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Optical tomography of the neonatal brain

Abstract A new method of assessing
neurological function and pathology
in the newborn infant is being devel-
oped based on the transmission of
near-infrared light across the brain.
Absorption by blood over a range of
wavelengths reveals a strong depen-
dency on oxygenation status, and
measurements of transmitted light
enable the spatial variation in the
concentrations of the oxygenated and
de-oxygenated forms of hemoglobin
to be derived. Optical tomography has
so far provided static three-dimen-
sional maps of blood volume and

oxygenation as well as dynamic im-
ages revealing the brain’s response to
sensory stimulation and global hemo-
dynamic changes. The imaging mo-
dality is being developed as a safe and
non-invasive tool that can be utilized
at the cotside in intensive care. Optical
tomography of the healthy infant brain
is also providing a means of studying
neurophysiological processes during
early development and the potential
consequences of prematurity.
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Introduction

Over the past 25 years there has been a dramatic increase in
the survival of infants born prematurely. However, despite
the advances in neonatal intensive care, brain injury in the
perinatal period remains a significant cause of death or
permanent and severe impairment [1]. A major develop-
ment in the care of these vulnerable infants was the ability
to image the brain using ultrasound, first described by Pape
et al. [2]. This is now a routine clinical tool and provides
good anatomical information, particularly in infants with
periventricular hemorrhage and post-hemorrhagic hydro-
cephalus. However, the correlation between brain structure
and function is not straightforward. The ability to assess
functional integrity of the brain would represent a major
advance in the brain-orientated care of critically ill
neonates.

Alterations in cerebral perfusion and oxygenation have
been described and implicated in the pathophysiology of
brain injury in both preterm and term infants [3]. Regional
variations in cerebral oxygenation are also known to exist,
so that while global oxygenation may appear adequate,
regional variations leave areas of the brain at risk of
permanent neurological damage. Currently, there is no
clinical technique that can provide repeated quantitative
regional information on cerebral oxygenation at the
cotside.

The potential of near-infrared radiation for monitoring
cerebral oxygenation and hemodynamics has been widely
known since Jöbsis [4] first demonstrated that transmit-
tance measurements could be used to monitor the degree of
oxygenation of hemoglobin and cytochrome aa3. While
hemoglobin, only present in red blood cells, provides an
indicator of blood oxygenation, cytochrome aa3 is an
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enzyme in the oxidative metabolic pathway, and provides
an indicator of tissue oxygenation. This led to the
development and increasingly widespread use of clinical
near-infrared spectroscopy (NIRS), which offers a safe,
non-invasive means of monitoring cerebral function at the
bedside [5]. Typically, NIRS monitors the intensity of light
passing through brain tissue at two or more wavelengths
and converts the observed changes in attenuation into
changes in the cerebral concentrations of oxyhemoglobin
[HbO2] and deoxyhemoglobin [Hb], which then yield the
mean cerebral oxygen saturation. Although NIRS has
become an effective research tool for studying infant
cerebral hemodynamics, metabolism and neural activation
[6–11], researchers have explored the possibility of
extending NIRS into an imaging modality. The principle
challenge underlying imaging with light is to minimize the
blurring effects of scatter. Whereas measurable amounts of
near-infrared light can be detected after propagating across
several centimeters of brain tissue, widespread scatter
ensures that any initial directionality of an incident beam is
entirely lost after traveling only a few millimeters.

Two closely related imaging approaches have been
developed, known as optical tomography and optical
topography [12]. For optical topography, measurements
of diffusely reflected light are acquired at small (<3 cm)
source-detector separations over an area of the scalp. By
keeping the separation low, measured signals are relatively
high and therefore may be acquired quickly, enabling brain
activity with characteristic responses as fast as 100 ms or so
to be studied and images to be displayed in real-time.
Optical topography has been widely used to study the
evoked response of the infant brain to a broad variety of
sensory stimuli [13–16]. However, the small separations
restrict the sensitivity to surface (cortical) tissues.

By comparison, three-dimensional (3D) optical tomog-
raphy is a significantly more challenging task, requiring
sophisticated reconstruction algorithms and more sensitive
and expensive technology. While much of the development

has been (and continues to be) focused on breast imaging
[17–20], the methodology and instrumentation are gen-
erally the same for brain imaging. In the following sections
we review the principles behind optical tomography and its
uses so far for acquiring images of the newborn infant
brain.

Optical tomography

Optical tomography is based on the general principle that a
finite set of measurements of transmitted light between
pairs of points on the surface is sufficient to reconstruct the
3D distribution of internal scattering and absorbing
properties [21]. The instrumentation consists of an array
of optical sources and detectors arranged over the infant
scalp (Fig. 1a). A measurement with each source-detector
pair is sensitive to the absorbing and scattering properties
of tissues within a “banana-shaped” volume known as the
photon measurement density function (PMDF) as illus-
trated in Fig. 1b [22]. In principle, images can be
reconstructed by “back-projecting” along each PMDF in
a manner analogous to X-ray computed tomography (CT).
First, it is necessary to estimate the shapes of the PMDFs
using a mathematical model of light transport within the
tissue. Since the internal optical properties are initially
unknown, a homogenous model based on the estimated
average properties of tissues is often employed for this
purpose. However, the form of each PMDF is strongly
influenced by heterogeneity in the optical properties, and
differences between the true and modeled distributions of
properties can lead to significant errors in the image.
Therefore, using a so-called “non-linear” approach, some
investigators employ an iterative scheme to derive refined
estimates of the PMDFs. Iterations normally start with a
first guess for the optical properties consisting of homo-
genous distributions of absorption and scatter. The images
obtained after each iteration are then used to generate new

Fig. 1 a Sources and detectors
distributed on an infant head
for optical tomography; b) vol-
ume sampled by a single source-
detector pair, known as a
photon measurement density
function (PMDF)
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PMDFs, and this process is repeated until no further
improvements in the absorption and scatter images are
observed. Unfortunately, unlike X-ray CT, optical tomog-
raphy image reconstruction is both ill-posed (the solution
may not be unique or cannot be achieved through stable
convergence) and highly underdetermined (the number of
unknowns, i.e., pixels in the image, far exceeds the amount
of data) [21]. To make the problem more tractable, optical
tomography has so far depended on models of light
propagation in tissue based on various simplified assump-
tions, which can lead to inaccuracies in the images.
However, advances in theory and computing technology is
enabling the development of increasingly more sophisti-
cated reconstruction techniques. The underlying theory and
state-of-the-art reconstruction methods are described in
detail in recent topical reviews by Arridge [21] and by
Gibson et al. [23].

The ultimate goal of optical tomography is to generate
3D images that represent the absolute absorbing and
scattering properties of the investigated tissue, with the
highest possible spatial resolution and quantitative accura-
cy. While absorption properties measured at two or more
wavelengths can provide information on blood volume and
oxygenation within the brain, scatter may be a valuable
indicator of variation in myelination [23]. To acquire such
images from a single set of measurements on an infant head
requires a very precise knowledge of the head geometry
and of the locations of the sources and detectors. So far, at
least, it has proven difficult to achieve the required degree
of precision for optical tomography of the infant brain due
to the irregularity of head shapes and due to technical
constraints resulting from the comfort and safety require-
ments of the head/instrument interface [24]. This imaging
approach also demands a mathematical model that can
mimic all possible distributions of optical properties within
the infant head (including non-scattering regions) and an
accurate estimate of the noise characteristics of the
instrumentation [23]. Reconstruction of the absolute opti-
cal properties is significantly aided by acquiring a second
set of measurements on a so-called reference object with
known (and typically homogenous) optical properties
using identical source and detector locations. In principal,
differences between the two sets of measurements enables
the tissue properties to be derived, while errors due to
geometrical uncertainties largely cancel, as do some
systematic sources of error in the measurements [25].
This technique is widely employed for optical tomography
of the breast [20, 26, 27]. Previous attempts to reconstruct
3Dmaps of absolute optical properties of the infant brain are
summarized in “Static imaging of the infant brain” section.

Meanwhile, an alternative approach to optical tomogra-
phy is to generate images of changes in optical properties
that occur due to a natural or induced alteration in blood
volume and/or oxygenation. This requires obtaining two
sets of data, before and after the change, which can
normally be achieved in rapid succession without move-

ment of the interface or adjustments to the instrument. So-
called “difference imaging” has been shown to be highly
robust when uncertainties in tissue geometry are significant
or when very simple tissue models are employed [25]. In
most situations it is appropriate to assume that scattering
properties have remained unchanged, which further
simplifies the image reconstruction problem. However,
quantitative accuracy of the derived changes is inevitably
compromised if the reconstruction algorithm includes no
prior knowledge of the absolute distributions of scatter and
absorption. The difference imaging approach is commonly
applied to optical topography of evoked response to
sensory stimuli by acquiring baseline data prior to activa-
tion [14–16], although averaging over several repeated
stimuli is often necessary due to the weakness of the signal.
Optical imaging of the natural variation in vascular
response has been pioneered by the group of Dr. Randall
Barbour at the State University of New York, who
synchronize data acquisition with the cardiac cycle [28].
Optical tomography of sensory stimulation and global
hemodynamic changes in the newborn infant brain is
reviewed in “3D imaging of hemodynamic activity” section.

Static imaging of the infant brain

Optical tomography of the neonatal brain was first
demonstrated by the group of Dr. David Benaron at
Stanford University [29, 30]. Their imaging system
measures the flight times of photons that scatter across
the brain between points on the head circumference using a
flexible headband that holds up to 34 pairs of source and
detector fibers in contact with the head (Fig. 2). The head is
illuminated using pulses of near-infrared light at each
source location, and the distribution of photon flight times
(commonly known as the temporal point spread function,
or TPSF) at each detector fiber location is recorded.
Compared to simple intensity measurements, time-of-flight

Fig. 2 Optical tomography of the infant brain using a flexible
headband developed by researchers at Stanford University [30]
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data contain significantly greater information about the
internal optical properties, enable the effects of scatter and
absorption to be distinguished and are comparatively
insensitive to the coupling of light into and out of the
surface [31, 32].

Images representing a transverse slice across the brain
were reconstructed by the Stanford group using a simple
method that involves deriving absorption and scattering
parameters from each TPSF using an analytical model, and
then back-projecting along anticipated statistically aver-
aged paths of photons between each source-detector pair
[33]. Scans performed on infants at a variety of gestational
ages successfully identified intracranial hemorrhage [30,
34] and focal regions of low oxygenation after acute stroke
[29]. Figure 3 shows an image obtained on an infant with
large bilateral intraventricular hemorrhages (confirmed by
ultrasound), which clearly indicates the lesions. The
grayscale is proportional to the total optical absorbance at
785 nm [34]. A major drawback is the prolonged scan
times (up to several hours), which is a consequence of the
low source power (100 μWaverage) and the use of a single
electronic detector. The source power also limits the
maximum source-detector separation to about 5 cm, and
therefore information about optical properties near the
center of the infant brain is inevitably compromised. A
further limitation of the method is the acknowledged
simplicity of the image reconstruction algorithm, which
ignores the inherent 3D nature of photon migration in
tissues and the highly heterogeneous structure of the infant
head.

These technical limitations have been largely overcome
by our group at University College London (UCL) using a
32-channel time-resolved system [35]. The instrument
illuminates the infant head at up to 32 points sequentially
while detecting transmitted light at 32 other locations
simultaneously, resulting in a maximum of 1,024 separate
TPSFs with an overall temporal resolution of about 100 ps.
A fiber laser source is used that provides mean powers of
up to 55 mW at each of two wavelengths (780 nm and
815 nm), enabling signals to be measured across the entire
thickness of an infant head, and a full scan to be performed
in about 5–10 min. Initial studies on premature infants used
custom-made foam-lined, plastic helmets whose dimen-
sions were based on a series of measurements acquired
from digital photographs of each infant prior to the study.
However, more recent studies have been performed using
an adaptable helmet that provides sufficient adjustment to
accommodate head sizes of infants from about 24 weeks
gestational age to term (Fig. 4).

To date, nearly 40 infants have been scanned using the
UCL system, with roughly two thirds of the scans yielding
data sufficient for reliable image reconstruction. Failure to
obtain images has been due to a variety of factors, such as
infant movement, a poorly fitting helmet or instrumental
instability. Images representing absolute optical properties
have been generated with the aid of measurements on
homogeneous reference objects placed into the helmet
immediately following the infant scan. Three types of
reference object have so far been employed: a fluid-filled
balloon [36], a fluid-filled latex shell [24] and a

Fig. 3 An optical absorption image of an infant brain revealing
large bilateral hemorrhages (indicated by arrows), generated using
the Stanford University optical tomography system [34]

Fig. 4 A newborn infant wearing the UCL adjustable helmet during
an optical tomography scan
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compressible head phantom filled with polyvinyl alcohol
slime [37], each with uniform tissue-like optical properties.
Images of the absorption and scattering properties of the
infant brain have been reconstructed using the iterative
non-linear algorithm known as TOAST (temporal optical
absorption and scattering tomography) developed at UCL
by Prof. Simon Arridge and his colleagues [21, 38].
TOAST compares the measured data with the simulated
data derived from a computer model of the infant brain and
updates the model iteratively until a satisfactory match is
achieved. The absorption images reconstructed at the two
wavelengths have been used to generate images of regional
cerebral blood volume (rCBV) and regional tissue oxygen
saturation (rStO2) [39].

Static brain images are images reconstructed with
reference to the homogenous phantom with no change in
the state of the infant during data acquisition. Images have
been reconstructed from both healthy infants [24] and
infants with evidence of intraventricular hemorrhage (IVH)
on cranial ultrasound scan [24, 36]. We have found the
images of rCBV and rStO2 from the healthy infants to be
symmetrical, but to exhibit considerable regional hetero-
geneity. This is consistent with studies of regional cerebral
perfusion using SPECT, demonstrating the vulnerability of
the periventricular white matter to hypoxic-ischemic injury
[40]. This contrasts with images from infants with evidence
of unilateral IVH on cranial ultrasound scans. These
images are asymmetrical with a greatly increased amount
of light absorption on the side of the hemorrhage,
consistent with a resolving blood clot. Figure 5 shows
coronal slices from 3D images of rCBV and rStO2 from a
34-week gestational age infant with left-sided intraventric-
ular hemorrhage, and a corresponding cranial ultrasound
scan. A distinct area of desaturated hemoglobin on the left
side is exhibited (10% compared to 62% on the contralat-
eral side), although more lateral and superficial than the
position indicated by the ultrasound scan. An ischemic
penumbra surrounding hemorrhagic lesions has been
described both in adults and infants [41, 42].

3D imaging of hemodynamic activity

As described above in “Optical tomography” section, imaging
changes in optical properties enables a more robust
difference imaging approach to be employed without the
requirement of reference measurements on a homogeneous
object. While effectively used by many groups for optical
topography of the cerebral cortex, so far only our group at
UCL has attempted whole-brain optical tomography images
of hemodynamic changes in infants. The first successful
study of global changes resulting from small alterations in
ventilator settings was performed on a severely brain-injured
38-week-old female [43]. She had suffered a severe global
hypoxic-ischemic insult following uterine rupture, and
required mechanical ventilation, sedation and muscle
relaxants. After attaching the helmet to the infant, sets of
data at two wavelengths (780 nm and 815 nm) were acquired
over a period of 3 h for various settings of the respiration rate
and fractions of inspired oxygen. This enabled images of
changes in optical properties to be reconstructed correspond-
ing to specific changes in the partial pressures of either carbon
dioxide (PaCO2) or oxygen (PaO2) or both. For example,
Fig. 6 shows (a) coronal and (b) sagittal slices revealing the
changes in absorption at 815 nm due to an increase in PaCO2.
Vasodilation in response to increased PaCO2 produces an
expected global increase CBV. Figure 6 appears to show the
two cerebral hemispheres with central regions of lower
absorption at the expected position of the ventricles.

Meanwhile, a recent pilot study at UCL on a small
cohort of pre-term babies has led to the first 3D optical
images of the entire neonatal head during motor-evoked
response [44]. Data were acquired during bilateral passive
arm movement, repeated for 12 source positions. Figure 7a
shows the change in absorption at 780 nm occurring within
the brain of a 33-week-old male infant during passive
movement of the left arm, and Fig. 7b shows the
corresponding change for a 34-week-old female infant
during passive movement of the right arm. The dominant
feature in both cases is an increase within the contralateral

Fig. 5 Coronal sections of in-
fant brain images of (a) regional
blood volume, and (b) regional
oxygen saturation and (c) the
corresponding ultrasound scan
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cerebral hemisphere near the expected position of the
motor cortex. As shown elsewhere [44], the increased
absorption is a result of increases in both [HbO2] and [Hb].
This is consistent with reports on measurements on
neonates using NIRS [45], optical topography [46] and
BOLD fMRI [47], but is different from the changes
observed in adults in whom [Hb] decreases during evoked
responses. Unlike functional magnetic resonance imaging
(fMRI), these images were obtained in unsedated infants at
the cotside, and by obtaining images of [HbO2] and [Hb]
independently it is possible to distinguish the increased
oxygen extraction due to brain activation from changes in
regional blood volume due to vasodilation.

Discussion

Currently, the biggest challenges in 3D optical tomography
are to improve quantitation and spatial resolution. Phantom
experiments and clinical studies suggest that optical
tomography is unlikely to yield a spatial resolution of
better that 1–2 cm. Although this resolution is inferior to
that of established modalities such as MRI, X-ray imaging
and ultrasound, it is comparable to positron emission
tomography (PET), which, like optical tomography,
depends on the facility to distinguish between the
functionality of normal and abnormal tissues, rather than
the display of precise anatomical information. Improved
resolution is possible by incorporating prior anatomical
information from generic MRI scans of newborn infants,
and this approach is being actively pursued by our group at
UCL. Instrumentation remains another significant chal-
lenge. The current 3D tomographic system is large,
complex and requires highly specialist individuals to
perform the measurements, process the data and recon-
struct the images. We anticipate that this situation will
rapidly improve during the next few years as the associated
technology becomes cheaper, smaller and easier to use.
Despite the need for further improvements, results achieved so
far indicate that optical tomography has the potential to
become a powerful tool for understanding the early develop-
ment and function of the neonatal brain, and in the diagnosis
and management of critically ill babies in intensive care.

Acknowledgements The authors would like to thank Dr. Susan
Hintz and her colleagues for permission to reproduce Figs. 2 and 3.

Fig. 7 Sagittal slices across 3D image of absorption change in an
infant brain due to passive movement of the (a) left arm and (b)
right arm

Fig. 6 Coronal and sagittal slices across 3D absorption image of
brain in response to increase in ventilated CO2

2931



References

1. Marlow N, Wolke D, Bracewell MA,
Samara M, EPICure Study Group
(2005) Neurologic and developmental
disability at six years of age after
extremely preterm birth. N Engl J Med
352:9–19

2. Pape KE, Blackwell RJ, Cusick G,
Sherwood A, Houang MT, Thornburn
RJ, Reynolds EOR (1997) Ultrasound
detection of brain damage in preterm
infants. Lancet 1:1261–1264

3. Volpe JJ (2001) Neurology of the
Newborn. WB Saunders, Philidelphia
2001:428–493

4. Jöbsis FF (1977) Noninvasive, infrared
monitoring of cerebral and myocardial
oxygen sufficiency and circulatory
parameters. Science 198:1264–1267

5. Ferrari M, Mottola L, Quaresima V
(2004) Principles, techniques, and lim-
itations of near infrared spectroscopy.
Can J Appl Physiol 29:463–487

6. Brazy JE, Darrell V, Lewis MD,
Mitnick MH, Jöbsis FF (1985) Non-
invasive monitoring of cerebral oxy-
genation in preterm infants: Preliminary
observations. Pediatrics 75:217–225

7. Meek JH, Elwell CE, McCormick DC,
Edwards AD, Townsend JP, Steward
AL, Wyatt JS (1999) Abnormal cere-
bral hemodynamics in perinatally as-
phyxiated neonates related to outcome.
Arch Dis Child 81:F110–F115

8. Soul JS, du Plessis AJ (1999) New
technologies in pediatric neurology:
near-infrared spectroscopy. Semin
Pediatr Neurol 6:101–110

9. Nicklin SE, Hassan IA, Wickramasinghe
YA, Spencer SA (2002) The light still
shines, but not that brightly? The current
status of perinatal near infrared spec-
troscopy. Arch Dis Child Fetal Neonatal
Ed 88:F263–F268

10. Wolf M, von Siebenthal K, Keel M,
Dietz V, Baenziger O, Bucher HU
(2002) Comparison of three methods to
measure absolute haemoglobin con-
centration in neonates by near-infrared
spectrophotometry. J Biomed Opt
7:221–227

11. Wilcox T, Bortfeld H, Woods R, Wruck
E, Boas DA (2005) Using near-infrared
spectroscopy to assess neural activation
during object processing in infants. J
Biomed Opt 10:011010

12. Hebden JC (2003) Advances in optical
imaging of the newborn infant brain.
Psychophysiol 40:501–510

13. Chance B, Anday E, Nioka S, Zhou S,
Hong L, Worden K, Li C, Murray T,
Ovetsky Y, Pidikiti D, Thomas R
(1998) A novel method for fast imaging
of brain function, non-invasively, with
light. Opt Express 2:411–423

14. Hintz SR, Benaron DA, Siegal AM,
Zourabian A, Stevenson DK, Boas DA
(2001) Bedside functional imaging of
the premature infant brain during pas-
sive motor activation. J Perinat Med
29:335–343

15. Kotilahti K, Nissilä I, Huotilainen M,
Mäkelä R, Gavrielides N, Noponen T,
Björkman P, Fellman V, Katila T (2005)
Bilateral hemodynamic responses to
auditory stimulation in newborn in-
fants. Neuroreport 16:1373–1377

16. Taga G, Konishi Y, Maki A, Tachibana
T, Fujiwara M, Koizumi H (2000)
Spontaneous oscillation of oxy- and
deoxy-hemoglobin changes with a
phase difference throughout the occip-
ital cortex of newborn infants observed
using non-invasive optical topography.
Neurosci Lett 282:101–104

17. Pogue BW, Testorf M, McBride T,
Osterberg U, Paulsen K (1997) Instru-
mentation and Design of a frequency-
domain diffuse optical tomography
imager for breast cancer detection. Opt
Express 1:391–403

18. Culver JP, Choe R, Holboke MJ,
Zubkov L, Durduran T, Slemp A,
Ntziachristos V, Chance B, Yodh AG
(2003) Three-dimensional diffuse opti-
cal tomography in the parallel plane
transmission geometry: Evaluation of a
hybrid frequency domain/continuous
wave clinical system for breast imag-
ing. Med Phys 30:235–247

19. Schmitz CH, Klemer DP, Hardin R,
Katz MS, Pei Y, Graber HL, Levin MB,
Levina RD, Franco NA, Solomon WB,
Barbour RL (2005) Design and imple-
mentation of dynamic near-infrared
optical tomographic imaging instru-
mentation for simultaneous dual-breast
measurements. Appl Opt 44:2140–
2152

20. Yates TD, Hebden JC, Gibson AP,
Everdell NL, Arridge SR, Douek M
(2005) Optical tomography of the
breast using a multi-channel time-
resolved imager. Phys Med Biol
50:2503–2517

21. Arridge SR (1999) Optical tomography
in medical imaging. Inverse Probl 15:
R41–R49

22. Arridge SR (1995) Photon-measure-
ment density functions. Part I: Analyt-
ical forms. Appl Opt 34:7395–7409

23. Gibson AP, Hebden JC, Arridge SR
(2005) Recent advances in diffuse op-
tical imaging. Phys Med Biol 50:R1–
R43

24. Austin T, Hebden JC, Gibson AP,
Branco G, Yusof R, Arridge SR, Meek
JH, Delpy DT, Wyatt JS (2006) Three-
dimensional optical imaging of blood
volume and oxygenation in the preterm
brain. Neuroimage 31:1426–1433

25. Gibson AP, Yusof RM, Dehghani H,
Riley J, Everdell NL, Richards R,
Hebden JC, Schweiger M, Arridge SR,
Delpy DT (2003) Optical tomography
of a realistic neonatal head phantom.
Appl Opt 42:3109–3116

26. Jiang S, Pogue BW, McBride TO,
Paulsen KD (2003) Quantitative anal-
ysis of near-infrared tomography:
sensitivity to the tissue-simulating
precalibration phantom. J Biomed Opt
8:308–315

27. Li A,Miller EL, KilmerME, Brukilacchio
TJ, Chaves T, Stott J, Zhang Q, Wu T,
Chorlton M, Moore RH, Kopans DB,
Boas DA (2003) Tomographic optical
breast imaging guided by three-dimen-
sionalmammography.ApplOpt 42:5181–
5190

28. Bluestone AY, Abdoulaev G, Schmitz
CH, Barbour RL, Hielscher AH (2001)
Three-dimensional optical tomography
of hemodynamics in the human head.
Opt Express 9:272–286

29. Benaron DA, Hintz SR, Villringer A,
Boas D, Kleinschmidt A, Frahm J,
Hirth C, Obrig H, van Houten JC,
Kermit EL, Cheong W-F, Stevenson
DK (2000) Noninvasive functional im-
aging of human brain using light. J
Cereb Blood Flow Metab 20:469–477

30. Hintz SR, Benaron DA, van Houten JP,
Duckworth JL, Liu FWH, Spilman SD,
Stevenson DK, Cheong W-F (1998)
Stationary headband for clinical time-
of-flight optical imaging at the bedside.
Photochem Photobiol 68:361–369

31. Schweiger M, Arridge SR (1999)
Application of temporal filters to time
resolved data in optical tomography.
Phys Med Biol 44:1699–1717

32. Arridge SR, Lionheart WRB (1998)
Non-uniqueness in optical tomography.
Opt Lett 23:882–884

33. Benaron DA, Ho DC, Spilman S, van
Houten JP, Stevenson DK (1994) Non-
recursive linear algorithms for optical
imaging in diffusive media. Adv Exp
Med Biol 361:215–222

34. Hintz SR, Cheong W-F, van Houten JP,
Stevenson DK, Benaron DA (1999)
Bedside imaging of intracranial hem-
orrhage in the neonate using light:
comparison with ultrasound, computed
tomography, and magnetic resonance
imaging. Pediatr Res 45:54–59

2932



35. Schmidt FEW, Fry ME, Hillman EMC,
Hebden JC, Delpy DT (2000) A 32-
channel time-resolved instrument for
medical optical tomography. Rev Sci
Instrum 71:256–265

36. Hebden JC, Gibson A, Yusof R, Everdell
N, Hillman EMC, Delpy DT, Arridge
SR, Austin T, Meek JH, Wyatt JS (2002)
Three-dimensional optical tomography of
the premature infant brain. Phys Med
Biol 47:4155–4166

37. Hebden JC, Price BD, Gibson AP,
Royle G (2006) A soft deformable
tissue-equivalent phantom for diffuse
optical tomography. Phys Med Biol 51
(21):5581–5590

38. Arridge SR, Schweiger M (1997)
Image reconstruction in optical tomog-
raphy. Phil Trans Royal Soc London
Series B-Biol Sci 352:717–726

39. Hillman EMC (2002) Experimental and
theoretical investigations of near-infra-
red tomographic imaging methods and
clinical applications. PhD Thesis Uni-
versity of London. http://www.
medphys.ucl.ac.uk/research/borl/theses.
htm

40. Borch K, Greisen G (1998) Blood flow
distribution in the normal human pre-
term brain. Pediatr Res 43:28–33

41. Powers WJ, Press GA, Grubb RL,
Gado M, Raichle ME (1987) The effect
of hemodynamically significant carotid
artery disease on the hemodynamic
status of the cerebral circulation. Ann
Intern Med 106:27–34

42. Volpe JJ, Herscovitch P, Perlman JM,
Raichie ME (1983) Positron emission
tomography in the newborn: extensive
impairment of regional cerebral blood
flow with intraventricular haemorrhage
and haemorrhagic intracerebral
involvement. Pediatrics 72:589–601

43. Hebden JC, Gibson A, Austin T, Yusof
R, Everdell N, Delpy DT, Arridge SR,
Meek JH, Wyatt JS (2004) Imaging
changes in blood volume and oxygen-
ation in the newborn infant brain using
three-dimensional optical tomography.
Phys Med Biol 49:1117–1130

44. Gibson AP, Austin T, Everdell NL,
Schweiger M, Arridge SR, Meek JH,
Wyatt JS, Delpy DT, Hebden JC (2006)
Three-dimensional whole-head optical
tomography of passive motor evoked
responses in the neonate. Neuroimage
30:521–528

45. Meek JH, Firbank M, Elwell CE,
Atkinson J, Braddick O, Wyatt JS
(1998) Regional haemodynamic re-
sponses to visual stimulation in awake
infants. Pediatr Res 43:840–843

46. Kusaka T, Kawada K, Okubo K,
Nagano K, Namba M, Okada H, Imai
T, Isobe K, Itoh S (2004) Noninvasive
optical imaging in the visual cortex in
young infants. Hum Brain Mapp
22:122–132

47. Martin E, Joeri P, Loenneker T,
Ekatodramis D, Vitacco D, Hennig J,
Marcar VL (1999) Visual processing in
infants and children using functional
MRI. Pediatr Res 46:135–140

2933

http://www.medphys.ucl.ac.uk/research/borl/theses.htm
http://www.medphys.ucl.ac.uk/research/borl/theses.htm
http://www.medphys.ucl.ac.uk/research/borl/theses.htm

	Optical tomography of the neonatal brain
	Abstract
	Introduction
	Optical tomography
	Static imaging of the infant brain
	3D imaging of hemodynamic activity
	Discussion
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


