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Labelling of mammalian cells for visualisation

by MRI

Abstract Through labelling of cells
with magnetic contrast agents it is
possible to follow the fate of trans-
planted cells in vivo with magnetic
resonance imaging (MRI) as has been
demonstrated in animal studies as well
as in a clinical setting. A large variety of
labelling strategies are available that
allow for prolonged and sensitive

detection of the labelled cells withMRI.
The various protocols each harbour
specific advantages and disadvantages.
In choosing a particular labelling
strategy it is also important to ascertain
that the labelling procedure does not
negatively influence cell functionality,
for which a large variety of assays are
available. In order to overcome the
challenges still faced in fully exploiting
the benefits of in vivo cell tracking by
MRI a good understanding and stan-
dardisation of the procedures and
assays used will be crucial.
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Introduction

Labelling of cells with magnetic contrast agents has been
the subject of research in a considerable number of studies.
Because of the increased use of cells as therapeutic agents
or vehicles, the need for noninvasive imaging of cells in
vivo has developed. For studies regarding the development
of cell-based therapeutic strategies, and for monitoring the
efficacy and safety of such therapies, it is essential for the
fate of transplanted cells to be monitored in vivo.

Various methods are available for in vivo cell imaging,
including optical imaging techniques [1] and nuclear
imaging techniques such as positron emission tomography
(PET) [2], single-photon emission tomography (SPECT)
[3] and MRI [4]. Each of these techniques has its own
advantages and limitations. In vivo cell imaging by optical
techniques has the advantage that it is a high-throughput
method with high sensitivity and multispectral capabilities.
Optical imaging techniques, however, are limited by their

poor spatial resolution and penetration depth making them
mostly applicable in small laboratory animals or for
superficial locations, and as yet they are not suitable for
clinical translation. PET and SPECT offer high sensitivity
for detection, and quantifiable results. However the spatial
resolution of these techniques is low; the half-life of the
tracers is short and there are safety issues involved with
ionising radiation, limiting their use in longitudinal studies.
MRI offers several advantages for in vivo cell tracking: it is
an intrinsic noninvasive technique, it does not involve the
use of ionising radiation, it has high spatial and temporal
resolution capabilities, it provides information in an
anatomical context and it offers the possibility to assess
functional aspects of tissues. Because of these advantages
MRI has been promoted as a promising technique for in
vivo cell tracking. A prerequisite for imaging of cells by
MRI is the association of contrast agents with the cells of
interest. The contrast agent must alter the MR signal
parameters to allow detection.
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Various groups have demonstrated that cells can be
labelled with paramagnetic particles allowing visualisation
by MRI, even at the single cell level [5–11]. To label cells,
contrast agents should be bound to the external cell
membrane or internalised into the cytosol or intracellular
vesicles. A variety of approaches, in terms of labelling
method and type of contrast agent used, have been
described for the effective labelling of cells with contrast
agents [12–24]. For safe clinical application of labelled
cells both short- and long-term toxicity studies are needed.
However, before contrast agents can be administered to
patients, potential adverse effects in vivo following their
metabolism should be investigated as well. Imaging
labelled cells with contrast agents can provide an exquisite
approach to following the fate of the injected cells.

This article provides an overview of these different
approaches used for cell labelling and their specific
benefits and limitations. Furthermore, several methods to
assess labelling efficiency will be compared and several
assays to assess the toxicity of the contrast agents used for
cell labelling and their effect on cell function will be
discussed. Finally, a brief overview of image acquisition
possibilities and limitations will be presented.

Applications of paramagnetic cell labelling

The fact that cells can be visualised by MRI, when labelled
with paramagnetic nanoparticles, has created the possibility
to assess the fate of transplanted cells in vivo. Various
applications for in vivo cell imaging by MRI have been
reported and proposed. The various applications include
studies regarding the fate of transplanted stem cells in
neurological disorders [25], cardiovascular disease [4] and
joint disease [26], survival of transplanted pancreatic islets
[27] and homing and function of immune effector cells in
cell-mediated treatment of cancer [28]. For additional
information on applications of cell imaging by MRI we
refer the reader to some excellent recent reviews and a
recently published book on cellular and molecular imaging
by MRI [25, 29–35].

In vivo cell imaging by MRI has also already entered the
clinical arena. The first report describing the use of MRI to
monitor the fate of transplanted cells was by De Vries et al.
[15]. In this paper, autologous dendritic cells loaded with
tumour-derived antigenic peptides were labelled with
superparamagnetic iron oxide particles (SPIO) before
injection in melanoma patients. The study showed that
MRI allowed for the assessment of the accuracy of
dendritic cell delivery and of the inter- and intranodal
cell migration patterns of the injected dendritic cells over
the following days. Thereafter, Zhu et al. [36] reported on a
feasibility study performed in two patients, of tracking
neural stem cells labelled with SPIO in patients with brain
trauma. They showed that the migration of the stem cells
could be monitored by MRI. More recently, Toso et al. [37]

reported on MRI-based monitoring of pancreatic islet
grafts labelled with SPIO in patients with type 1 diabetes.
While some technical limitations in terms of visualisation
of the grafts were encountered, the use of SPIO-labelled
cells did not affect the in vitro or in vivo functionality of the
grafts.

Contrast agents for cell labelling

To date, many different contrast agents have been used for
cellular MR imaging [5, 20, 37–47]. MR contrast agents
can broadly be divided into paramagnetic agents, the so-
called T1 agents (gadolinium, manganese etc.), and super-
paramagnetic agents, the T2 agents (e.g. iron oxide
nanoparticles) [48].

Iron oxide particles

The effect of iron particles on the contrast between labelled
and unlabelled cells is stronger than that of other
paramagnetic agents. Usually, iron oxide particles require
stabilisation by a surface coating of dextran to prevent
aggregation. Dextran-coated iron oxide nanoparticles are
biodegradable and biocompatible. There are big differences
between the sizes of the various magnetic nanoparticles
[20]. For example, Feridex I.V.® (Advanced Magnetic
Industries, Cambridge, Maryland, USA), which is a
ferumoxide, has particles that range from 120 to 180 nm in
size; Sinerem® (Guerbet, Villepinte, France), which consists
of ferumoxtran-10, has particles that range from 15 to
30 nm in size; Resovist® (Bayer Schering Pharma, Berlin,
Germany), which is a ferucarbotran, consists of particles
that are 60 nm in size. Iron oxide particles can be classified
into superparamagnetic iron oxide particles (SPIO), such
as Feridex® and Endorem® (Guerbet, Gorinchem, the
Netherlands) [35, 49–53]; ultrasmall superparamagnetic
iron oxide particles (USPIO), such as Combidex®
(Advanced Magnetic Industries, Cambridge, Maryland,
USA) and Sinerem®) [54–57]; very small superparamag-
netic iron oxide particles (VSOP) [58–60]; ferrofluids
[61, 62]; monocrystalline iron oxide nanoparticles (MION)
[45, 63]; micrometre-sized iron oxide particles (MPIO)
[16, 19]; and cross-linked iron oxide particles (CLIO)
[64–66].

All these different particles have their specific charac-
teristics [67–69]. Variations in size, surface charge, coating
properties etc. influence the pharmacokinetics, biodistri-
bution, uptake efficiency, metabolism and biocompatibility
of the particles. For example, the smaller dextran-coated
USPIO have a longer blood half-life than SPIO. SPIO are
clinically used for liver imaging; Kupffer cells (liver
macrophages) efficiently and quickly take up SPIO as
opposed to tumour cells, thus facilitating detection and
staging of liver tumours. USPIO are mostly used in clinical
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trials for metastatic lymph node imaging, for imaging
inflammatory tissue and as a blood pool agent. Further-
more, SPIO have a higher magnetic susceptibility and T2
relaxivity. Although SPIO are easily internalised by
macrophages, uptake by nonphagocytic cells or slowly
dividing cells is low. Therefore, high, potentially toxic
concentrations are needed for efficient cell labelling of
nonphagocytic cells. When labelling cells with paramag-
netic particles, it is essential to determine the toxic effects
of the contrast agent or the labelling procedure on the cells.
Adverse effects in terms of cell viability, proliferation
capacity, differentiation capacity and cell function need to
be avoided. The lack of significant adverse effects of
labelling of cells with iron oxide particles has been reported
in a large number of studies; however, some adverse effects
or changes in behaviour of the labelled cells have been
reported: these include reduced differentiation capabilities
of labelled mesenchymal stem cells [70], altered expression
of proteins [71] and changed in vivo behaviour [53].
Although only few studies exist that report on potential
adverse effects of paramagnetic labelling on cells, further
studies on potential adverse effects of labelled cells in vivo
need to be performed.

The particles consist of an iron oxide core and are
usually coated with dextran or siloxanes [68] encapsulated
by a polymer [16], or modified in other ways to enhance
internalisation by cells and to prevent aggregation. The
coating on the outer surface allows further biochemical
manipulation. For example, dextran-coated iron oxide
particles can be chemically conjugated to proteins such
as monoclonal antibodies [72]. In general, monoclonal
antibody-guided magnetic particles can provide a stronger
contrast enhancement of specific target cells than particles
without antibody guidance.

It is beneficial if two different imaging techniques can
visualise the same contrast agent particle. For example,
from the bacteria Magnetospirillum gryphiswaldense
magnetic nanoparticles can be harvested and coupled
covalently to a fluorescence dye [73]. These fluorochrome-
coupled magnetosomes can be imaged using MRI as well
as optical imaging methods. The use of this bimodal
contrast agent benefits from the high spatial resolution of
the MRI and the high sensitivity of fluorescence imaging.
However, the possibility of using these magnetosomes in
vivo needs to be investigated, especially since the protein
shell of these magnetosomes may gave rise to immuno-
logical reactions. Two imaging techniques can also be
combined using other particles [73–76].

Gadolinium compounds

Gadolinium compounds can also be used for cellular
labelling. In general, they induce a predominant T1
shortening and thus high signal on T1-weighted MR
images, which is favoured whenever the surrounding tissue

has low signal intensity. However, detection of Gd com-
pounds by MRI is much less sensitive than for SPIO
[40, 77] and the contrast behaviour or relaxivity of Gd
chelates may depend on the cell compartment in which
these Gd compounds end up in. The cellular localisation of
Gd-based probes depends on the size of the contrast agent
used and/or the labelling method [77].

Internalisation of gadolinium can be accomplished by
exposure of cells to Gd chelates [78, 79] or by using
liposomes [23]. Liposomes are double-layered lipid
spheres that can incorporate gadolinium inside the water
or lipid phase. Gadolinium nanoparticles coupled to a
fluorophore can also be used for cellular labelling [23].
These particles are constructed from lipid monomers with
diacetylene bonds that are sonicated and photolysed to
form polymerised nanoparticles. These nanoparticles allow
efficient cell labelling. Another application of gadolinium
is the conjugation of ionic gadolinium (Gd3+) chelates to
proteins that bind to dying cells [80]. This enables targeted
MRI detection of cell death (apoptosis) in tumours after
treatment with a chemotherapeutic agent. It is currently not
clear how long gadolinium-labelled cells can be tracked in
vivo and if there are any toxic side effects.

New developments for contrast manipulation

A new approach to cell tracking for MRI has recently been
developed, in which genes encoding expression of proteins
involved in iron metabolism, e.g. ferritin and transferrin
receptors, are used as cellular MR reporter genes [81–84].
In this approach a gene, encoding the protein of choice, is
introduced into the cell using molecular techniques [31].
These molecular techniques can be employed such that the
newly introduced gene continuously (over)expresses the
protein [85], or such that the protein is expressed simul-
taneously with another specific gene of choice, e.g. the
endothelial cell adhesion molecule VE-cadherin [81], or
that the protein is only expressed after induction of
expression [81]. The (over)expression of proteins involved
in iron metabolism then result in accumulation of iron in
the cell leading to altered signals on MRI.

There are some potential pitfalls of using MR reporter
genes to monitor transgene expression such as the low
sensitivity of detection as well as difficult and sometimes
delayed interpretation of signal changes, meaning that it
may take some time before accumulated iron has reached
detectable levels. However, MR reporter genes have the
potential to provide information on the biodistribution and
viability of cells after injection. A further major advantage
of using MRI reporter genes over labelling of cells with
paramagnetic particles is that when cells divide, the newly
introduced gene is propagated in the daughter cells, and
will give similar signal effects as the parent cell. For
exogenously introduced particles, the particle content per
cell will become diluted through subsequent cell divisions
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with ultimate loss of signal [86, 87]. Further development
of more sensitive and selective reporters, combined with
improvements in detection sequences, will also help in the
understanding of intracellular biological processes and the
molecular bases of diseases.

Other novel contrast agents have also recently been
explored for use in cell imaging. These include labelling of
cells with manganese-based contrast agents, fluorine-based
contrast agents [88–90] and chemical exchange saturation
transfer (CEST) agents [91–93].

For manganese-based contrast agents proposed advan-
tages include signal enhancement on MR images, instead
of signal loss as seen with iron oxide particles, and the fact
that cells can be efficiently labelled without the need for
additional compounds. Disadvantages on the other hand
may arise from toxic effects of manganese, low MRI
sensitivity for detection and rapid clearance of manganese
from cells [86, 87]. For fluorine-based cell imaging the
main proposed advantages are the highly specific imaging
of labelled cells, since there is no native background signal
as seen with proton imaging used with regular T1- or T2-
type contrast agents, and that quantification of the contrast
agent and thus indirectly the number of cells is more
straightforward than with iron oxide particles [89]. Limited
sensitivity for MRI detection may, however, also be a
disadvantage for fluorine-based cell imaging. CEST agents
function by reducing the water proton signal through a
chemical exchange site on the agent via saturation transfer
[91, 92]. MR signal arising from protons tightly bound to a
specific class of molecules (proteins, lipids etc.) could be
selectively presaturated, and this saturation could then be
transferred to the signal of the bulk water, producing a
decrease in bulk water signal intensity. Major advantages
of CEST agents arise from the fact that the contrast effect
only arises after the saturation pulse is administered at the
specific frequency. Therefore, the contrast can be switched
on and off and multispectral imaging can be performed,
meaning that various cell populations labelled with
different contrast agents can be visualised [94]. Further-
more, CEST agents can be used to monitor clinically
relevant physiological properties such as in vivo temper-
ature mapping [94], pH mapping [95] and monitoring of
enzyme activity [96]. Furthermore, the combination with
liposomes offers the possibility of liposome-based chem-
ical exchange saturation transfer (lipoCEST) [97]. The size
of liposomes can be exploited to enhance the lipoCEST
contrast. The size of the liposome determines the amount of
water protons available in the liposomal vesicle and the
exchange rate of water molecules over the liposomal
membrane [98, 99]. Through these effects, smaller liposomes
are more efficient in saturation transfer but larger liposomes
perform better on a lipid molar-based comparison.

Another technical development for monitoring cell
biological and physiological processes with high clinical
potential is 13C labelling of molecules [97]. Depending on
the molecules selected, MR imaging or spectroscopy can

be used for in vivo monitoring of metabolic processes
[100, 101], mapping of tissue perfusion [102] and pH
mapping of tissue spaces [103].

Cell labelling methods

Association of cells with contrast agents can be achieved
by nonspecific as well as specific cell labelling approaches
(see below). For each of these approaches several bio-
logical or biochemical principles can be employed. In most
cases, however, a rather complex biological process called
endocytosis, which encompasses a variety of pathways, is
central to the uptake of material from the extracellular
environment into the cell [103–107]. Depending on the cell
type, the contrast agent used and the specific cell labelling
method used, contrast agents can be incorporated into
the cell by phagocytosis, pinocytosis, receptor-mediated
endocytosis, and caveolin-dependent and -independent
endocytosis. In general, cell labelling methods are aimed
at incorporation of the label into the cell (Fig. 1a–c).
Various strategies are possible and are either mainly
suitable for ex vivo labelling of cells or can be used for
both in vitro and in vivo labelling strategies.

Nonspecific cell labelling

Nonspecific cell labelling approaches can in principle be
used for all kinds of cells as they are based on general
biological or biochemical principles. Because of the lack of
specificity of these approaches, nonspecific cell labelling is
generally suitable for ex vivo cell labelling, but can also be
used in vivo. Nonspecific cell labelling can be performed
on mixed, undefined as well as on defined and purified cell
populations depending on the labelling method used. The
efficacy by which this can be done strongly depends on the
cell type [63], the specific labelling method [108] (see
below) and the type of contrast agent used [14, 56, 109].

Nonspecific cell labelling approaches can roughly be
divided into direct and indirect approaches.

Nonspecific direct cell labelling

The most straightforward approach to cell labelling is the
direct cell labelling method, where the label is added to the
culture dish of cultured cells for “spontaneous” uptake of
the label by the cells. The efficacy of this labelling method
is strongly dependent on cell-specific properties. Cells
that normally fulfil a function as scavenger or antigen-
presenting cell (e.g. dendritic cells) generally show good
incorporation of the label via the direct labelling method.
Other types of cells, however, show a large variation in
incorporation efficiency [108]. The advantage of direct
cell labelling is that there are no additional agents or
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Fig. 1 Labelling efficiency of cells with iron oxide. a Stem cells in
a culture dish with iron oxide–Lipofectamine complexes sedimented
on the bottom of the culture dish (black arrow) and inside cells
(white arrow). b Prussian blue-stained cell showing presence of iron
oxide particles in the cell. c Electron microscopy image showing
iron oxide particle complexes in intracellular vesicles. d–i LIVE/
DEAD assay, using calcein and ethidium homodimer-1, of iron-
labelled cells at two labelling doses with iron oxide of 200 μg (d–f)
and 800 μg (g–i). Panels d and g show regular bright field
microscopy images; e and h, green probe for living cells; and f and i,

red probe for dying cells. Note the decrease in the number of cells at
the higher labelling dose and the increase in dying cells. j
Mesenchymal stem cells in culture. k Labelled mesenchymal stem
cells after differentiation into fat cells stained for iron content with
Prussian blue. Note the clearly visible fat vacuoles. l Labelled
mesenchymal stem cells after differentiation into bone cells: left
panel stained for iron by Prussian blue, right panel stained for bone-
specific markers. m Tube forming of iron oxide-labelled endothelial
cells on Matrigel
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manipulations needed. Furthermore, this technique can not
only be used in vitro but also in vivo for phagocytic cells,
macrophages, dendritic cells and cells from the reticulo-
endothelial system. These cells easily incorporate the
contrast agents as they are capable of phagocytosing large
particles easily or they are capable of incorporating small
particles through pinocytosis. In vivo direct nonspecific
cell labelling is currently used to visualise Kupffer cells in
liver tissue, for lymph node imaging and for inflammatory
cells [57]. It allows cell-specific imaging in different
organs, but provides nonspecific labelling of all cell types
that take up the agent.

Nonspecific indirect cell labelling

To improve the efficacy of cell labelling with contrast
agents for various cell types, different so-called transfec-
tion reagents have been used. Transfection-mediated
endocytosis is suitable for all cell types and has a high
efficiency of label incorporation. This method is more
laborious than spontaneous endocytosis and there can be
toxicity of the transfection agent. There are many trans-
fection agents available, each with their own potential
benefits and drawbacks. The transfection reagents will
form complexes with the contrast agents.

Lipofectamine (Invitrogen, Carlsbad, CA, USA) is a
commonly used lipid-based transfection reagent, with high
transfection efficiency for a wide range of cell lines [110].
The positive charge on the cationic lipids helps to bind
the complexes to the cell membrane, after which the
complexes enter the cell via endocytosis. Lipofectamine
has been used as an additive in cell labelling studies for a
large variety of cell types and successful protocols for over
20 different cell lines are available (Table 1). However,
lipofectamine can only be used for cells that adhere to
culture dishes. Therefore, other transfection reagents are
needed to label cells in suspensions, such as the
transfection agents DMRIE-C (Invitrogen, Carlsbad,
CA, USA) or FreeStyle™ MAX (Invitrogen, Carlsbad,
CA, USA). The DMRIE-C transfection agent gives a
good performance for transfection of cells in suspension
such as lymphoid cell lines. The FreeStyle™ MAX
Reagent is a proprietary, animal-origin-free formulation
for the highly efficient transfection of eukaryotic cells in
suspension [111].

The transfection agent poly-L-lysine (PLL) is also a
commonly used agent for intracellular labelling [112]. The
positively charged PLL is used to allow the cells to adhere
with the cell membrane to negatively charged glass slides.
This mechanism of charge-related binding is similar to the
encapsulation of PLL–iron oxide complexes that will bind

Table 1 Methods for improved efficacy of contrast agent uptake

Name Cell type Efficiency Disadvantages Advantages

1 Lipofectamine™ [9, 22, 53,
171]a

Adherentb High Slightly toxic to cells Widely used
Simple protocol

2 Poly-L-lysine [18, 51, 77,
172, 173]

Allc High Slightly toxic to cells
Large variation in formulations available

Widely used
Simple protocol

3 Magnetodendrimer [12, 13,
174, 175]

Adherent High Slightly toxic to cells
Not widely available

Uptake is similar for different
cell types

4 Protamine sulfate [7, 21, 49,
176]

Adherent High Heparin anticoagulant
Tendency to form large aggregates

FDA-approved agent
Simple protocol

5 HIV-1 tat [17, 66, 177–179] Adherent High Possibility of undesirable immune response Fast labelling procedure

Potential nuclear localisation of contrast
agent

Prior chemical linkage to contrast agent
necessary

6 Electroporation [11, 24, 180,
181]

All Low Technically challenging Can be used for difficult-to-
transfect cells

Specialised equipment needed Cytoplasmic localisation of small
molecules

7 Gene gun [119, 120, 182] All Low Specialised equipment needed None
aReference papers
bCells growing in culture adhered to the bottom of the culture dish
cCells growing in culture adhered to the bottom of the culture dish as well as in suspension
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to the target cells resulting in uptake of iron oxide
nanoparticles (Table 1).

Magnetodendrimers [13] (Table 1) can enter the cell
through a nonspecific membrane adsorption process after
which the contrast agent will be localised in intracellular
(non-nuclear) endosomes. Regardless of which cell type is
used, transfection with magnetodendrimers shows a
comparable degree of particle uptake. A high level of
transfection is accomplished by using the heat-activated
dendrimer SuperFect (Qiagen, Valencia, CA, USA) [12].

Protamine sulfate [49] (Table 1) can be used to get a
contrast agent into the cell by endosome formation. The
advantage of protamine sulfate is that it is an FDA-
approved agent used as an antidote to heparin. However, in
gene therapy protocols, protamine sulfate is commonly
used for in vitro transfection [113]. Protamine sulfate
combined with the FDA-approved Feridex shows potential
for clinical application.

The peptide HIV-1 tat (derived from the trans-activating
protein of the human immunodeficiency virus type-1) can
also be used to internalise contrast agents (Table 1) [114].
This method is not dependent on a receptor, but translocates
exogenous molecules into cells. Cross-linked with iron
oxide particles the HIV-1 tat particles allow cell detection
with MRI. The HIV-1 tat peptide is the only transfection
agent that has been detected within the cell nucleus [17].

Contrast agents can also enter the cell via electroporation
[115] (Table 1). This can work well for cell types that are
difficult to transfect with commonly used transfection
agents. An electrical pulse creates a potential difference
across the cell membrane and induces temporary pores in
the cell membrane for the entry of the contrast agents.
Depending on the type of contrast agent used, this will
result in endosomal entrapment of the contrast agent
(nanoparticles) in the cell [115] or localisation of the
contrast agent in the cytoplasm (small molecules) [116].
Although no additional reagents are necessary for electro-
poration, specialised equipment is needed and the proce-
dure is technically challenging. It requires optimisation of
electrical pulse and field strength parameters [117].
Furthermore, there is a large variation in cell tolerance as
high toxicity levels are observed after electroporation. It
can irreversibly damage the membrane and lyse the cells.
Cell survival after labelling is usually not above 70% [118].

Another method of nonspecific cell labelling is by using
a gene gun (Table 1) [119, 120]. Gene guns were developed
to introduce genetic material into tissues, cells or organelles
[121]. It can also be used to introduce nanoparticles,
including MRI contrast agents, into cells. The material of
interest is “shot” into cells of the recipient using
pressurized helium that launches a disk carrying the
nanoparticles. This disk travels at the speed of a rifle
bullet, and hits a screen, which detains the disk, but
launches the microscopic particles towards the target cells.

There are no specific benefits described that favour the use
of a gene gun for cell labelling. The technique needs
specialised equipment and the efficacy of cell labelling is
difficult to manipulate. Furthermore, the potential adverse
effects are not yet known.

Specific cell labelling in vitro

The major advantage of specific cell labelling is that it
allows labelling of specific cells in a mixed cell population.
In vitro labelling can be established by using a targeting
vector, such as antibodies, peptides, aptamers, amino acids
and lectines conjugated to the contrast agent [14, 72, 122–
124]. These vectors will bind specifically to target
molecules/receptors on the cells of interest. Compared
with regular endocytosis, there is increased efficiency [19].
However, it needs previous knowledge of the expression of
the target molecule. Furthermore, there needs to be
chemical linkage of the label to the target molecule and
attachment of the probe to the receptor. This chemical
linkage of the ligand to the receptor could lead to
unintended triggering of biochemical processes. Further-
more, depending on the effect of receptor–ligand binding,
internalisation of the probe may not always occur. Without
internalisation, it could be possible that the contrast agent
might be rapidly cleared from the cell.

Other particles that can be used for cellular labelling are
microbeads. Microbeads used for magnetic cell sorting can
be used as a contrast agent linked to an antibody that is
bound to the target cell [125]. The advantage of this
labelling method is that the particles do not internalise, and
therefore it is assumed that no toxic effects of the particle
are exerted. Furthermore, it is not required to culture the
cells, as labelling can be performed in a cell suspension.
However, the attachment to the outer cell membrane is
likely to interfere with cell–surface interactions, and
unwanted activation of biochemical pathways, including
apoptosis, can result. Furthermore, cell membrane labelling
often does not result in sufficient signal for in vivo MR
imaging, and as the particles do not internalise, the
antibody might also easily detach and attach to other cells.

However, when labelling a complete cell population in
vitro, an additional probe to select a subpopulation of cells
is not needed and nonspecific labelling is preferred [126].

Specific cell labelling in vivo

The major advantage of specific in vivo cell labelling [127]
is that there are no preceding cell harvesting procedures or
any in vitro manipulations needed. Furthermore, one can
choose to label cells at any given time point. However, the
method faces an extra challenge because of the delivery
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barrier. There are several prerequisites for cell/tissue-
specific contrast enhancement in vivo. First, there should
be sufficient binding of contrast agent to the target cells.
This can be achieved, for example, by antibodies [128];
however, there should not be any steric hindrance on the
outside of the cell membrane if internalisation of the
antibody does not occur. It should also always be kept in
mind that the probe may be passed to other cells if the
primary labelled cell dies and is endocytosed by macro-
phages [129]. Second, for organ imaging, overcoming the
delivery barrier can be challenging, especially for neural
imaging when the blood–brain barrier has to be crossed.
Finally, most of the contrast agents that are nowadays used
in clinical practice have a fast clearance after injection
[130]. This does not allow a long follow-up with MRI.

Labelling protocol

A large variety of labelling methods have been described
[131]. There are so many different protocols because each
differs depending on which transfection agent is being
used, as well as which contrast agent is chosen, and
furthermore, which preferred labelling method is used i.e.
specific, unspecific, in vitro or in vivo. Moreover, the
relative dosage of contrast agents used to label cells, as well
as the incubation time, varies strongly between studies. For
example, the dosage for labelling cells with iron particles
may vary from 1 to 2,800 μg/ml. Furthermore, labelling
times of between 1 and 72 h have been described [114, 132,
133]. The combined effect of labelling dose and labelling
time determines labelling efficiency and/or toxicity, and
depends on the cell type used. The labelling method used
may influence the compartmentalisation of the probe
within the cells, and consequently the fate/behaviour and
toxicity of the probe. In vitro, it seems important to
quantify the amount of label per surface area instead of the
concentration of label in the fluid above the cells.

Not all contrast agents that are used to label cells are
commercially available. Studies that use non-commercially
available probes have their own manufacturing protocols.
Therefore, not only the protocol used to label the cells may
vary a lot, but also the method of preparing the desired
paramagnetic nanoparticles. What should be kept in mind
is that the preparation protocol of iron-coated particles, for
example, will lead to different physiochemical properties.

Labelling efficiency

It is important to check the efficiency of cell labelling, as
more label will in general lead to better visualisation with
MRI. Labelling efficiency can be assessed by two different
approaches, by evaluating how many cells are labelled or
by assessing how much label is incorporated within the
cells. It is very easy to look at the percentage of labelled

cells of the population of interest. This can be done by
counting the labelled cells under light, fluorescent or
electron microscopy. However, to quantify the amount of
contrast agent inside the cell, more laborious measurements
need to be performed. It should be kept in mind that the
labelling efficiency is dependent on many parameters such
as cell type, labelling method and labelling protocol.

To visualise iron in the cells/tissue after labelling, Prussian
blue [35] staining is a widely used and easy method. Using
potassium ferrocyanide in acetic acid or by dilutemineral acid
hydrolysis, ferric ions are released from protein-bound tissue
deposits. The non-haemoglobin-bound iron reacts with
potassium ferrocyanide to form potassium ferric ferrocyanide

(FeCl3 þ K4Fe CNð Þ6Ð KFe Fe CNð Þ6
� �þ 3KCl ). This is

an insoluble, blue compound known as Prussian blue
(Fig. 1b). The intensity of the colour gives some indication
as to the amount of iron (Fe3+); however, other sources of iron
besides Fe3+ will also have be to demonstrated. For example,
Fe2+ ions do not produce a coloured reaction product and will
therefore not be visualised by Prussian blue staining [134].

Another similar staining assay that can be used to
quantify the amount of iron in the cells is the QuantiChrom
iron assay [135]. This method utilises a chromogen that
forms a blue complex specifically with Fe2+. The Fe3+ in
the sample is reduced to Fe2+, and therefore the assay will
measure total iron concentration. The intensity of the
colour, measured by light spectrophotometry, is directly
proportionate to the iron concentration in the sample.

By performing atomic absorption spectrophotometry the
amount of iron can also be quantified [136]. In order to
analyse for any given element, a lamp is chosen that
produces a wavelength of light that is absorbed only by that
element. The technique usually uses a flame to atomise the
sample. The electrons of the atoms in the flame can be
promoted to higher orbitals by absorbing energy. This
amount of absorbed energy is specific to the particular
electron transition in a particular element. If any ions of the
given element are present in the flame, they will absorb
light produced by the lamp before it reaches the detector.
As the quantity of energy put into the flame is known, and
the quantity remaining can be measured, it is possible to
calculate how many of these transitions took place.
Therefore, the amount of light absorbed depends on the
amount of the element present in the sample. The signal
obtained is proportional to the concentration of the element
that was measured.

Inductively coupled plasma mass or optical emission
spectroscopy (ICP-MS or ICP-OES) can be used to
quantify the amount of contrast agent (gadolinium or iron
for example) in the cells/tissue after labelling [13, 40, 137].
Inductively coupled plasma spectroscopy is based on
optical emission spectroscopy. Emission spectroscopy is a
technique that examines the wavelengths of photons
emitted by molecules during their transition from an
excited state to a lower energy state. Each element emits a
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characteristic set of wavelengths according to its atomic
structure; by observing and quantifying these wavelengths
the elemental composition can be determined.

With nuclear MRI relaxation, labelling efficiency can
also be determined [13, 40, 137]. There are differences in
relaxation times between for example tissue and labelled
cells; therefore, with NMRI, the spin relaxation can be
measured. T1 relaxation refers to nuclei that return to the
thermodynamic state in the magnet. T2 relaxation refers to
precessing nuclei that fall out of alignment with each other
and stop producing a signal. The sensitivity of the
technique depends on the strength of the magnetic field.

Toxicity assessment

For molecular and cellular imaging, nontoxic biocom-
patible contrast agents are needed to safely and effectively
use MRI for cell tracking. To measure toxicity in vitro, cell
survival, cell proliferation and/or cell function have to be
monitored. A variety of assays are available to assess
potential adverse effects.

Cell survival

Cell viability can be defined as the number of healthy cells
in a sample. Whether the cells are actively dividing or
functioning is not distinguished. Cell survival can be
assessed in several different ways (Table 2). For example,
using light microscopy by counting the number of cells and
using trypan blue exclusion [138] (Table 2). Trypan blue is
a negatively charged chromophore that only interacts with
nonviable cells. In this assay, cell viability is measured by
the ability of cells with uncompromised membrane
integrity to exclude the dye. This assay is very simple

and cheap. However, each individual sample must be
counted and it only stains necrotic or very late apoptotic
cells.

Using spectrophotometry the conversion of tetrazolium
salts into formazan can be measured (Table 2) [139].
Formazan is a light-absorbing product formed by reduction
of tetrazolium salts in mitochondria. This reduction takes
place only when mitochondrial enzymes are active, and
therefore the amount of formazan formed can be directly
related to the number of living cells. However, one has to
keep in mind that under nonideal cell culture conditions,
mitochondrial metabolism may vary greatly because of the
metabolic state of the cells [139]. The measurement
obtained should therefore always be compared with
unlabelled controls. There are several commercial kits
available for measuring metabolic conversion of tetrazo-
lium salts into formazan, e.g. MTT assay, XTT assay and
WST-1 assay. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide) is an inexpensive assay
and MTT is metabolised by all cells into formazan crystals
that have to be solubilised before measurement. However,
cells with low metabolic activity must be used in high
numbers. XTT and WST-1 are tetrazolium salts that
form soluble formazan products; however, they are not
metabolised by all cell types.

With fluorescence microscopy the exclusion of a
fluorescent vital dye can be assessed. Fluorescent vital
dyes, like ethidium homodimer-1 or propidium iodide,
only enter nonviable cells [140] (Fig. 1d–i). The propidium
iodide exclusion assay (Table 2) is a quick and cheap assay
method to distinguish viable from dead cells by fluores-
cence microscopy and flow cytometry. The interaction of
the fluorescent vital dye or apoptosis marker with the cell
can be assessed. Only a small fraction of total cells from a
cell population is required; however, each individual
sample must be counted.

Table 2 Assays for assessing cell survival/cell viability

Name Biological principle Advantages Disadvantages

1 Trypan blue exclusion assay
[8, 10, 114]a

Cytoplasmic membrane
integrity

Simple
Inexpensive

Laborious
Stains only necrotic or late apoptotic cells

2a MTT assay [7, 21] Metabolic activity Detects living cells Signal is dependent on cell activation

Suitable for all cell types

High throughput

2b XTT assay/WST-1 assay [5] Metabolic activity Detects living cells Signal is dependent on cell activation

High throughput Not metabolized by all cell types

Fast assay

3 Propidium iodide exclusion
[7, 9, 114]

Cytoplasmic membrane
integrity

Simple
Inexpensive
High throughput

Toxic compound (health hazard)

aReference papers
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Some of the assays used for the assessment of cell survival
provide indirect measures of cell survival. For each assay,
calibration/validation of the assay for the specific cell type or
assay conditions is required, otherwise false positive or
false negative results may be obtained, e.g. reduction of
tetrazolium into formazan by mitochondria is used as a
measure of cell number. The rate of mitochondrial metab-
olism may, however, change without a corresponding
change in cell number.

Cell proliferation

Cell proliferation is the measurement of the number of cells
that are dividing in a culture as well as the speed of cell
division. Cell proliferation can also be assessed using
different techniques (Table 3). One way of measuring
proliferation is by performing clonogenic assays [141]. A
defined number of cells are plated on culture dishes in low
densities and the numbers of colonies that are formed after
a period of growth are counted. Drawbacks to this method
are that it is laborious and therefore not practical for large
numbers of samples. In addition, if cells divide only a few
times and then become quiescent, colonies may be too
small to be counted and the number of dividing cells may
be underestimated. Alternatively, growth curves could be
established by repeated counting of the number of cells

over time by light microscopy (Table 3), which is also time-
consuming and laborious [22].

A commonly used assay to measure proliferation is the
MTT assay. As with the assessment of cell viability, the
amount of formazan formed can be directly related to
the number of cells. In order to assess cell proliferation,
growth curves have to be generated from repeated
measures over time. Again, one has to keep in mind that
under nonideal cell culture conditions, the metabolic
state of the cells and thus formazan formation may vary
greatly [139].

Alamar Blue (Table 3) is a safe, nontoxic aqueous dye
that is used to assess cell viability and cell proliferation
[142]. Because the Alamar Blue assay requires a very
simple measurement, it does allow continuous monitoring
of cells even after the measurement. Alamar Blue consists
of an oxidation-reduction (redox) indicator that yields a
colorimetric change and a fluorescent signal in response to
a metabolic activity. The extent of conversion is a reflection
of cell viability and it can be quantified by its optical
density or by fluorescence for greater sensitivity [142].

Cell proliferation can also be monitored by assessing
DNA synthesis. The two most commonly used assays
are [3H]thymidine incorporation [143] and (5-bromo-2′-
deoxyuridine) incorporation [144] (Table 3). During the S
phase of cell division the cell undergoes DNA synthesis
and replicates its genome. Addition of [3H]thymidine or

Table 3 Assays for assessing proliferation

Name Based on Advantages Disadvantages

1 Cell counting [182]a Actual cell number Simple Laborious

Inexpensive Large number of cells needed

Actual cell numbers determined

2 MTT assay [7, 21] Metabolic activity High throughput Signal is dependent on cell activation

Sensitive (requires only a few cells) Separate samples per time point needed

3 XTT assay/WST-1
assay [5]

Metabolic activity High throughput
Sensitive (requires only a few cells)
Short period of incubation

Signal is dependent on cell activation
Not metabolized by all cell types
Separate samples per time point needed

4 Alamar Blue®
assay [183]

Metabolic activity High throughput
Sensitive (requires only a few cells)
Allows continuous/longitudinal
monitoring

High sensitivity to buffer conditions

5 [3H]Thymidine
incorporation assay

DNA synthesis High throughput
Sensitive (requires very few cells)

Radioactive

6 BrdU incorporation
assay [184]

DNA synthesis High throughput
Sensitive (requires very few cells)

Radicalization may itself lead to sister
chromatid exchanges

7 CFSE assay Protein binding High throughput Weak fluorescence after long culture time

Longitudinal measurements possible

Different populations within one
sample can be monitored

aReference papers
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bromodeoxyuridine (BrdU) to the culture medium provides
a way to assess DNA replication. [3H]Thymidine is a
radioactive compound and the amount of thymidine
incorporated into DNA is determined either by measuring
the total amount of labelled DNA in a population, or by
detecting the labelled nuclei microscopically. It is a
sensitive assay that allows linear measurement of cell
proliferation over a broad, logarithmic range. However, a
big disadvantage is that the radioactive isotope has a long
half-life.

Incorporated BrdU can be visualised by using a mono-
clonal antibody against BrdU (Table 3). BrdU incor-
poration and/or distribution can also be measured by
colorimetric or chemiluminescent immunoassays. The
colorimetric measurement is less sensitive than a chemi-
luminescence measurement, and it does not allow linear
measurement of cell proliferation. It should be noted that
the ability to detect a minimum number of proliferating
cells depends on the amount of BrdU incorporated into the
cells and thus on the labelling period. In most cases,
detection requires a labelling period of 2 to 24 h. However,
the assay is quite simple.

Carboxyfluorescein diacetate succinimidyl ester (CFSE)
is a fluorescent molecule that divides equally over daughter
cells, enabling visualisation of cell division [145] (Table 3).
When CFSE-labelled cells divide, the intensity of their
fluorescence is halved with each successive cell division
and therefore a final fluorescence measurement corresponds
to the number of divisions the cells have undergone.

When assessing cell proliferation there are potential
pitfalls. Similar to assays of cell survival, most assays used
are indirect measures of cell proliferation and calibration/
validation of the assay is required. Therefore, different
outcomes of toxicity assessment with identical cell labelling
protocols can be obtained with different assays [9].

Cell function

Besides evaluating cell survival and cell proliferation after
cell labelling, the third and very important requirement for
assessing toxicity is measurement of cell function. To

assess primary cell function cytokine production [19, 71,
137] (Table 4), cytolytic activity or tube forming capacity
[9, 146] (Table 4) can be evaluated. Furthermore, the
differentiation potential [40, 49, 51, 53] (Table 4) and the
capacity to migrate or home [15, 40] (Table 4) to
appropriate target tissues can be tested. In general, although
all the assays described provide complementary informa-
tion about cell function, not all tests are relevant for every
cell type and testing one of the assays described is enough
to make a general statement about cell function after
labelling.

Cytokines are proteins that are used extensively in
cellular communication and play an important role in the
development and functioning of the immune system, in
various pathologic processes and are also involved in
several developmental processes during embryogenesis.
Cytokine production can be measured in the supernatant of
cultured cells by using cytokine ELISA plates [129]. These
are sensitive enzyme immunoassays that can specifically
detect and quantify the concentration of soluble cytokine
and chemokine proteins; however, they do not provide
information concerning the biological potency of the
proteins detected.

Cellular differentiation is a complex process involving
growth arrest, exit from the cell cycle and expression of
differentiated cell-type-specific functions. Especially when
using stem cells, it is important that the labelling procedure
does not affect their ability to differentiate after injection in
vivo [53]. In differentiation assays cells are cultured in a
special medium containing specific growth factors that
induce cellular differentiation. After several days or weeks
the differentiation of the cells into a specific lineage can be
confirmed and/or assessed by looking at the cell pheno-
type, the morphological appearance and the expression of
cell lineage markers or specific receptors, using lineage-
specific dyes or antibodies (Fig. 1j–l).

Angiogenesis is altered as a result of certain diseases
such as cancer, diabetic retinopathy and rheumatoid arthri-
tis, which results in excessive or insufficient blood vessel
formation. Tube formation is a multistep process involving
cell adhesion, migration, differentiation and growth that is
very important in angiogenesis. Tube formation capacity

Table 4 Assays for assessing cell function

Functional capacity Most relevant forb Limitations and pitfallsc

1 Cytokine production [19, 71, 137]a Haematopoietic lineage cells Biological potency of cytokines undetermined

2 Tube formation capacity [9, 146] Stem cells Quantification difficult

Endothelial precursor cells

3 Cellular differentiation [49, 51, 53] Stem cells Lengthy assay (cell culture may take up to weeks)

4 Cell migration [15, 40] Haematopoietic lineage cells No discrimination between chemotaxis or chemokinesis

Stem cells
aReference papers
bCell types for which the listed functional capacity is most central or essential
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can be measured with a so-called Matrigel assay [147].
Matrigel is a solubilised basement membrane preparation
that is rich in proteins. The major components are laminin,
collagen and growth factors. It is mainly used for cell
invasion and tube formation assays. The tube formation
assay is based on the ability of cells to form 3D capillary-
like tubular structures when cultured on the gel of basement
membrane extract (Fig. 1h). Quantification can be
performed by manually counting the number of cell clusters
and branching under the microscope or automatically with
software. However, quantification is not easy because of the
complex 3D structures that are formed.

Cell migration is crucial for several processes within the
human body such as embryonic development, the inflam-
matory immune response, wound repair, tumour formation
and metastasis. One of the most frequently used in vitro
assays to assess cell migration capacity is the filter assay.
The assay involves a two-compartment system where cells
may be induced to migrate from an upper compartment
through a membrane with small pores into a lower
compartment [148]. The assay is based on a chemotactic
response of cells. However, chemotaxis, which is directed
movement, and chemokinesis, which is an undirected
increase in migratory activity, cannot be discriminated with
this assay. This is because an equilibrium of the chemo-
attractant between the two compartments will eventually be
formed. Cell migration through the membrane can be
measured by staining and quantifying the cells that attach
to the other side of the membrane.

Image acquisition

An MRI machine is a versatile imaging system that can
integrate a broad range of specialised applications, provid-
ing a wide basis for the diagnosis, staging or monitoring of
pathological conditions or biological processes, including
cell imaging. Its versatility, however, also makes it complex
and many factors may influence the information obtained
during image acquisition.

MR field strength

In vivo imaging of iron-labelled cells has been demonstra-
ted at magnetic field strengths ranging from 0.5 T to 17 T
(Table 5). In MR imaging, signal-to-noise (SNR) is
proportional to the magnetic field strength, as well as the
spatial resolution or imaging time. MR systems with higher
magnetic field strengths therefore offer advantages over
MR machines with lower field strengths. Nonetheless, it
must be kept in mind that higher magnetic field strengths
require faster signal sampling to counteract the dramati-
cally increased T2* shortening, e.g. at any air–tissue
interface (heart-lung, bowel etc.).

For cell imaging, higher field strength also appears to be
beneficial. Reported detection limits of iron-labelled cells
are lower at higher magnetic field strengths because of
increased susceptibility effects [149]. This higher detection
sensitivity may, however, depend on the anatomical
context of the labelled cells. At higher field strengths the
T1 relaxation of tissue lengthens and T2* shortens and
chemical shift effects may increase, each of which in turn
may decrease the conspicuity of iron-labelled cells.

It is unclear whether or not higher magnetic field
strengths are also beneficial for cell imaging using Gd-
based contrast agents. Commercial, Gd-based contrast
agents generally have low relaxivity, which becomes even
less at higher magnetic field strengths, leading to reduced
sensitivity [150]. Nonetheless, success with Gd-labelled
cells at high magnetic field strength has been reported
[5, 151].

Besides some potential benefits of high magnetic field
strengths in cell imaging, the management of higher heat
deposition may become problematic, especially if cell
imaging/tracking is to be performed effectively in humans.
The specific absorption rate (SAR) greatly limits acquisi-
tion speed in order to keep heat deposition limited at high
magnetic field strengths. Even for applications in animals,
there will also be limits that have to be respected. The most
frequently used imaging strategies for iron-labelled cells
involve T2*-weighted protocols employing gradient-

Table 5 In vivo cell imaging at various field strengths

Magnetic field strength (T) Cell type Contrast agent Target organ (species) Reference

0.5 MSC Ferumoxide Heart (rat) [52]

1.5 MSC Ferumoxide Kidney (rat) [152]

3.0 MSC Ferucarbotran Kidney (rat) [154]

4.7 Oligodendrocyte PC MION Spinal cord (rat) [153]

7.0 Embryonic SC Ferumoxtran Brain (rat) [10]

9.4 T cells CLIO Spleen (mouse) [185]

11.7 Dendritic cells SPIO Skeletal muscle (mouse) [137]

17.6 Embryonic SC VSOP Brain (rat) [186]

MSC mesenchymal stem cell, PC precursor cell, SC stem cell, MION monocrystalline iron oxide nanoparticles, CLIO cross-linked iron
oxide, SPIO superparamagnetic iron oxide, VSOP very small superparamagnetic iron oxide particles
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recalled echo (GRE) sequences. Such imaging strategies
are not radiofrequency (RF) intensive (low flip angle
regime). However, steady-state free precession (SSFP)
sequences (using high flip angles with short repetition
times, TR) on the other hand, are SAR intensive. Also, T1-
weighted protocols that may be used in the future with cells
labelled with contrast agents providing short T1 relaxation
times are SAR intensive.

MR imaging hardware

Generally, higher magnetic field strengths are being used to
improve the balance among SNR, resolution and imaging
time. Alternatively, SNR can be improved by using better
performance (multichannel) receiver systems. Small loop
coils with a diameter of less than 1 cm make it possible to
image single labelled cells in vitro (single cell level
detection with positive or negative contrast) at voxel sizes
in the order of 40×40×100 µm3 and acquisition times of
less than 30 min even at 3.0 T [9]. To provide optimal
image quality over larger fields-of-view phased-array-
combined small surface coils can be used. Generally, these
are more effective than volume coils for providing optimal
SNR. The gain in imaging speed that is possible with the
smaller coils can be traded effectively for higher in-plane
and through-plane resolution in molecular imaging appli-
cations. It must nonetheless be kept in mind that the smaller
the loop coil diameter is, the less the sensitivity volume will
be; signal reception (sensitivity volume) is limited to about
the radius from the surface coil.

MR sequences

Different acquisition sequences allow manipulation of
contrast mechanisms and possibilities for signal amplifi-
cation strategies for cell imaging in conjunction with
detailed anatomical and functional information. Tissue
contrast can be generated mainly through differences in
proton density and relaxation times (T1 and T2) by
adjusting the MR pulse sequence timings to provide a
suitable contrast to distinguish target structures. Imaging of
iron-labelled cells is commonly performed using T2- and
T2*-weighted imaging employing gradient echo or spin-
echo sequences [7, 10, 15, 114, 132, 152–154] (Fig. 2d).
For Gd-labelled cells T1-weighted spin-echo sequences are
most commonly used [5, 14, 39, 116, 151] (Fig. 2);
however, T2-weighted spin-echo sequences may also be
employed [8, 155]. Which type of contrast weighting will
be most beneficial for the imaging of Gd-labelled cells may
depend on the local Gd concentration or potentially the
intracellular compartmentalisation of the Gd [40, 116].

Improved detection sensitivity of labelled cells may be
obtained with the more sophisticated steady-state free
precession (SSFP) imaging techniques, also known as

FIESTA or True FISP [20, 48, 155–159]. However, it must
be taken into account that with SSFP images, contrary to
the more conventional spin-echo or gradient-recalled echo
sequences, high resolution imaging at reasonable image
quality is difficult to achieve (off-resonance effects on
signal behaviour) on clinical imaging equipment unless
more potent (customised) gradient insert coils are used.

Recently, new acquisition approaches have been pursued
to generate positive contrast from traditionally ‘negative
contrast’ materials such as iron oxide nanoparticles [160–
163]. In in vivo applications it sometimes proved to be
difficult to identify the presence of iron-labelled cells due
to the presence of other hypointense regions. In order to
facilitate the detection of iron-labelled cells in such regions,
investigators have used spectrally selective RF pulses to
excite and refocus water off-resonance in regions near the
labelled cells to obtain positive contrast [160, 163].
Alternatively, so-called white marker imaging has been
implemented, in which traditional GRE sequences are
modified to include a variable dephasing gradient, also
resulting in positive contrast [161, 162].

Unsolved issues

While cell imaging by MRI has already carefully entered
the clinical arena, several challenges still need to be met in
order to turn cell imaging by MRI into a robust technique
either in experimental settings or clinical applications.
These challenges comprise the ability to quantify the
number of labelled cells, the ability to distinguish viable
iron-labelled cells from other sources of iron or suscepti-
bility artefacts in tissue and the assessment of long-term
effects of intracellular contrast agents in terms of toxicity.

For the development and validation of cell-based
therapeutic strategies, quantification of the number of
cells, homing to or residing in the target organs, is of
crucial importance. For iron-labelled cells quantification
of cell numbers is feasible under controlled (in vitro)
conditions, using T2- or T2*-mapping approaches [164,
165]. However, robust in vivo quantification using such
MR relaxometry approaches is hampered by a variety of
factors: variations in tissue T2 and T2* values as a result of
field inhomogeneities, and physiological status [165],
density distribution of labelled cells [166] and changes in
intracellular iron loads as a result of cell division or iron
metabolism [166]. Several potential solutions to overcome
these complicating factors have been proposed and are
currently under investigation [4, 107, 149].

The signal changes caused by labelled cells in vivo are
unfortunately not unique features. Areas with signal loss or
signal gain similar to that produced by labelled cells can
also arise from various (patho)physiological conditions
such as: deposits of haemosiderin, blood flow and air–
tissue interfaces. Identification of labelled cells in or near
such areas may therefore be impossible. The use of tailored
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sequences [167], ultrashort echo times [168], off-resonance
techniques [169] or other new developments in MR
hardware or software may provide solutions in this respect.
Whether these solutions will also help in distinguishing
viable labelled cells from iron deposits released from dead
or dying cells or macrophages that have engulfed dead cells
is the question. A solution to the latter problem may be
provided by MR reporter gene technology [84].

Most studies on cells labelled with contrast agents have
demonstrated limited or no acute toxic effects on the
labelled cells. It is, however, still unclear whether or not
long-term toxic effects occur or whether or not the labelled
cells might cause any toxic effects or show compromised
function in vivo. In recent papers by Brekke et al. [40] and
Modo et al. [170] the need for detailed, long-term, in vitro
and in vivo assessment of the effects of contrast agent on
cell function was clearly demonstrated. Using a Gd-based

contrast agent (GRID), no detrimental effect of the contrast
agent on neural stem cell viability, migratory capacity or
multipotency was observed. Nonetheless, proliferative
capacity of the cells was reduced, and the in vivo functional
capacity of the cells was largely annihilated.

Conclusions

Although cell tracking with the MRI of paramagnetic
labelled cells is very promising, there are still many
challenges to overcome. The field is moving forwards
quickly, and newly developed contrast agents and imaging
technologies are very exciting. However, many hurdles
will still be faced in translating these new particles and
imaging strategies to the clinic. Issues regarding potential
cellular and systemic toxicity need to be resolved. For

Fig. 2 Magnetic resonance imaging of paramagnetically labelled
cells. a–c Stem cells in a culture dish labelled with fluorescent
nanoparticles containing Gd-DTPA, imaged by MRI (a), fluorescent
microscopy (b) and light microscopy (c). Acquisition parameters for
MRI: 3D-SPGR sequence with TE=3.0 ms, TR=31.0 ms, α=50°
and resolution 142×142×100 µm3. d MR image of stem cells
labelled with iron oxide particles, injected into the myocardium of a

rat heart. Acquisition parameters for MRI: 2D CINE GRE sequence
with TE=4.5 ms, TR=18.0 ms, α=18° and resolution 156×156×
700 µm3. e MR image of stem cells labelled with fluorescent
nanoparticles containing Gd-DTPA, injected into the myocardium of
a rat heart. Acquisition parameters for MRI: 3D T1W GRE sequence
with TE=1.5 ms, TR=11.1 ms, α=50° and resolution 215×215×
600 µm3
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instance, the recent discussion regarding the link between
gadolinium-based contrast agents and nephrogenic sys-
temic fibrosis (NSF) may hamper the licensing of newly
developed Gd-based contrast agents. Imaging strategies
developed on dedicated animal scanners may prove
difficult to transfer to clinical scanners.

For further advancement of the field more systematic
approaches and development of standardised (clinically
applicable) protocols will be crucial. The focus should not
only be on the ability to visualise cells with MRI, but also
on methods of quantifying cells and for each (new)
labelling approach detailed and thorough assessment of
acute and chronic cell functionality should be performed.
In order to facilitate comparison between different studies it

would be very useful if the assessment of toxicity (on cell
survival, cell proliferation or cell function) could be
assessed using similar assays.
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