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Abstract
Objective Magnetic resonance spectroscopy can identify
brain metabolic changes in perinatal asphyxia by providing
ratios of metabolites, such as choline (Cho), creatine (Cr),
N-acetyl aspartate (NAA) and lactate (Lact) [Cho/Cr, Lact/
NAA, etc.]. The purpose of this study was to quantify the
separate white and grey matter metabolites in a slab cranial
to the ventricles and relate these to the outcome.
Methods A standard 2D-chemical shift imaging protocol
was used for measuring a transverse volume of interest
located cranial to the ventricles allowing for direct
comparison of the metabolites in white and grey matter
brain tissue in 24 term asphyxiated newborns aged 3 to
16 days.
Results Cho, NAA and Lact showed significant differences
between four subgroups of asphyxiated infants with more
and less favourable outcomes. High levels of Cho and Lact

in the grey matter differentiated non-survivors from
survivors (P=0.003 and P=0.017, respectively).
Conclusion In perinatal asphyxia the levels of Cho, NAA
and Lact in both white and grey matter brain tissue are
affected. The levels of Cho and Lact measured in the grey
matter are the most indicative of survival. It is therefore
advised to include grey matter brain tissue in the region of
interest examined by multivoxel MR spectroscopy.
Key Points
• Magnetic resonance spectroscopy can identify brain
metabolic changes in perinatal asphyxia.

• Choline and lactate levels in grey matter seem the best
indicators of survival.

• Both grey and white matter should be examined during
spectroscopy for perinatal asphyxia.

Keywords Asphyxia . Encephalopathy .Magnetic
resonance spectroscopy .Metabolism

Introduction

Standard clinical information used to determine prognosis
in perinatal asphyxia, including Apgar scores, neurological
information, evoked potentials, electroencephalography,
cerebral blood flow and neuro-imaging, do not always
reliably predict neurological outcome. In the past decades
there have been numerous scientific studies indicating the
prognostic utility of proton magnetic resonance spectroscopy
(MRS) for prediction of outcome in infants with neonatal
encephalopathy (NE). Thirty-two studies (860 infants with
NE) were included in a recent meta-analysis [1]. In the
neonatal period (days 1–30) the metabolite ratio of lactate to
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N-acetyl aspartate (Lact/NAA), most frequently measured in
the basal ganglia and thalamus region where abnormalities are
often seen on MRI [2], was the best biomarker for predicting
adverse outcome following NE [1]. Changes in brain
metabolism following asphyxia have generally been assessed
in terms of ratios of metabolites such as choline (Cho)/
creatine (Cr), NAA/Cr and Lact/NAA [3–14]. In such results
it is not possible to differentiate if, for example, an increase
of the Lact/NAA ratio is caused by an increase of Lact or a
decrease of NAA.

In the scarce quantitative MRS studies of asphyxiated
infants with severe or fatal outcomes, decreases in the
concentrations of Cho and NAA were found [15–17] and
Lact concentration increases [15, 17]. In one of these
studies significant Cr decreases were observed as well [16].
Another quantitative MRS study using a short echo time
(TE), revealed decreases in the concentrations of NAA and
glutamate/glutamine, and Lact concentration increases in
infants with perinatal asphyxia compared to non-
asphyxiated babies [18]. So far, there has been just one
study providing a thorough comparison of the results
obtained in white and grey matter brain tissue [16]. In a
slab positioned at the level of the basal ganglia, a low NAA
turned out to be the best indicator of unfavourable outcome
both in white and grey matter structures [16].

The purpose of this study was quantitative comparison
of the separate MRS detected metabolites at a level of the
brain not yet studied in infants with asphyxia, a transverse
slab cranial to the ventricles. We also investigated the
relation between white and grey matter metabolites with
neurological outcome and survival.

Materials and methods

Patients

This retrospective study was performed at the neonatal
intensive care unit of the University Medical Center
Groningen. From our medical records, we identified all
term infants who were admitted because of clinical signs of
hypoxic ischemic encephalopathy (HIE) and in whom MRI
including MRS was performed, between January 2001 and
July 2007. Perinatal asphyxia was defined by at least two of
the following criteria: 1) signs of fetal distress, consisting of
decelerations on fetal monitoring by cardiotocograph or
meconium-stained amniotic fluid; 2) umbilical cord arterial
pH less than 7.1; 3) Apgar scores less than 5 at 5 min after
birth; and within days 4) multi organ failure syndrome; 5)
neonatal HIE as described by Sarnat [19]. Exclusion criteria
were: a gestational age below 36 weeks, presence of severe
congenital malformations or diseases with neurological
complications, and lack of clinical follow up examination.

Cerebral damage was evaluated by a combination of
neurological examination, and amplitude integrated EEG. If
outcome could not be predicted on these diagnostic tests, an
additional MRI was performed to identify the extent of the
cerebral damage following HIE. In the worst cases
withdrawal of care was not based on the results of MRI
and MRS, indicating that the selection of survivors/non-
survivors was not biased by this. None of the infants were
treated with therapeutic hypothermia, because this had not
been introduced in our unit at the time of the study. The
study was approved by the review board of the University
Medical Center Groningen.

MRS examination

An 8-channel transmit/receive head coil of a 1.5T Magne-
tom Sonata system (Siemens AG, Erlangen, Germany) was
used for proton (1H) MRS. 2D-chemical shift imaging
(CSI) point resolved spectroscopy measurements were
performed with a repetition time (TR) of 1500 ms and an
TE of 135 ms resulting in T1- and T2-weighting of spectra
[20]. A transverse T2-weighted fast spin-echo series was
used as guidance for examining an approximately 5×5×
2 cm3 supraventricular volume of interest, located cranial to
the lateral ventricles, in a 16×16 phase encoded field of
view of 16×16 cm2 resulting in MRS voxels of 1×1×2 cm3

(7 min acquisition time) (Fig. 1). Since 2001, the standard
brain MRI measurement protocol for infants following
developmental delay and perinatal complications such as
asphyxia has included MRS measurement according to the
above specifications [21]. To obtain good quality spectra
not affected by partial volume effects or by artefacts caused
by movements near the eyes and ears we chose this
particular volume of interest superior to the corpus
callosum to measure a large transverse brain area contain-
ing both white and grey matter and little cerebrospinal fluid
[22].

The standardised postprocessing protocol consisted of
water reference processing, Hanning filtering (center 0 ms,
width 512 ms), zero filling from 512 data points to 1024 data
points, Fourier transformation, frequency shift correction,
sixth order polynomial baseline correction, phase correction
and frequency domain curve fitting. The curve fitting was set
to fit peaks to Gaussian lineshapes, including the chemical
shift ranges of 3.1–3.3 ppm for Cho, 2.9–3.1 for Cr, 1.9–2.1
for NAA, and 1.2–1.4 for Lact. The raw data were thus
processed automatically, allowing for operator-independent
quantification. The CSI voxels on the edge of the volume of
interest (subject to signal drop-off) were deducted from the
total data matrix. The inner 24 voxels were analysed and
separated into the two central columns mainly containing grey
matter (GM) (12 voxels) and the remainder of 12 voxels filled
with white matter (WM) (Fig. 1), as described elsewhere [23].
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The quantifications, also those of the small lactate peak in
the summarised blocks of 12 or 24 spectra, were reliable and,
therefore, no manual adjustments were performed. To limit
patient examination times, absolute quantification requiring
additional CSI measurements without water suppression was
not performed. To facilitate tissue signal comparison, we
expressed the GM and WM metabolites in percent (%) of the
summed peak areas of Cho, Cr and NAA in the 24 analysed
voxels, a method used before [22, 24].

Neurodevelopmental assessment

Neurodevelopmental follow-up was performed at a minimum
age of 18 months. Long term outcome was divided into four
groups: 1) normal neurological outcome without complica-
tions; 2) minor neurological dysfunction; 3) severe neurolog-
ical dysfunction; and 4) deceased. Severe neurological
dysfunction was defined by a gross motor function classifi-
cation system (GMFCS) [25] of three or more (not being able
to walk independently). These children were treated in
specialised rehabilitation centres, which performed system-
atic Bayleys developmental tests [26]. Children who were
not treated systematically in specialised rehabilitation
centres, were invited for follow-up examination. The
neurological examination for toddler age by Hempel [27]
was used till the age of 5 years. In two children who were
older than 5 years we used the neurological examination by
Touwen [28]. The examination was filmed and classified by
a specialised paediatrician (C. v.d. V.) blinded for the clinical
condition after birth and for the MRI and MRS results.

Statistical analysis

Statistical analysis was performed using SPSS version 17.0.
A Kruskal Wallis test for non-parametric parameters was

used to investigate significance between the four groups.
Group-to-group differences were subsequently assessed by
Mann–Whitney U-test. Differences between survivors (n=
19) and non-survivors (n=5) were assessed by Mann–
Whitney U-test. A P value of less than 0.05 was considered
significant.

Results

A total of 26 infants admitted to the NICU were selected
from our medical database. Two infants were excluded: one
infant because of the coexistence of a severe congenital
anomaly, and one infant because there was no long term
follow-up. Therefore, the cohort of this study consisted of
24 infants (14 boys, 10 girls) with a median gestational age
of 393 (range from 362 to 420). Clinical characteristics of
the study population are summarised in Table 1. MRI-MRS
was performed at a median age of 7 (range 3 to 16) days
after birth. At follow-up 11 children were normal, 5 had
minor neurological dysfunction, 3 had severe neurological
dysfunctions (all were diagnosed having a cerebral palsy
with GMFCS of IV), and 5 infants died during the neonatal
period.

The relative concentrations of the MRS metabolites in
the four categories of neurological assessment are presented
in Table 2. Both in the white and grey matter brain tissue
NAA and Lact were significantly different between the four
subgroups, Cho in the grey matter only. Compared to
infants with normal outcome the infants that were severely
neurologically abnormal or died had significant decreases
of NAA and an increase of Lact.

MRS outcome in survivors (n=19) and deaths within the
neonatal period (n=5) is shown in Table 3. High levels of
Cho and Lact in the grey matter differentiated non-

a b c

Fig. 1 MRS spectral map (a) and the summarised white matter and grey matter spectra (b, c) of a 7-day-old asphyxia patient with a normal
neurologic outcome
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survivors from survivors (P=0.003 and P=0.017, respec-
tively). In the white matter tissue included in the volume of
interest the differences in Cho and Lact were not signifi-
cant, whereas NAA showed similar reductions in white and
grey matter brain tisue (P=0.025, both). A representative
result for an asphyxiated infant with a normal neurological
outcome is shown in Fig. 1. In Fig. 2, an example of an
infant that died, NAA level is very low and Lact very high
as compared with the case represented by Fig. 1.

Discussion

In both the white and the grey matter brain tissue in a
transverse volume of interest located cranial to the
ventricles, NAA and Lact showed significant differences
between four subgroups of neurological outcome following
perinatal asphyxia (normal, minor neurological dysfunction,

severe neurological dysfunction and death). In addition Cho
was increased in the grey matter only, in case of death
(Table 2). From the most favourable outcome to the worst
Cho and Lact tend to increase by 8 or 9% of summed
metabolites, whereas NAA drops by 6 to 8%. Our findings
for Lact and NAA are in good agreement with the recent
meta-analysis of previous MRS studies of the thalamic or
basal ganglia brain region indicating that amongst the
various possible metabolite ratios Lact/NAA is the best
biomarker for predicting adverse outcome after NE [1]. We
conclude that the noted metabolite level changes in
asphyxia probably reflect a phenomenon affecting the
entire brain. However, in our data the differences between
the various pairs of neurology subgroups are modest. For
example, the second and third group of Table 2, minor
neurological dysfunction and severe neurological dysfunc-
tion, only differ significantly in NAA (by 11% in the white
matter and 6% in the grey matter; P=0.025, both).

Table 2 Relative concentrations, in percent (%) of the summed peak
areas of Cho, Cr and NAA in the volume of interest, of the major
MRS detected brain metabolites in the 24 patients with perinatal
asphyxia subdivided into the four categories of neurodevelopmental

outcome at long term (>18 months). Significant differences from
normal outcome group are shown between brackets (Mann–Whitney
U-test). Last column: Significance of the difference between the four
groups

Normal neurological
outcome w/o complications
(n=11)

Minor neurological
dysfunction at long
term (n=5)

Severe neurological
dysfunction (n=3)

Death (n=5) Significance (P) of difference
between the 4 groups according
to Kruskal Wallis test

WM

Cho 49±4 49±4 52±3 57±9 0.140

Cr 26±4 24±2 30±6 25±4 0.517

NA 28±4 28±4 17±4 (0.016) 20±4 (0.006) 0.005

Lact 6±4 12±6 (0.027) 21±19 14±8 (0.027) 0.039

GM

Cho 46±3 48±3 48±4 54±4 (0.002) 0.023

Cr 25±2 24±2 31±6 25±5 0.190

NAA 26±4 28±3 22±4 20±5 (0.047) 0.031

Lact 7±4 9±6 (0.047) 15±13 16±6 (0.011) 0.042

Table 3 Relative concentra-
tions, in per cent (%) of the
summed peak areas of Cho, Cr
and NAA in the volume if
interest, of the major MRS
detected brain metabolites in the
24 patients with perinatal as-
phyxia subdivided into death or
survival

Survivors (n=19) Deaths (n=5) Significance (P) of difference between the
2 groups according to Mann–Whitney U-test

WM

Cho 49±4 57±9 0.060

Cr 26±5 25±4 0.594

NAA 26±5 20±4 0.025

Lact 10±9 14±8 0.110

GM

Cho 47±3 54±4 0.003

Cr 26±4 25±5 0.749

NAA 26±4 20±5 0.025

Lact 9±6 16±6 0.017
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In addition to investigating the relationship between
brain metabolism and neurological outcome, the purpose of
this study also was to compare MRS quantified brain
metabolism to survival. Compared to the 19 survivors, the
five infants that died following perinatal asphyxia, had
significantly increased levels of Cho and Lact, +7% for
both metabolites, in the grey matter only (Table 2). Our
second conclusion is therefore that while quantitative MRS
performed between days 3 to 16 after birth offers little
differentiation between groups of asphyxiated infants
categorised in terms of neurological outcome, the findings
in the grey matter brain tissue have a higher predictive
value than those in the white matter tissue as far as survival
is concerned. Previous comparisons of survivors vs. fatal
outcome indicated generally increased basal ganglia Lact/
NAA and Lact/Cr ratios [8, 12, 14, 29, 30] or increased
Lact/Cho ratios [31] in the latter category. So, the grey
matter Lact concentrations increases observed in this study
fit with the basal ganglia observations in the above studies.
The present study, however, appears to be the first showing
increased grey matter Cho levels in asphyxiated infants
with fatal outcome.

The elevation of Lact in the brain spectra of asphyxiated
infants is obvious, being a universal phenomenon of
hypoxia and anaerobic glycolysis in any human tissue.
However, the increase of Cho in the grey matter brain tissue
of infants with a fatal outcome, is less easily explained. In
general, the level of Cho in infants reflects the degree of
dysmyelination and decreases steadily during the proces of
myelination during the first years of life [21]. The observed
Cho elevation may thus be interpreted as reflecting
deficient development of the neurons.

One limitation of this study is the spread of neonatal age,
3 to 16 days after birth, at which the MRS was performed.

Measurement at a later time after the onset of asphyxia may
have led to tissue loss leading to further going NAA
decreases and Lact increases as compared with infants
examined earlier. Another limitation of the study is that we
did not include controls. In our institution, as probably
anywhere else, entirely normal infants are not examined by
MRI during the first month after birth. Another issue that
could be considered a limitation in this study is that we
studied a transverse plane cranial to the ventricles rather
than the basal ganglia region. Our motivation for this is
twofold, firstly the better quality of MR spectra measured in
the supraventricular plane as compared to a plane through
the basal ganglia [21, 24], secondly because in this plane
the virual lack of cerebrospinal fluid facilitates quantitative
comparisons between voxels [23]. In our study the use of a
TE of 135 ms, optimal for the unambiguous detection of
Lact, may have prohibited us from reproducing the
decreases in the minor signals of glutamate/glutamine,
amino acids with short T2 relaxation times, previously
observed by Angeles et al [18].

This study was limited to the evaluation of the results of
MR spectroscopy alone in the assessment of asphyxia. Our
findings should, however, not be interpreted as evidence
that MRS can replace imaging. The literature to date
suggests that in clinical practice MRS can become a useful
adjunct to conventional MRI. At our institution analyses
and follow-ups are currently underway to compare the
diagnostic value of MRI and MRS, especially to look at the
added value of MRS in those cases where the results of
MRI alone were ambiguous.

In conclusion, the levels of Cho, NAA and Lact in both
white and grey matter brain tissue are altered in perinatal
asphyxia. New in our study is that, the levels of Cho and
Lact measured in the grey matter appear to be the most

a b c

Fig. 2 MRS spectral map (a) and the summarised white matter and grey matter spectra (b, c) of an 8-day-old asphyxia patient who died 2 days later
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important indicators survival. It is therefore advised to include
grey matter brain tissue in the region of interest examined by
multivoxel MR spectroscopy to help predict clinical outcome
in infants suffering from perinatal asphyxia.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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