequently, a log-log plot was constructed by plotting
log of A(r) against log of r. Finally, the fractal dimension
was estimated using a regression line to points between 2
and 4.We restricted our analyses only to the small-scale fractal
dimensions in order to keep the results compact. When the
structuring element is pointing in the horizontal direction,
fractal dimension of vertical structures (FDVer) is produced
and vice versa. High fractal dimension values are associated
with high complexity of the image, whereas low complexity
results in low fractal dimension values.

Magnetic resonance imaging

Within 31– 227 (mean: 125, standard deviation: 49) days from
the date of radiography, all subjects were scanned with a 3-
Tesla (T) MRI scanner (Siemens Skyra, Siemens Healthcare,
Erlangen, Germany) using a 15-channel transmit/receive knee
coil. The following sequences were carried out: sagittal T2-
weighted dual-echo steady-state [repetition time (TR):
14.1 ms, echo time (TE): 5 ms, echo train length (ETL): 2,
field of view (FOV): 150 × 150 mm2, acquisition matrix:
256 × 256, slice thickness: 0.6 mm], 3-D sagittal proton-
density (PD)-weighted SPACE fat-suppressed turbo spin-
echo (TSE; TR: 1200 ms, TE: 26 ms, ETL: 49, FOV: 160 ×
160 mm2, acquisition matrix: 256 × 256, slice thickness:
0.6 mm), coronal PD-weighted TSE (TR: 2800 ms, TE:
33 ms, ETL: 4, FOV: 140 × 140 mm2, acquisition matrix:
384 × 384, slice thickness: 3 mm) and coronal T1-weighted
TSE (TR: 650 ms, TE: 18 ms, ETL: 2, FOV: 130 × 130 mm2,
acquisition matrix: 320 × 320, slice thickness: 3 mm). A mus-
culoskeletal radiologist (AG, 15 years of experience in semi-
quantitative MRI analysis of knee OA) scored the medial ar-
ticular cartilage damage and BMLs using the MRI OA knee
score (MOAKS) [16]. A subject was included in the medial
tibial cartilage damage group if he/she had any cartilage loss
[defined as MOAKS grades 1–3 for the size of any cartilage
loss (including partial and full-thickness loss)] in the medial
anterior, central, or posterior tibia (Fig. 2A). Similarly, a sub-
ject was included in the medial tibial BML group if he/she had
any BML (MOAKS grades 1–3 for the size of BML by vol-
ume; including ill-defined lesions, bone marrow edema and
subchondral cysts) in the medial anterior, central, or posterior
part of tibia (Fig. 2B).
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Statistical analyses

Analysis of covariance was used to compare the bone struc-
ture between groups with and without cartilage damage or
BMLs. Bone structural parameters were adjusted with gender,
age and body mass index. Unadjusted mean values (standard
deviations) are shown in the result tables. Mean KL grade and
its standard deviation are reported in Tables 2 and 3 for clarity
although the KL grade is an ordinal scale variable. Difference
in the KL grade between groups was tested using the Mann–
Whitney U test. Statistical analyses were conducted using
IBM SPSS Statistics for Windows (Version 22.0, IBM
Corp., Armonk, NY, USA).

Results

Subjects with medial tibial cartilage damage had significantly
different bone structure in medial tibial subchondral and tra-
becular bone ROIs (Table 2). In the medial subchondral bone
region, FDVer (Fig. 3A) and ELBP were higher, whereas ELap,
HIAngles,mean (Fig. 3B), HIAngles,Perp, and HIAngles,Paral were
lower among subjects with medial tibial cartilage damage
(Table 2). In the medial trabecular bone region, FDHor, FDVer

(Fig. 3A), and ELBP were higher, whereas ELap, HIAngles,mean
(Fig. 3B), HIAngles,Perp, and HIAngles,Paral were lower among
subjects with medial tibial cartilage damage (Table 2).

Subjects with medial tibial BMLs had also significantly
different bone structure in medial tibial subchondral and tra-
becular bone ROIs (Table 3). In the medial subchondral bone
region, FDVer (Fig. 3C) and ELBP were higher, whereas ELap,
HIAngles,mean (Fig. 3D), HIAngles,Perp, and HIAngles,Paral were
lower among subjects with medial tibial BMLs (Table 3). In
the medial trabecular bone region, FDHor, FDVer (Fig. 3C), and
ELBP were higher, whereas ELap, HIAngles,mean (Fig. 3D),
HIAngles,Perp, and HIAngles,Paral were lower among subjects with
medial tibial BMLs (Table 3).

When tibial cartilage damage analyses were adjusted for
medial tibial BMLs along with gender, age, and body mass
index, FDVer was higher (p = 0.003) and ELap was lower (p =
0.023) among subjects with medial cartilage damage in the
medial subchondral bone region. In the medial trabecular bone
region, FDHor (p = 0.016) and FDVer (p = 0.042) were higher,
whereas ELap was lower (p = 0.023). When BML analyses
were adjusted for medial cartilage damage along with gender,
age, and body mass index, significantly higher HIAngles,mean
values (p = 0.036) between the control and medial tibial BML
groups was detected.

When tibial cartilage damage analyses were adjusted for
KL grade, gender, age, and body mass index, FDVer was
higher (p = 0.001) and ELap was lower (p = 0.008) among sub-
jects with medial cartilage damage in the medial subchondral
bone region. In the medial trabecular bone region, FDHor (p =
0.020), FDVer (p = 0.005) and ELBP (p = 0.030) were higher,
whereas ELap was lower (p = 0.009). When BML analyses
were adjusted for the KL grade gender, age, and body mass
index, only HIAngles,Perp was significantly lower (p = 0.041) in
medial subchondral bone ROIs, and FDVer was significantly
higher (p = 0.006) in medial trabecular bone ROIs among sub-
jects with medial tibial BMLs.

Discussion

Our results demonstrate that medial tibial subchondral and
trabecular bone structures from 2-D plain radiographs were
different between subjects with and without medial tibial ar-
ticular cartilage damage and between subjects with and with-
out medial tibial BMLs.

The finding that trabecular bone structure from radiographs
is different between subjects with and without cartilage dam-
age is in line with an earlier study [31]. In that study, the fractal
dimension of horizontal structures in the lateral compartment
and fractal dimension of vertical structures in both medial and
lateral compartments were significantly higher among

Fig. 2 Example MR images
obtained using proton density-
weighted SPACE fat-suppressed
turbo spin-echo sequence. A)
Grade 3 for the size of cartilage
loss in anterior and grade 2 carti-
lage loss in central medial tibia
(arrows). B) Grade 2 for the size
of bone marrow lesion in medial
central tibia (arrows)
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Table 2 Mean (standard
deviation) of anthropometric
variables, KL grade, original pixel
size of the image and bone
structural parameters among
subjects without and with medial
tibial cartilage damage

Parameter No lesion
(n = 31)

Medial tibial cartilage damage
(n = 49)

p value Adjusted p
value*

Age (years) 57.5 (9.0) 61.5 (6.5) 0.039
Height (cm) 167.7 (7.0) 169.8 (8.0) 0.240
Weight (kg) 82.0 (16.8) 83.7 (12.6) 0.603
Body mass index

(kg/m2)
29.0 (4.7) 29.1 (4.1) 0.917

KL grade 1.61 (0.99) 2.84 (1.01) <0.001a

Original pixel size
(μm)

136 (20) 140 (20) 0.398

Medial subchondral bone
FDHor 2.51 (0.14) 2.55 (0.13) 0.246 0.078
FDVer 2.75 (0.08) 2.84 (0.10) <0.001 <0.001
ELap 6.99 (0.17) 6.88 (0.16) 0.008 0.002
ELBP 3.72 (0.05) 3.74 (0.04) 0.025 0.004
HIAngles,mean 0.69 (0.01) 0.68 (0.01) 0.010 0.006
HIAngles,Perp 0.68 (0.01) 0.67 (0.01) 0.001 0.002
HIAngles,Paral 0.70 (0.01) 0.70 (0.01) 0.148 0.047

Medial trabecular bone
FDHor 2.60 (0.09) 2.65 (0.08) 0.013 <0.001
FDVer 2.82 (0.10) 2.88 (0.10) 0.009 0.001
ELap 6.91 (0.13) 6.82 (0.12) 0.003 <0.001
ELBP 3.62 (0.08) 3.66 (0.06) 0.034 0.003
HIAngles,mean 0.71 (0.01) 0.71 (0.01) 0.011 0.001
HIAngles,Perp 0.69 (0.01) 0.68 (0.01) 0.021 0.002
HIAngles,Paral 0.74 (0.02) 0.73 (0.01) 0.015 0.003

*Adjusted for gender, age and body mass index. a Tested with Mann–Whitney U test. FD = fractal dimension of
horizontal (Hor) or vertical (Ver) structures, ELap = entropy of Laplacian-based image, ELBP = entropy of grouped
local binary patterns, HIAngles = homogeneity index (HI) for orientation of local patterns, HIAngles,Perp = HI per-
pendicularly to the bone trabeculae, HIAngles,Paral = HI along the trabeculae

Table 3 Mean (standard
deviation) of anthropometric
variables, KL grade, original pixel
size of the image and bone
structural parameters among
subjects without and with medial
tibial BML

Parameter No medial tibial BML
(n = 51)

Medial tibial BML
(n = 29)

p value Adjusted p
value*

Age (years) 58.4 (8.5) 62.7 (5.4) 0.008
Height (cm) 168.6 (7.7) 169.6 (7.7) 0.575
Weight (kg) 81.2 (15.8) 86.3 (10.5) 0.121
Body mass index

(kg/m2)
28.5 (4.7) 30.1 (3.2) 0.079

KL grade 1.78 (0.97) 3.38 (0.68) <0.001a

Original pixel size
(μm)

137 (20) 140 (20) 0.570

Medial subchondral bone
FDHor 2.52 (0.13) 2.56 (0.12) 0.163 0.052
FDVer 2.79 (0.10) 2.84 (0.09) 0.019 0.007
ELap 6.95 (0.16) 6.88 (0.18) 0.046 0.020
ELBP 3.73 (0.04) 3.74 (0.03) 0.043 0.024
HIAngles,mean 0.69 (0.01) 0.68 (0.01) 0.002 0.001
HIAngles,Perp 0.68 (0.01) 0.67 (0.01) 0.001 0.001
HIAngles,Paral 0.70 (0.01) 0.70 (0.01) 0.019 0.011

Medial trabecular bone
FDHor 2.61 (0.09) 2.65 (0.08) 0.030 0.007
FDVer 2.84 (0.11) 2.89 (0.09) 0.036 0.001
ELap 6.88 (0.13) 6.80 (0.14) 0.007 0.003
ELBP 3.63 (0.07) 3.67 (0.07) 0.017 0.011
HIAngles,mean 0.71 (0.01) 0.70 (0.01) 0.004 0.002
HIAngles,Perp 0.69 (0.01) 0.68 (0.01) 0.007 0.003
HIAngles,Paral 0.73 (0.01) 0.73 (0.01) 0.005 0.006

*Adjusted for gender, age and body mass index. a Tested with Mann–Whitney U test. FD = fractal dimension of
horizontal (Hor) or vertical (Ver) structures, ELap = entropy of Laplacian-based image, ELBP = entropy of grouped
local binary patterns, HIAngles = homogeneity index (HI) for orientation of local patterns, HIAngles,Perp = HI per-
pendicularly to the bone trabeculae, HIAngles,Paral = HI along the trabeculae
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subjects with cartilage defects (in medial, lateral, or both com-
partments) compared to subjects without cartilage defects
[31]. As a complement to that study, the subchondral bone area
was also analyzed in the current study. Furthermore, we used
novel LBP- and Laplacian-based algorithms along with FSA to
assess bone structure. As a novel finding, we were able to
confirm that, in addition to trabecular bone structure, the struc-
ture of subchondral bone assessed from 2-D radiographs is also
different between subjects with and without medial cartilage
damage. Consequently, the assessment of the subchondral bone
area immediately under the cartilage-bone interface should be
considered in future studies using plain radiographs as that area
has an important role in OA pathology [25, 26].

Bone structural parameters in both subchondral and trabec-
ular bone ROIs were different between subjects with and with-
out BMLs in medial tibia. The higher fractal dimension and
ELBP and lower HIAngles values suggest that the bone structure
is more disoriented among subjects with medial tibial BMLs.
In a previous MRI study, subjects with BMLs had higher
apparent bone volume fraction (calculated from MRI data),
higher trabecular thickness and number, and lower trabecular
separation [32]. The current results are in line with that study
since, for example, higher FDVer and ELBP and lower
HIAngles,mean values are known to be related with lower

trabecular separation values [5]. It is known that BMLs are
more common among subjects with advanced OA and this
might explain partly the observed differences in the calculated
bone structural parameters. It should also be noted that all
subjects with BMLs had concurrent cartilage damage which
further limits our BML-related analyses.

In this study, we showed that FSA, Laplacian-based and
LBP-based methods are able to detect differences between
subjects with and without cartilage damage or BMLs. One
explanation for the differences in structural parameters of
bone is that subchondral and trabecular bone in the proximal
tibia is not as well-organized among subjects with cartilage
damage or BMLs. This explanation is supported by the previ-
ous studies which have proposed that the trabecular bone is
more disorganized and the orientation of trabecular bone is
shifted, probably due to abnormal loading, in OA [33–35].
With the FSA method, fractal dimensions of vertical and hor-
izontal structures are typically reported [12, 29, 36–38].
However, bone trabeculae are not perfectly oriented vertically
in the proximal tibia. To account for this, HIAngles was calcu-
lated approximately perpendicularly and parallel to bone tra-
beculae. It should be noted that due to differences in calcula-
tion of fractal dimension and HIAngles values, FDVer and
HIAngles,Perp (and FDHor and HIAngles,Paral) are related to each

Fig. 3 Statistically significant differences in bone structural parameters
(A) FDVer and (B) HIAngles,mean between subjects with and without medial
tibial cartilage damage, and (C) FDVer and (D) HIAngles,mean between

subjects with and without medial tibial bone marrow lesions (BMLs).
*p < 0.05, **p < 0.001
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other, although these variables are not directly measuring the
same phenomenon.

One limitation of our study is the difference in imaging con-
ditions of radiographs. The conditions varied because the study
subjects were imaged at different institutions on different imag-
ing systems. Since texture analysismethods used in this study are
affected by pixel size, the comparability of the calculated struc-
tural parameters between different imageswas ensured by resam-
pling the pixel size of all images to 143 × 143μm2. Furthermore,
texture analysis methods are not very sensitive for the differences
in imaging conditions (e.g., tube voltage and current), as the
methods do not usually evaluate plain grayscale values directly.
Another limitation is that many of the subjects had multiple
concurrent tissue changes in MOAKS. However, due to limited
sample size and restricted knowledge on the most important
factors for the bone structure appearance as determined from
radiographs, we decided not to adjust bone analyses with
MOAKS features. Furthermore, in the OKOA data, radiographs
were available only for symptomatic subjects and, thus, our
Bcontrol^ groups might have had some OA-related changes.
On the other hand, it is likely that the differences would have
been even higher if non-symptomatic true controls were used.
Finally, since our study design was cross-sectional, we could not
study the causality of the tissue changes; i.e., it is not possible to
determine whether the cartilage damage or BML induces the
alteration in the subchondral bone structure or vice versa, for
example. The longitudinal relevance of the subchondral bone
structure analysis from plain radiographs warrants further
exploration.

Plain radiography is a cheap, fast, and widely available
imaging method suitable for imaging of large subject cohorts.
Analysis of subchondral bone structure can be performed rel-
atively fast using the presented methods. The only manual
user input needed is to place the ROIs in the correct pre-
defined location, which takes about one minute depending
on the experience of the user. The remaining analyses are
performed by the software algorithm. Semi-automated and
automated methods have also been developed for the ROI
placement [39–41]. In this study, we confirmed that
subchondral and trabecular bone structure from radiographs
is different among subjects with cartilage damage or BMLs,
which both are significantly related with OA incidence and
progression [17–21]. Therefore, our results suggest that struc-
tural analysis of bone from radiographs can be used as a sup-
plementary tool when evaluating subjects with OA or at risk
of having it.
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