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Dynamic CT perfusion imaging
of intra-axial brain tumours:
differentiation of high-grade gliomas
from primary CNS lymphomas

Abstract
Introduction: Perfusion computed
tomography (PCT) allows to quantita-
tively assess haemodynamic character-
istics of brain tissue. We investigated if
different brain tumor types can be
distinguished from each other using
Patlak analysis of PCT data. Methods:
PCT data from 43 patients with brain
tumours were analysed with a com-
mercial implementation of the Patlak
method. Four patients had low-grade
glioma (WHO II), 31 patients had
glioblastoma (WHO IV) and eight
patients had intracerebral lymphoma.
Tumour regions of interest (ROIs)
were drawn in a morphological image
and automatically transferred to maps
of cerebral blood flow (CBF), cere-
bral blood volume (CBV) and per-
meability (KTrans). Mean values were
calculated, group differences were
tested using Wilcoxon and Mann
Whitney U-tests. Results: In compar-
ison with normal parenchyma, low-
grade gliomas showed no significant
difference of perfusion parameters

(p>0.05) , whereas high-grade glio-
mas demonstrated significantly
higher values (p<0.0001 for KTrans,
p<0.0001 for CBV and p=0.0002
for CBF). Lymphomas displayed
significantly increased mean KTrans

values compared with unaffected
cerebral parenchyma (p=0.0078) but
no elevation of CBV. High-grade
gliomas show significant higher
CBV values than lymphomas (p=
0.0078). Discussion: PCT allows to
reliably classify gliomas and lym-
phomas based on quantitative mea-
surements of CBV and KTrans.
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Introduction

Avariety of imaging techniques has been described for the
assessment of cerebral perfusion. These techniques have
been primarily used to assess cerebral ischaemia [1, 2];
however, the range of perfusion applications is being
expanded, including the diagnostic field of cerebral
tumours. Perfusion-weighted magnetic resonance imaging
(PWI) has been proven to provide additional valuable
information about intra-axial brain tumours [3–6]. A
correlation among perfusion parameters, tumour grade
and treatment response has already been demonstrated

through the non-invasive measurement of regional cere-
bral blood volume (CBV), regional cerebral blood flow
(CBF) and permeability (PMB) as a measure of blood-
brain barrier disruption by PWI techniques [3–6]. Fur-
thermore, perfusion imaging has shown promising results
for distinguishing recurrence from radionecrosis, but also
for differentiating cerebral tumour lesions, such as
lymphomas and gliomas [3].

Non-invasive assessment of cerebral perfusion by
means of dynamic perfusion computed tomography
(PCT) has also been used for the evaluation of brain
tumours. PCT has exhibited a number of advantages over
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PWI, the most important of which is the linear relation
between density changes and the tissue concentration of
the contrast agent. Moreover, PWI, because of suscepti-
bility artefacts generated by haemorrhage or various
mineral depositions, can create diagnostic concerns in
post-treatment tumour patients. CT is often the first
imaging technique that is performed in patients suffering
from neurological symptoms caused by brain tumours.
Even though non-enhanced CT is not really the imaging
technique of choice for a detailed neuroradiological
diagnosis of brain tumours, getting additional haemody-
namic information from the same device without having
to shift technique appears to be attractive [7]. PCT renders
important information in patients with intra-axial brain
tumours, allowing differentiation not only between low-
grade and high-grade gliomas but also between high-grade
gliomas and lymphomas, by quantifying regional CBV,
CBF and permeability of the blood-brain barrier with a
single acquisition [7]. Because tumour neoangiogenesis
and neovascularisation play an important role in tumour
growth and spread, measurement of perfusion character-
istics enables the prediction of tumour grade, the
determination of treatment options and the assessment of
treatment response and prognosis [8].

The aim of our study was to prospectively evaluate the
feasibility and efficacy of PCT in the preoperative differential
diagnosis of intra-axial brain tumours. Furthermore, we tried
to explore a non-invasive way of quantifying and classifying
the characteristics of cerebral gliomas and lymphomas
according to their regional perfusion parameters.

Materials and methods

Between 2004 and 2008, 49 consecutive patients with
intra-axial brain tumours and tumour-like lesions were
enrolled prospectively in our study. All patients included
in our study had not received any kind of biopsy or
treatment at the time of examination. Patients who were
planned to undergo biopsy because of newly diagnosed
intra-axial brain tumours received unenhanced brain CT in
order to locate the lesion. The unenhanced CT was then
used to plan the slice positions of PCT in order to hit the
centre of the tumour. PCT was then followed by stereo-
tactic or open biopsy in order to assess the histopatho-
logical grade of the examined tumour.

All radiological analyses were conducted in a blind
fashion with regard to the patients’ identity, clinical data
and initial diagnostic CT findings. The data were analysed
by two experienced neuroradiologists (P.S., M.H.). Raters
did not receive any information about the affected hemi-
sphere. They evaluated unenhanced CT independently so
as to designate the location and the margins of the tumour
and to determine the sections that contained the largest
part of solid tumour. In these sections, PCT analysis was
carried out. Disputes between interpreters were decided by
consensus.

Written informed consent was obtained from all
participating patients. The study protocol was approved
by the local Ethics and Scientific Committees of Heidel-
berg University School of Medicine.

CT perfusion imaging

All PCTs were obtained with a standard 50-s PCT (Siemens
Somatom Volume Zoom). The parameters for the PCTwere
80 kV and 250 mAs, one image, slice collimation
2 × 10 mm. For the PCT, 33 patients received a biphasic
protocol consisting of a total of 60 ml of a non-ionic contrast
agent (Imeron 400, Bracco Imaging, Konstanz, Germany),
injected using a high-pressure injector through an 18-gauge
intravenous line in the cubital vein with a start delay of 4 s.
The biphasic injection protocol consisted of 30 ml contrast
material at a rate of 5 ml/s, immediately followed by another
30 ml at a rate of 2 ml/s and finally 20 ml of a saline chasing
bolus at a rate of 2 ml/s. From every selected axial section 50
consecutive images were acquired with a time interval of 1 s.

In 16 patients, a different contrast protocol was applied.
We utilised 36 ml of a non-ionic high concentrated iodine
contrast agent (Imeron 400, Bracco Imaging, Konstanz,
Germany) with an injection rate of 6 ml/s.

In order to verify that the different contrast protocols
did not significantly influence the perfusion parameters,
they were compared for the high-grade glioma patients, as
high-grade gliomas represent the largest group in our
series. Furthermore, all perfusion parameters in this
histopathological subgroup were found to be significantly
higher than normal parenchyma. The potential hetero-
geneity due to different contrast material protocols was
assessed through the comparison of all perfusion param-
eters (Table 1). No significant difference was found
between the two subgroups. Therefore they were eval-
uated as one entity for further statistical analysis.

Data processing and analysis

All PCT images and parameters were analysed using a
standard workstation (MMWP, Siemens, Erlangen, Ger-
many) with commercially available software (Volume
Perfusion CT, Siemens, Erlangen, Germany). Automatic
segmentation was applied to exclude non-parenchymal
pixels such as bone, cerebrospinal fluid (CSF) or vessels.
In order to obtain peak vascular enhancement in blood, the
superior sagittal sinus was selected as the venous
reference vessel for the PCT process, as with 10-mm-
thick axial sections a reliable absolute density evaluation
of cerebral arteries can be restricted because of partial
volume effects [1]. By applying the perfusion software,
quantitative parameter images were generated from the
time-attenuation curves. For each patient, four types of
parameter maps were calculated for each section: temporal
maximum intensity projection (MIP) in Hounsfield units
(HU), CBV (ml/100 ml), CBF (ml/100 ml/min) and the
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volume transfer constant KTrans as a measure of perme-
ability (ml/100 ml/min). CBF was calculated using the
maximum slope model [9], CBV and KTrans were
calculated using Patlak analysis (Appendix 1). The shape
of the arterial input function necessary for the Patlak
analysis was automatically determined from branches of
the MCA or ACA, the peak of the input function was
normalized to the peak of the superior sagittal sinus.

The raters then independently determined and manually
drew regions of interest (ROIs) on the maps. Initially,
ROIs were drawn on the MIP images, on the solid part of
tumour, trying to exclude areas with necrosis or vessels.
The ROIs were then automatically copied onto the
perfusion maps and corresponding CBV, CBF and KTrans

values were acquired. For every patient, reference ROIs
were also drawn on the healthy contralateral hemisphere
and perfusion parameters were obtained as control values.

Statistical analysis

The results are presented as mean ± standard deviation
(SD) and range for numerical variables and absolute
numbers (percentage). Initially, the normal distribution of
numerical variables through box plots, histograms and Q-
Q plots was tested. The values of the parameters obtained
from PCT analysis followed the Gaussian distribution
except in a case of an oligodendral mixed glioma which
was not included in the analysis. Wilcoxon paired sample
test was used for the comparisons between tumour lesions
and healthy parenchyma, because the data were used for
the comparisons among the different histological sub-
groups. All p values reported are two-tailed. Statistical
significance was set at 0.05 and analyses were conducted
using SPSS statistical software version 12.0 (SPSS,
Chicago, Ill., USA).

Results

Patients’ demographics and clinical characteristics are
presented in Table 2. The mean age of the patients at
diagnosis was 58.5±11.6 years and ranged from 33 to
75 years. Four patients with cerebral metastases were
excluded from the perfusion analysis as their perfusion
physiology differed depending on the primary tumour

characteristics. Furthermore, no comparisons between the
two patients with inflammatory lesions were carried out
because of the heterogeneity and the limited number of
patients in this subgroup.

Data from 43 patients were finally analysed. Patients
were classified into three histopathological subgroups
(low-grade gliomas, high-grade gliomas, lymphomas).

Comparison of perfusion parameters between affected
and normal cerebral parenchyma

The mean values for KTrans, CBV and CBF values for the
study subgroups and the comparisons with the control
healthy parenchyma are summarised in Table 3. No
significant difference in the perfusion parameters was
found between areas of low-grade gliomas and normal
cerebral parenchyma (p>0.05 for all analysed perfusion
parameters). High-grade gliomas, on the other hand,
demonstrated significantly higher values of all perfusion
parameters compared with normal cerebral parenchyma
(p<0.0001 for KTrans, p<0.0001 for CBVand p=0.0002 for
CBF). Lymphomas displayed significantly increased mean
permeability values compared with unaffected cerebral
parenchyma (p=0.0078 for KTrans), whereas no significant
difference was noted between the mean CBV and CBF
values (p=0.55 for CBV, p=0.25 for CBF).

Comparison of perfusion parameters between different
histopathological subgroups

Low-grade gliomas were excluded from the comparisons
among the histopathological subgroups because their low
number precluded an efficient statistical analysis. Figures 1,
2 and 3 show the comparison between high-grade gliomas

Table 1 Comparison of different contrast material protocols: Mann-Whitney U-test showed no significant difference between the two
subgroups (values expressed as median and interquartile range)

Contrast material protocol 1 (n=19) Contrast material protocol 2 (n=10) p

Ktrans (ml/100 ml/min) 5.80 4.04 >0.05
(4.43–9.45) (3.27–9.99)

CBV (ml/100 ml) 5.37 5.58 >0.05
(4.36–6.74) (4.71–7.55)

CBF (ml/min) 75.69 110.00 >0.05
(62.12–108.73) (84.99–132.18)

Table 2 Patients’ demographics and clinical characteristics

n %

Male 30 61.2
Female 19 38.8
High-grade gliomas 31 63.3
Lymphomas 8 16.3
Low-grade gliomas 4 8.15
Metastases 4 8.15
Infectious tumour-like lesions 2 4.1
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and lymphomas (Mann-Whitney U-test): whereas no stat-
istical difference was found for CBF (p=0.3567) and KTrans

(p=0.1394), high-grade gliomas showed a significant
elevation of CBV in comparison to lymphomas (p=
0.0078). However, higher mean permeability values, though
not statistically significant, were observed in lymphomas in
comparison with high-grade gliomas.

Discussion

In this study, our objective was to quantify the absolute
PCT parameters of intracerebral tumours. We report one
of the largest series concerning the application and
efficacy of PCT in the preoperative histopathological
grouping of cerebral intra-axial tumours. By applying a
CT perfusion method and based on the absolute perfusion
parameters, we differentiated cerebral lymphomas from
high-grade gliomas (Figs. 4, 5).

Dynamic perfusion imaging is based on the assess-
ment of tissue-related distribution of the contrast
medium, which acts as a tracer. Microvascularisation
and diffusion across the endothelial membrane into the
interstitial space determine the distribution of contrast
agent after infusion. The absolute perfusion parameters
correspond to the microvascular density, in histopatho-

logical examination, which has been considered to be the
‘gold standard’ for such an evaluation, because of its
direct association with angiogenic growth factor expres-
sion, tumour growth, and metastatic occurrence [10, 11].
In accordance with previously published studies, signifi-
cantly increased CBV was noted in high-grade gliomas.
The increased vascular proliferation of the neoplastic
tissue and the hypothesis that feeding arterioles are more
vasodilated than normal in neoplasms support these
findings [8, 12, 13].

Increased vascular permeability has also been correlated
with malignancy and has been evolving as a surrogate
marker of tumour angiogenesis and, thus, tumour grade [14].
Higher permeability has been associated with higher tumour
grade and has also been shown to decrease, responding to
antiangiogenic therapy [3, 15–17]. Our results demonstrated
significantly higher permeability values for both high-grade
gliomas and lymphomas in comparison with healthy tissue.
Both entities are characterised by a histopathologically
proven blood-brain barrier disturbance [18, 19].

It has already been shown that PWI provides valuable
information concerning tumour perfusion, facilitating the
preoperative classification and grading of gliomas [3–6].
Our data stress the role of PCT in the preoperative
differential diagnosis of primary central nervous system
lymphomas (PCNSL) from high-grade gliomas. PCNSL, a
discrete histopathological entity, constitute up to 6% of
malignant central nervous system (CNS) tumours [20].

Table 3 Comparison of perfusion parameters between affected and normal cerebral parenchyma. Values are expressed as mean ± SD

Histopathological KTrans pa CBV pa CBF pa

subgroup (p) (ml/100 ml/min) (ml/100 ml) (ml/100 ml/min)
Lesion Control Lesion Control Lesion Control

Low-grade
gliomas (4)

3.73±5.35 1.66±1.79 0.25 3.28±0.46 2.96±0.42 0.38 62.28±16.91 65.80±5.50 0.88

High-grade
gliomas (31)

6.58±3.68 0.86±0.79 <0.0001 6.03±2.18 3.22±0.42 <0.0001 97.63±41.17 64.45±7.84 0.0002

Lymphomas (8) 11.96±10.66 1.31±1.79 0.0078 3.79±1.95 3.14±0.42 0.55 82.79±40.03 64.87±9.61 0.25

a p compared with healthy parenchyma values (control) using Wilcoxon test
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Fig. 1 Comparison of high-grade gliomas (tumour type 2) and
lymphomas (tumour type 3): Mann-Whitney U-test showed
significant elevation of CBV within high-grade gliomas compared
with lymphomas (p=0.0078)
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Fig. 2 Comparison of high-grade gliomas (tumour type 2) and
lymphomas (tumour type 3): Mann-Whitney U-test showed no
significant difference in CBF within the tumour tissue (p=0.3567)
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Although PCNSL present certain characteristic magnetic
resonance imaging (MRI) findings, it can be difficult or
even impossible to differentiate them, on the basis of
imaging features, from high-grade gliomas on standard
CT or MRI, because of their diffuse infiltrative growth
[21, 22]. Histopathologically, contrary to high-grade
gliomas, PCNSL are characterised by the absence of
neovascularisation. Our results show that lymphomas can
be differentiated from high-grade gliomas by comparing
CBV and CBF parameters using PCT. Both histopatho-
logical entities presented significantly higher permeability
values compared with normal brain parenchyma, but only
high-grade gliomas presented with significantly higher
values of regional CBV and CBF parameters than those of
normal cerebral parenchyma. Our results are comparable
with those previously reported for a series of patients who
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Fig. 3 Comparison of high-grade gliomas (tumour type 2) and
lymphomas (tumour type 3): Mann-Whitney U-test showed no
significant difference in KTrans within the tumour tissue (p=0.1394)

Fig. 4 A 58-year-old man with histopathological diagnosis of
glioblastoma multiforme WHO IV. Axial contrast-enhanced MIP
reconstruction image (a) shows a contrast-enhanced mass, which

demonstrates intensely elevated blood flow (b) and volume (c) as
well as strongly increased regional Ktrans (d) in comparison with the
normal cortical and subcortical cerebral parenchyma
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underwent PWI [19]. Because PCNSL and high-grade
gliomas require different therapeutical management and
differ in prognosis, precise diagnosis is crucial [20, 23].

Gliomas, the most frequent cerebral tumours in adults,
exhibit varying degrees of cellular and nuclear pleo-
morphism, mitotic activity, vascular proliferation and
necrosis [24, 25]. This histopathological heterogeneity
explains the difficulties concerning the preoperative
assessment and biopsy and thus histopathological grading.
Histopathological assessment of tissue, the current stand-
ard for tumour grading, presents inherent limitations,
including sampling errors, intra-observer variation and
the changing nature of central nervous system tumours
[26, 27]. Accurate histopathological diagnosis is crucial to
define the appropriate management and prognosis accord-
ing to tumour grade. For low-grade gliomas, conservative
treatment and monitoring for detecting transformation or
active proliferation are of great importance. Because the
degree of vascular proliferation is one of the most critical
elements in the determination of tumour grade and

prognosis, the preoperative non-invasive assessment and
quantification of glioma vascularity can be helpful to
determine the malignant potential of the tumour, to select
an appropriate biopsy site, to evaluate transition from low-
grade to a high-grade glioma, and also to monitor
treatment response [28]. Despite the small number of
patients with low-grade gliomas, our data implicate that
high-grade gliomas could be differentiated from low-grade
gliomas on the basis of all three PCT parameters studied.
Low-grade gliomas exhibited no different perfusion
parameters compared with normal parenchyma (Fig. 6).

In spite of the feasible advantages of PCT over PWI, the
relative limitations of PCTand consequently of our study are
the radiation dose involved with the procedure and also the
limited coverage area of the cerebral parenchyma compared
with PWI. The latter limitation could be overcome in the
future with the new volume PCT technique, which enables
the measurement of the whole brain and three-dimensional
qualitative and quantitative imaging. Thus, whole-brain PCT
could lead to even more precise grading of intra-axial brain

Fig. 5 A 72-year-old woman with histopathological diagnosis of
primary cerebral lymphoma. In comparison with the contralateral
normal cerebral parenchyma, the lesion depicted in the right
lentiform nucleus demonstrates the typical perfusion characteristics

of lymphoma: enhancement (a), no significant increase in CBF (b) or
CBV values (c), though intensely increased regional permeability
(KTrans, d), indicating a massive disturbance of the blood-brain
barrier
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tumours. Potential limitations also include the different
contrast agent protocols applied. However, we statistically
demonstrated no methodological heterogeneity regarding
the perfusion parameters generated.

In conclusion, with the role of imaging beginning to
shift towards providing complementary information con-
cerning tumour dynamics and physiology, our results
revealed the promising and determinant role of the
perfusion technique in the preoperative histopathological
assessment of cerebral intra-axial tumours. By detecting
and quantifying microvascular density and capillary
permeability PCT helps to distinguish cerebral lympho-
mas from high-grade gliomas and facilitates the preoper-
ative histopathological grouping of brain gliomas.
Information obtained by the in vivo monitoring of tumour
proliferation and angiogenesis may support the role of
PCT in the clinical routine not only preoperatively but
also in the post-treatment assessment and follow-up of
patients with intra-axial cerebral tumours. However, addi-
tional studies are required to differentiate between patients
with high- and low-grade gliomas as well as between
those with radionecrosis and recurrence.

Appendix 1

Patlak analysis can be derived from a two-compartment
model that describes the one-way transfer of contrast
material from the intravascular space to the extrava-
scular space, i.e. there is no significant backflow during
the examination time. At any time point, the tissue
concentration of contrast material is equivalent to the
sum of the intravascular and extravascular concentra-
tions of contrast material as denoted by the following
equation:

CðtÞ ¼ CBV CA t � $tð Þ þ Ktrans
Z t�$t

0
CA tð Þdt

where C(t) is the concentration of contrast material within
the tissue, CBV is the cerebral blood volume, CA(t) is the
concentration of contrast material in blood (the arterial
input function AIF) and KTrans is the volume transfer
constant [29]; Δt describes the time it takes the input
function to travel to the tissue voxel; Δt is determined

Fig. 6 A 42-year-old man with histopathological diagnosis of low-
grade glioma WHO II. The contrast-enhanced MIP image (a) shows
no enhancement within the tumour in the right frontal lobe (1). The

perfusion maps reveal no significant difference in the perfusion
parameters CBF (b), CBV (c) and KTrans (d) between the lesion (1)
and the unaffected side (2)
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automatically by cross correlation analysis of the AIF with
the voxel TAC separately for every voxel.

Dividing the equation by CA(t) produces the linear
relationship

CðtÞ
CA t � $tð Þ ¼ CBV þ Ktrans

R t�$t
0 CA tð Þdt
CA t � $tð Þ

By fitting a straight line to the data points, KTrans can be
derived from the slope of this line and CBV from the intercept.

KTrans describes the portion of blood flow F that is
extracted into the extravascular space, i.e. KTrans = E ∙ F,
with the extraction fraction E (EK1), which is defined as

E ¼ 1� e�PS=F 1�Hctð Þ

PS is the permeability–surface area product and Hct the
haematocrit value.

Note that we define KTrans with respect to whole blood
flow, while in MR perfusion imaging it is typically defined
with respect to plasma flow: KTrans = KTrans(MRI)/(1 −
Hct).

From these relationships it can be derived that for
tumours which are well perfused, KTrans(1 − Hct) is
approximately equal to PS.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which
permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are
credited.
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