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Abstract
Phagotrophic protists (formerly protozoa) are a highly diverse, polyphyletic grouping of generally unicellular, heterotrophic 
eukaryotes that are key regulators of the soil microbiome. The biodiversity and ecology of soil phagotrophic protists are still 
largely uncharacterized, especially in the Antarctic, which possesses some of the harshest terrestrial environments known 
and potentially many physiologically unique and scientifically interesting species. Antarctic soil systems are also highly 
limited in terms of moisture, temperature, and carbon, and the resulting reduced biological complexity can facilitate fine-
tuned investigation of the drivers and functioning of microbial communities. To facilitate and encourage future research 
into protist biodiversity and ecology, especially in context of the broader functioning of Antarctic terrestrial communities, I 
review the biodiversity, distribution, and ecology of Antarctic soil phagotrophic protists. Biodiversity appears to be highly 
structured by region and taxonomic group, with the Antarctic Peninsula having the highest taxonomic diversity and ciliates 
(Ciliophora) being the most diverse taxonomic group. However, richness estimates are likely skewed by disproportionate 
sampling (over half of the studies are from the peninsula), habitat type bias (predominately moss-associated soils), inves-
tigator bias (toward ciliates and the testate amoeba morphogroup), and methodological approach (toward cultivation and 
morphological identification). To remedy these biases, a standardized methodology using both morphological and molecular 
identification and increased emphasis on microflagellate and naked amoeba morphogroups is needed. Additionally, future 
research should transition away from biodiversity survey studies to dedicated ecological studies that emphasize the function, 
ecophysiology, endemicity, dispersal, and impact of abiotic drivers beyond moisture and temperature.

Keywords Antarctic protozoa · Abiotic drivers of protist communities · Phagotrophic soil protists · Protist diversity · 
Corythion dubium

Introduction

Identifying links between biodiversity and function in soils 
is a priority for understanding both fundamental ecologi-
cal principles as well as for predicting and mitigating the 
effects of climate change on the biosphere (Wall 2005, 
2007; Nielsen et al. 2011; Chakraborty et al. 2012; Potter 
et al. 2013). Phagotrophic soil protists play critical roles in 
regulating soil bacterial communities and influencing plant 
functioning (Geisen et al. 2017; Gao et al. 2019; Singer et al. 
2021). Due to their intermediary size, phagotrophic protists 
form an essential link between soil bacteria and metazoan 

predators, like nematodes, which are too large to exploit 
many micro-soil habitats where bacteria are capable of 
thriving (Wilkinson et al. 2012). Phagotrophic protists can 
increase the productivity of microbial communities by main-
taining log-scale growth among prey species and encourag-
ing the growth of less abundant species (Crotty et al. 2012; 
Saleem et al. 2012, 2013). Phagotrophic protists also prey on 
other groups, including fungi, other protists, nematodes and 
other micro-metazoa (Bjørnlund and Rønn 2008; Rønn et al. 
2012; Geisen et al. 2015; Geisen 2016; Park et al. 2017a). 
Fewer studies have focused on these interactions, but they 
are likely to be more commonplace and important for food 
web structure than previously thought (Geisen 2016). Recent 
work thus shows how crucial soil protist research is to under-
standing general rules about soil community stability, resil-
ience, and nutrient cycling.
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However, the extent and nature of the influence of phago-
trophic protists on soil community dynamics and nutrient 
cycling is not well understood (Wardle 2006; Corno and 
Jurgens 2008; Saleem et al. 2013; Geisen 2016; Geisen et al. 
2017). One reason may be that soils are highly diverse eco-
systems and characterizing the sheer number and variety of 
biotic and abiotic interactions that are present is unfeasible 
(Bardgett and van der Putten 2014). Because of its harsh 
climate, continental Antarctica is home to some of the most 
depauperate soils on earth (Wall 2005; Convey et al. 2008), 
potentially facilitating the investigation of fundamental ques-
tions about the functional roles phagotrophic protists play 
in soil ecosystems (Fell et al. 2006; Thompson et al. 2020). 
Extreme low average temperatures, limited growth periods, 
very little liquid water, and highly nutrient limited and saline 
soils severely restrict biotic diversity (Adams et al. 2006; 
Barret et al. 2006; Priscu 2013). Although moss-associated 
soil habitats exist on the continent in areas that are consist-
ently moist (Foissner 1987, 1996; Broady 1989; Block 1994; 
Barman 2000; Bamforth et al. 2005), generally the largest 
concentration of mosses is found at higher latitudes in the 
NAP, where they form expansive banks (Royles et al. 2016). 
Instead, most ice-free regions consist of poorly developed 
and frequently unvegetated mineral soils that possess some 
of the lowest levels of bioavailable carbon in any terrestrial 
ecosystem (Burkins et al. 2001; Convey et al. 2008). They 
are also characterized by high levels of salt (due to a general 
lack of leaching processes), little to no precipitation (and 
almost always in the form of snow when it does occur), and 
low moisture (Block 1994; Priscu 2013). During the winter, 
temperatures at terrestrial sites are almost constantly below 
the known lower threshold for biological activity (~ −  20o C; 
see Kolb (2014)) and even during the summer, soils can 
frequently drop below temperatures at which most organ-
isms are able to remain active (Knox et al. 2015; Goordial 
et al. 2016).

The influence that phagotrophic protists have on soil 
processes is primarily through species-specific interactions, 
modulated by distribution, ecophysiology, prey preference, 
and life history traits of the protists themselves and their 
prey, predators, and pathogens (Bell et al. 2010; Glucks-
man et al. 2010; Rønn et al. 2012; Saleem et al. 2013). 
Understanding the nature of these interactions in any sys-
tem requires intimate knowledge of the taxonomic and 
functional diversity of phagotrophic protists (Glucksman 
et al. 2010), yet there is currently a dearth of information in 
this regard (Rønn et al. 2012; Wilkinson et al. 2012; Geisen 
2016). In protists, certain ecological functions (e.g., feed-
ing preferences) can be inferred from taxonomy (Adl et al. 
2019). However, relatively little work has been done to 
assess taxonomic diversity in Antarctic terrestrial environ-
ments over the last century (Acuña-Rodríguez et al. 2014) 
and the most recent reviews are now two decades old (Smith 

1996; Foissner 1998). Thompson et al. (2019) constructed 
a species checklist of phagotrophic protists in Antarctica 
by reviewing all relevant literature (Online Resource 1), 
arriving at a total of 236 species and 303 additional taxa 
not identified to species (Online Resource 2). Using this 
checklist and its literature reviewed as a baseline, I exam-
ine how phagotrophic protist diversity is structured at the 
regional scale (Terauds et al. 2012; Terauds and Lee 2016). 
I also explore how phagotrophic protist diversity differs by 
habitat type, specifically mineral soils and mosses, and how 
these organisms are influenced by abiotic and biotic drivers. 
Finally, I discuss the biases in our current understanding of 
this diversity, the challenges associated with assessing it, and 
what can be done to overcome each.

Approach to literature review and data 
analysis

The literature reviewed in this study was found by searching 
variants of relevant keywords (see Thompson et al. (2019) 
for the full list) in Web of Science, SCOPUS, and Google 
Scholar, and by following citation chains. A list of all studies 
and a database containing all taxonomic entries pulled from 
the reviewed literature, including notes on various metadata 
including sample source, location, and isolation techniques, 
are included in two supplemental tables (Online Resource 1 
and 2). A third supplemental table (Online Resource 3) lists 
all taxonomic entries, including those not identified to spe-
cies, organized by modern taxonomic groups (e.g., Amoe-
bozoa, Cercozoa, and Discoba; see Adl et al. (2019)), and 
presents their occurrence by biogeographic region (Terauds 
et al. 2012; Terauds and Lee 2016) and habitat type (e.g., 
soil or moss). Because many of the original identifications 
were based on morphology alone, and it is now known that 
accurate identification requires molecular characters for 
many species (Haentzsch et al. 2006; Howe et al. 2009; 
Kosakyan et al. 2013; Venter et al. 2018), I only used taxa 
identified to species for my analyses, and only analyzed 
patterns at higher taxonomic levels. Even still, the results 
discussed herein should be considered as preliminary and a 
foundation with which to frame future research into protist 
biodiversity and ecology in Antarctica.

Protist taxonomy has undergone major revisions in recent 
decades at both high and low taxonomic levels (Adl et al. 
2005, 2007, 2012, 2019; Ruggiero et al. 2015), and thus 
the taxonomy for the identified species in the review has 
been updated (Thompson et al. 2019). Protists were tradi-
tionally organized, using motility as a distinguishing charac-
teristic, into ciliates, testate amoebae, naked amoebae, and 
flagellates; only ciliates are still considered monophyletic 
(i.e., Ciliophora; see Adl et al. (2019)). Modernly, testate 
amoebae are found among the Cercozoa, Amoebozoa, and 
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Stramenopiles; naked amoebae are common among the 
Amoebozoa, but are found across the eukaryotic tree of 
life, including in the Cercozoa, Endomyxa, Heterolobosea, 
Filasterea, Nucleariida, and Stramenopiles; and flagellated 
protists are heavily polyphyletic and are included in vir-
tually every major protistan clade (Adl et al. 2005, 2007, 
2012, 2019). Because the studies reviewed herein span this 
transitional period in protistan nomenclature, many stud-
ies often used drastically different naming schemes. To 
bridge this gap, I discuss patterns in diversity using both 
old (motility-based) and recent (molecular-based) nomen-
clature. Although taxonomically obsolete, the motility-based 
nomenclature is still useful for two reasons: (1) this review 
is intended for non-protist experts who will encounter these 
organisms in the field and will initially recognize the organ-
isms by their motility; (2) the traditional motility-based 
nomenclature is still ecologically relevant since a protist’s 
function is influenced by its motility type (Rønn et al. 2012).

Experimental designs across studies varied, differing in 
terms of approach (methodology and target biota), scope 
(sampling effort), and metadata detail. For example, out of 
53 studies, eight were not surveys (for examples, see Park 
et al. (2017a), Park et al. (2018)), and 14 did not report 
sample number, making comparisons between studies and 

regions challenging. In order to include all relevant stud-
ies, I used the number of studies per region (which corre-
lated strongly with richness estimates, R2 = 0.95; see Online 
Resource 4, Fig. S1) instead of sample numbers to evaluate 
trends in richness and distribution. For discussions of the 
biogeography of phagotrophic protists in Antarctica, I modi-
fied Fig. 1 from Terauds and Lee (2016) to show the loca-
tion of and methodology used by each study reviewed (see 
Fig. 1). Less than 0.5% of the Antarctic landmass is ice-free 
(Burton-Johnson et al. 2016), with ice-free regions primar-
ily located on the Antarctic Peninsula, along the Transan-
tarctic Mountains, and around the rim of the continent. 
Terauds et al. (2012) and Terauds and Lee (2016) organized 
these ice-free habitats into 16 distinct bioregions using the 
regional structure of abiotic variables, available taxon bio-
geography, expert opinion, and considerations of dispersal-
limiting landscape features. Due to a paucity of records from 
certain bioregions, I consolidated Northwest and Northeast 
Antarctic Peninsula into North Antarctic Peninsula, and 
Central South and South Antarctic Peninsula into South 
Antarctic Peninsula. For the discussion of diversity across 
habitat types, I assigned all taxa identified to species for 
which habitat information was recorded (Online Resource 
2) to one of four categories: ‘Soil’, ‘Moss’, ‘Soil and Moss’, 

Fig. 1  Study locations and methodological type. Locations of 
regional study sites for all 53 studies, underlain by Fig.  1 from 
Terauds and Lee (2016) showing all 16 Antarctic biodiversity 
regions, modified using arcmap GIS and Adobe Illustrator. Ice-free 
regions are colored, different colors designate the different biodi-

versity regions. Triangles indicate morphology-only studies, circles 
molecular-only studies, and squares those studies that used both mor-
phological and molecular approaches. Arrows around the exterior 
show the general direction to other landmasses (i.e., Chile/Argentina, 
South Africa, and New Zealand)
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and ‘Other’ which includes samples that were ornithogenic, 
vegetated (beyond mosses), or had unclear terrestrial origins. 
Samples that could have been aquatic or benthic in origin 
were excluded (Decloître 1960, 1964; Hada 1964; Hodgson 
et al. 2010). A fifth category, “Not Reported”, encompasses 
those five species that did not have any associated habitat 
information (Online Resource 3). Although the habitat type 
categories used in this paper are strictly dichotomous and the 
difference between terrestrial moss and pure soil habitats is 
not (e.g., whether a moss sample also included the soil 
beneath), detailed metadata distinguishing between habitat 
types were not usually made in the studies reviewed, so a 
conservative approach was used.

Taxonomic diversity of phagotrophic 
protists across Antarctic biodiversity regions

Thompson et al. (2019) discussed the diversity of the Ant-
arctic continent and peninsula as a whole (an estimated 539 
distinct taxa), and in this section I will discuss that diversity 
in terms of regions, taxonomy, and habitat type. The North 
Antarctic Peninsula (NAP), East Antarctica (EA), and South 
Victoria Land (SVL) had an order of magnitude higher taxo-
nomic richness (155, 52, and 50 species, respectively) than 
the rest of the regions (all of which hade 5 or fewer spe-
cies with the exception of Adélie Land (AL), Enderby Land 
(EBL) and Dronning Maud Land (DML) which had 10, 15, 
and 12 species, respectively (Fig. 2A). More than half of 
the records (56%) were for taxa that were not identified to 
species, but this trend was not even across regions. EBL had 
the most taxa not identified to species (86%), while the two 
regions with the greatest proportion of studies (SVL and 

NAP) had the fewest (38% and 29%; Fig. 2B). How much 
phagotrophic protist diversity remains to be discovered has 
already been discussed recently (Thompson et al. 2019), but 
the results of a recent shotgun metagenome study in SVL 
(Thompson et al. 2020) suggest that diversity is potentially 
much higher than previously thought in even well-studied 
regions.

Trends in the biogeography of Antarctic 
phagotrophic protists

Antarctic phagotrophic protist diversity appears to be fairly 
heterogeneous and distinct from region to region; no sin-
gle region in Antarctica captures the entire diversity of the 
whole continent. Overall, 81% of all taxa identified to spe-
cies are unique to one region (Fig. 3). The origin of such 
high heterogeneity has two possible biological explanations: 
the first is that species unique to each region may repre-
sent endemic species that survived the last glacial maxi-
mum (LGM) in glacial refugia, an increasingly common and 
well-supported explanation for the endemicity of a number 
of other Antarctic biotic groups (Convey et al. 2009; Fraser 
et al. 2014). However, whether phagotrophic protists recolo-
nized ice-free habitat after the LGM has yet to be tested. 
Alternatively, regional endemicity could indicate that the 
connectivity between Antarctic regions and the nearest non-
Antarctic source pools, e.g., the southernmost tip of South 
America for the Antarctic Peninsula (Fernández 2015), is 
greater than between Antarctic regions themselves. This 
seems reasonable for peninsular communities due to their 
proximity to South America and the chain of islands that 
bridge the distance between the two landmasses (Smith 
1978). However, the distance between other Antarctic 
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regions and corresponding extra-continental source pools, 
e.g., South Africa and EA, and New Zealand and Victoria 
Land (see Fig. 1), is far greater and contains fewer interven-
ing islands, making this explanation potentially less likely 
outside of the peninsular Antarctic. Testing this hypothesis 
in the future will require caution: the existence of cryp-
tic species among protists makes comparisons of fauna 
from different locations difficult without molecular work 
(Smirnov and Brown 2004; Adl et al. 2007; Venter et al. 
2018). Some evidence suggests that apparently cosmopolitan 
protist taxa in Antarctica exhibit distinct ecophysiological 
traits (e.g., body size and temperature preferences; Bam-
forth et al. (2005), Royles et al. (2016)) and may therefore 
be genetically distinct lineages. Whatever the cause of the 
heterogeneous regional diversity, such a high degree of 
heterogeneity suggests that intra-continental dispersal of 
protists between regions is limited. Alternatively, the high 
heterogeneity could also be an artifact of regional sampling 
biases as over half of the studies were conducted in just two 
of the 13 biodiversity regions (NAP and SVL).

An interesting pattern in Antarctic biodiversity is the 
striking difference between the communities of the Penin-
sula and the rest of the continent (Chown and Convey 2007). 
This division is delineated by the Gressit line and holds true 
for many metazoa (i.e., nematodes, tardigrades, free-living 
mites, and springtails) and bryophytes (Cannone et  al. 
2013) but has not been tested in eukaryotic or prokaryotic 
microbes (Chown and Convey 2007). Comparing total pen-
insular diversity (NAP with SAP; 156 species) to combined 
continental diversity (EBL, SVL, NVL, EA, PCM, TM, 
AL, MBL, and DML; 118 species) revealed 39 shared spe-
cies. The peninsula produced a combined total of 27 studies 
and the continent 36 (Fig. 2B), suggesting that this result 
may not purely be a result of study number bias. Another 

reasonable explanation for the differences between the pen-
insula and the continent is the difference in climate. Broadly, 
the climate becomes increasingly extreme (drier and colder) 
as one moves toward the interior of the continent (Block 
1994; Lawley et al. 2004; Convey et al. 2014) and, indeed, 
latitudinal studies on phagotrophic protist biodiversity trends 
within Antarctica show decreasing diversity with increasing 
latitude (Smith 1982; Foissner 1996; Lawley et al. 2004).

Diversity by lineage and the most widely distributed 
taxa

Ciliophora account for the largest proportion of Antarctic 
phagotrophic protists, followed by Amoebozoa, Cercozoa, 
Discoba and then members of the Opisthokonta, Apicompl-
exa, Stramenopiles and non-ciliate Alveolates (collectively 
referred to hereafter as “Other”; Fig. 2A). In a latitudinal 
study (Lawley et al. 2004), both Cercozoa and Ciliophora 
were found at all latitudes sampled, while Euglenozoa (Dis-
coba) were not found south of the NAP. Numerous other 
studies have found Euglenozoa in EA, EBL, SVL and the 
NAP (Sudzuki 1979; Smith 1985; Bamforth et al. 2005) 
(Online Resource 2). EA, SVL and NAP possess a similar 
relative composition of Ciliophora, Amoebozoa and Cer-
cozoa, even though study number are not equal between 
them (Fig. 2B)—i.e., EA and SVL have around one third 
the recorded species as the NAP. Amoebozoa and Ciliophora 
dominate these three regions in terms of relative richness 
(Fig. 2A), and there is a strong bias toward amoebozoan 
testate amoebae. Well over half of Amoebozoa taxa in 
the NAP, EA and EBL are testates (75%, 100% and 100% 
respectively), while SVL Amoebozoa are slightly more 
diverse (only 39% testate amoeba). Cercozoan testate amoe-
bae are similarly dominant in the records, making up 71%, 
100%, 100%, and 67% of total Cercozoa in these regions, 
respectively. Amoebozoa are not reported from MBL, the 
TM, NVL or the PCM, while Ciliophora are reported from 
every region except AL and SAP, where the authors of the 
only studies in these regions exclusively targeted testate 
amoebae (Decloître 1960, 1964; Royles et al. 2013). These 
observations reflect the fact that most morphological stud-
ies focused exclusively on either testate amoebae (Penard 
1911, 1913; Decloître 1960, 1964; Smith 1987; Todorov and 
Golemansky 1996) or ciliates (Ryan et al. 1989; Foissner 
1996; Petz and Foissner 1996, 1997; Petz 1997; Mieczan and 
Tarkowska-Kukuryk 2014; Velasco-Castrillón et al. 2014) 
(Fig. 4). Possibly because of this investigator bias, testate 
amoeba diversity and distribution, especially in the NAP, 
are relatively well understood (Royles et al. 2016; Roland 
et al. 2017). There is no apparent investigator bias toward 
testate amoebae and ciliates among molecular studies, but 
such studies do recover fewer amoebozoan sequences (2 
out of 22 sequences from all molecular studies) than other 
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groups (Online Resource 2). Studies using a combination of 
morphological and molecular identification approaches are 
biased toward ciliates (Jung et al. 2015; Park et al. 2017a, 
2017b). Thus, it is not surprising that the known diversity 
of non-testate amoeba Amoebozoa and Cercozoa, and free-
living flagellate Discoba, is much lower than that of ciliates 
and testate amoebae. Discobans (including euglenozoans) 
make up only a small part of the overall diversity and are 
recorded from only the NAP, SVL and EA. Cercozoa have 
been recorded from every region sampled, but this diversity 
is predominantly comprised of testate amoebae (27 out of 39 
total Cercozoa), while flagellate cercozoans only account for 
23%. Flagellate cercozoans, and other flagellate lineages, are 
likely to be more abundant and ubiquitous in Antarctic soils 
and mosses than the current data suggests since these organ-
isms are a dominant component of terrestrial ecosystems in 
temperate climates (Geisen et al. 2014, 2015; Venter et al. 
2018), largely due to their small size and rapid response time 
to environmental changes (Foissner 1991). Cercozoa have 
an overall lower richness than Ciliophora (Fig. 2A), prob-
ably because many soil flagellates have superficially similar 
morphologies, which coupled with their small size (many 
are less than 10 microns in length) makes them easier to 
overlook and harder to identify (Boenigk 2008; Venter et al. 
2018). Future studies focusing on flagellate morphogroups 
specifically will be necessary to better understand phago-
trophic protist diversity and function in these ecosystems. 

Only 19 of the 236 identified species were encountered 
in three or more regions (Online Resource 3) and could 
potentially be considered members of most communi-
ties across the continent. On the other hand, if regional 
protist source pools were isolated during the LGM, then 
these seemingly widespread taxa could instead be distinct 
members of cryptic species complexes, descended from 
taxa that were widely distributed on the continent prior 
to increased glaciation during the LGM. In an analogous 
ecological event, Singer et al. (2019) found that sympatric 

speciation created a cryptic species complex in the testate 
amoeba Hyalosphenia papilio Leidy, 1874 after glacial 
retreat following the LGM in North America and Eura-
sia. Alternatively, these 19 widely occurring taxa could 
have a higher rate of dispersal due to their ecology (i.e., 
associations with moss or bird-influenced soils) or eco-
physiology (cryptobiotic capabilities or greater habitat 
plasticity) (Foissner 1987), and could have arrived recently 
(after the LGM) from proximal, non-Antarctic source 
pools (Fernández 2015) or recolonized more broadly and 
more quickly than other LGM refugia protistan taxa. Yang 
et al. (2010) found that protists less than 100–150 µm in 
length are more likely to be distributed across large dis-
tances (i.e., the Arctic and the Antarctic) and most of the 
19 taxa are indeed within this size range. To see whether 
this trend held for the less widely distributed taxa, I plot-
ted testate amoebae test lengths (Decloître 1960, 1964; 
Siemensma 2021) against bioregion occurrence counts 
(Online Resource 4, Fig. S2). Although a majority of tes-
tate amoeba not among the 19 widely distributed species 
were also under 100 µm in length, none of the taxa longer 
than 100 µm occurred in more than two regions. In any 
case, the study of the phylogenetics and ecology of these 
19 taxa may warrant greater emphasis than others.

Of the 19 species found in three or more regions, nine 
were testate amoebae (four Amoebozoa and five Cercozoa), 
nine were Ciliophora, one was a cercozoan flagellate, and 
none were naked amoebae. The most widespread taxon 
was Corythion dubium Taránek, 1881 (a cercozoan testate 
amoeba) which occurred in eight of the 11 regions studied, 
including on nunataks in MBL (Broady 1989) and probably 
in EBL (Hada 1966). The broad distribution of C. dubium 
is noted by other authors (Broady et al. 1987; Royles et al. 
2016) and this taxon may owe its wide distribution to being 
strongly r-selected and possessing other unique physiologi-
cal adaptations (Smith 1985; Petz and Foissner 1997). Pseu-
doplatyophrya nana (Kahl, 1926) (Ciliophora) was found in 
five of the biodiversity regions. Seven species were found 
in four of the biodiversity regions, Assulina muscorum 
Greeff, 1888 (Cercozoa), Centropyxis aerophila Deflan-
dre, 1929 (Amoebozoa), Colpoda cucullus (Müller, 1773) 
(Ciliophora), Colpoda inflata (Stokes, 1884), Colpoda steinii 
Maupas, 1883, Euglypha rotunda Wailes and Penard, 1911 
(Cercozoa), and Leptopharynx costatus Mermod, 1914 (Cili-
ophora), while 10 were found in three biodiversity regions 
and 25 were found in two regions, leaving 192 identified 
species that were only found in a single region—81% of 
total identified species. Twelve of the most widely distrib-
uted taxa were found outside of the best studied bioregions 
(NAP, EBL, EA and SVL) and their recovery may indi-
cate their relative dominance in their respective habitats: 
C. dubium, A. muscorum, E. rotunda, Heteromita globosa 
(Stein, 1878), Trinema lineare Penard, 1890, L. costatus, P. 
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nana and Paradileptus elephantinus (Svec, 1897), Difflu-
gia lucida Penard, 1890, C. inflata, C. aerophila, and Hom-
alogastra setosa Kahl, 1926.

Phagotrophic protist diversity across habitat types

The habitat with the highest phagotrophic protist diversity 
for all regions was ‘Moss’ (116 unique species), followed 
by ‘Soil and Moss’ (50 species) and then ‘Soil’ (35 spe-
cies) (Fig. 5A). ‘Moss’ was the habitat with the highest 
taxonomic richness in NAP, while ‘Soil and Moss’ had the 
highest richness in EA and SVL (Fig. 5B). Species rich-
ness in ‘Soil’ was greatest in SVL but it was entirely absent 
from EBL. There were more studies in NAP that targeted 
moss habitats exclusively than targeted soils or moss and 
soils (~ 3:1 moss to soil ratio), and thus, our understand-
ing of phagotrophic protist diversity in NAP is likely biased 
toward moss species. Some taxa assigned to ‘Moss’ may 
actually occur in Antarctic mineral soil, inhabiting the soil 
directly under moss beds or the soil that has been blown 
over moss beds. Ciliophora and Amoebozoa (mostly testate 
amoebae) are the most species-rich groups in ‘Moss’, while 
Ciliophora diversity dominates ‘Soil’ and ‘Soil and Moss’ 
habitats (Fig. 5A). Heterotrophic flagellates from Cercozoa, 
Discoba, and Stramenopiles are equally diverse in ‘Soils’ (15 
of 18 species) and ‘Moss’ (14 of 18; Online Resource 3). 
That ciliate richness is highest in all habitats is not consistent 
with the expected dominance of Amoebozoa and Cercozoa 
in arid soil environments (Geisen et al. 2014), though the 
simplicity of the habitat type categories may be concealing 

environmental nuances, like moisture gradients in unvege-
tated, mineral soils (Niederberger et al. 2015). Smith (1996) 
observed that ciliates were only significant proportions of 
the soil community in guano-influenced sites (regardless of 
moisture content) and Bamforth et al. (2005), sampling min-
eral soils, noted that ciliates and testate amoebae were not 
common. Conversely, Petz (1997) reported that, on average, 
74% of their soil and moss samples contained ciliates. The 
diversity of Antarctic soil phagotrophic protist communi-
ties at the local scale is low and consists of primarily eury-
oecious, r-selected species. For example, Foissner (1996) 
found an average of 2.2 ciliate species per 10 to 50 g of 
sample in their Antarctic sites (NAP and SVL), in contrast 
to > 10 ciliate species per similarly-sized samples from non-
Antarctic sites. Bamforth et al. (2005) (SVL) recorded only 
1–6 flagellate species from each site (each site consisted of 2 
to 12 samples, with 1 g of soil examined from each sample), 
nearly an order of magnitude lower than estimates of soil 
flagellate diversity in temperate sites (Foissner 1991). Naked 
amoebae in SVL soils are common, but primarily consist 
of Acanthamoeba sp. and Vermamoeba (= Hartmannella) 
sp. (Bamforth et al. 2005). In Antarctic moss communi-
ties, C. dubium, T. lineare, C. aerophila, A. muscorum, D. 
lucida and E. rotunda are most frequent and most abundant 
(Smith 1987; Golemansky and Todorov 2004; Mieczan and 
Tarkowska-Kukuryk 2014).

Of the 19 species found in three or more regions, 15 were 
recovered from both soil and moss environments, while 2 
were recovered from only moss, which is unexpected as 
moss-dwelling phagotrophic protists in Antarctica are more 
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than twice as diverse as those recovered from soil and moss 
(Fig. 5A). However, broadly distributed species may possess 
relatively high ecological plasticity, explaining why most of 
the 19 “cosmopolitan” Antarctic taxa were recovered from 
both soil and moss habitat types. Only one of the 19 widely 
distributed species was found exclusively in soils, the glob-
ally distributed flagellate H. globosa. This morphospecies 
has recently been split into 5 novel genera and 29 novel 
species (Howe et al. 2009) and there are probably a variety 
of distinctly Antarctic H. globosa species, but it is not pos-
sible to retroactively identify the exact species isolated by 
the authors reviewed here (Sandon and Cutler 1924; Lawley 
et al. 2004; Bamforth et al. 2005). The H. globosa group of 
flagellates is frequently considered to be one of the most 
important phagotrophic protists in terms of its abundance, 
ubiquity, and role as a bacterial grazer (Howe et al. 2009) 
and future research into the distribution, diversity, and ecol-
ogy of this species complex will be needed to fully under-
stand the function of Antarctic soil ecosystems.

Drivers of community structure

Abiotic factors

The relative influence of various abiotic factors on the dis-
tribution and structure of phagotrophic protists generally is 
still an open question (Geisen et al. 2017). Antarctic terres-
trial habitats, especially mineral soils, may prove useful in 
answering this question because these ecosystems are often 
primarily driven by abiotic processes (Hogg et al. 2006; Lee 
et al. 2019). In this section, I discuss what is known concern-
ing the influence of soil moisture, temperature, pH, salin-
ity, oligotrophy, UV radiation, and soil texture on Antarctic 
phagotrophic protist communities.

The diversity and abundance of Antarctic phagotrophic 
protists appear to be positively correlated with moisture gra-
dients, with soils ranging from wetter sites associated with 
productive moss covers to hyperarid unvegetated mineral 
soils (Smith 1974; Petz 1997; Thompson et al. 2020). Fell 
et al. (2006) found the highest diversity of microeukaryotes 
(including fungus and micro-metazoa) between the relatively 
moist (for Antarctica) levels of 3.1 and 4.9% soil moisture 
(gravimetric water content) and some unidentified eukary-
otes were found where soil moisture levels were as low as 
0.2%. Small flagellates and naked amoebae tend to dominate 
arid soils (Smith 1996; Bamforth et al. 2005; Bates et al. 
2013), probably due to their smaller size (lower resource 
needs) and the fact that they can be mobile in far less water 
(Geisen et al. 2014). Flagellates increased with increasing 
soil moisture (whether in terms of abundance or richness 
is not clear) but amoebae did not (Bamforth et al. 2005), 
potentially because amoebae are considered soil water film 

specialists and may not benefit from additional moisture 
(Geisen et al. 2014, 2015). Ciliates are usually free swim-
ming and may be therefore restricted by lower moisture lev-
els (Smith 1974; Bamforth et al. 2005). Velasco-Castrillón 
et al. (2014) found ciliates across a range of moistures, but 
most (~ 80%) were recovered from sites with 10% or greater 
moisture content (not specified, but presumably gravimetric 
water content). Conversely, a Spathidium sp. occurred far 
more frequently in arid soils (1 to ~ 8% moisture) than wetted 
ones (Niederberger et al. 2015). In temperate zones, testate 
amoebae are structured by moisture, but this relationship 
does not appear to hold in mosses from the NAP (Royles 
et al. 2016). A decreasing test size with increasing latitude 
along the peninsula in C. dubium could be an adaptive 
response to thinner water films in more southerly locations, 
but this relationship is hard to disentangle from confounding 
variables, e.g., trophic interactions, energetics or dispersal 
ability (Roland et al. 2017). Testate amoebae are restricted 
to moss habitats (Smith 1972, 1985, 1996) or occur in soils, 
but with a higher diversity in mosses (Sudzuki 1979; Petz 
1997). Single, empty tests were at times found in mineral 
soils (Broady et al. 1987; Bamforth et al. 2005) and in soils 
associated with crustal algae or lichens (Broady et al. 1987).

Extreme low temperatures can be another limiting fac-
tor to many species because they reduce molecular rates, 
promote ice formation in the cytoplasm that can lyse cells, 
and reduce the availability of liquid water (De Maayer et al. 
2014; Kolb 2014). Some Antarctic phagotrophic protists 
are known to exhibit varying degrees of psychrotolerance 
(Smith 1996; Bamforth et al. 2005), though distinguishing 
between the local soil temperature measured and the actual 
temperature endured by the organisms is a challenge (Con-
vey et al. 2018). H. globosa and T. rostratus Perty, 1852 
are facultative psychrophiles, and despite having optimal 
growth temperatures above 20° C, both exhibit growth at or 
below 5 °C (Smith 1996). The non-endemic ciliate Colpoda 
maupasi Enriques, 1908 has been found at − 1.6 °C in EA 
(Petz 1997), but additional investigation could reveal that 
the population is an unrelated cryptic species. A tendency 
toward a psychrotolerant rather than a psychrophilic life-
style could result from the dramatic variation in Antarctic 
temperatures between seasons and even day to day (Sud-
zuki 1964; Knox et al. 2015). During the summer months, 
soil temperatures above 10 °C are not uncommon, even at 
high latitudes, such as in the McMurdo Dry Valleys (Doran 
et al. 2002). These temperatures could give mesophiles the 
edge over true psychrophiles, given they are able to sur-
vive (probably through encystment) the harsher spring, fall 
and winter climates. It is also possible that culturing tech-
niques are biased toward mesophile ranges and growth times 
(Janetschek 1963, Brown 1982, Bamforth et al. 2005).

Beyond moisture and low temperatures, pH, salinity, oli-
gotrophy, increased UV radiation, and soil texture impose 
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strong selection on community composition, especially in 
the more extreme mineral soils (Virginia and Wall 1999; 
Barrett et al. 2006a). Species representing most major clades 
have been recovered from soils ranging from pH 4 to pH 9 
(Smith 1985; Petz and Foissner 1996, 1997; Petz 1997; Park 
et al. 2017b), and Smith (1992) observed that pH shaped 
testate amoeba community structure. Ciliate biomass cor-
related with pH in a study from Wilkes Land Antarctica 
(EA), potentially because pH is a major driver of their bac-
terial prey (Petz 1997). Although Bates et al. (2013) found 
no significant relationship between pH and protist diversity 
overall, mounting evidence of species-specific interactions 
between phagotrophic protists and their prey lends support to 
the connection (Glucksman et al. 2010; Saleem et al. 2013). 
Nutrient amendment studies show that limited carbon, nitro-
gen, and phosphorus are drivers of microbial communities in 
Antarctic soils (Buelow et al. 2016; Aanderud et al. 2018), 
but do not explore the response of the phagotrophic protist 
community. Virtually no stratification of organic carbon 
exists in dry soils farthest from streams and lake margins 
(Elberling et al. 2006), suggesting that arid sites may be 
carbon limited due to decreased photosynthesis near the soil 
surface. This nutrient limitation might select for smaller spe-
cies than could survive in a more carbon rich environment. 
The impact of soil salinity on Antarctic phagotrophic pro-
tists is poorly investigated. Velasco-Castrillón et al. (2014) 
reported that ciliates were limited to soils with an electri-
cal conductivity range of 0.4 to 4.4 dS/m, much lower than 
reported in non-Antarctic soils (Kuppers et al. 2009). No 
work exists on the effects of soil salinity on flagellates (i.e., 
Cercozoa, Discoba and others), testate, or naked amoebae 
in these ecosystems. To date, no studies have evaluated the 
effects of UV radiation on near-surface taxa or of soil pore 
size on community structure, though Gokul et al. (2013) 
suggested that smaller pores may shelter certain species dur-
ing the harsh Antarctic winter.

High variability of many of these parameters, notably 
water availability and temperature, has been cited as one of 
the harshest pressures for life on the continent (Peck et al. 
2006; Chown and Convey 2007; Yergeau 2014). Some have 
suggested that the Antarctic environment has selected for 
small or medium-sized (5–50 µm) r-selected species which 
are best suited to deal with this variability, for example 
Acanthamoeba sp., Colpoda sp. and C. dubium (Foissner 
1996; Petz 1997; Bamforth et al. 2005). Species known to 
be k-selected are present, e.g., Hartmanella sp. and Bodo sp. 
(Bamforth et al. 2005), so how significant the skew toward 
r-selection actually is remains unclear.

Many phagotrophic protists form cysts to endure stress-
ful environmental periods, but this is not a universal abil-
ity (Geisen et al. 2018). H. globosa (Cercozoa)—found in 
soils in the NAP, SVL, and TM (Sandon and Cutler 1924; 
Lawley et al. 2004; Bamforth et al. 2005)—can encyst due 

to cold temperatures alone (Smith 1996), while a taxon 
identified as Bodo saltans (Discoba) does not encyst and 
yet was found frequently in soil, moss, and other habi-
tats from the NAP and SVL (Smith 1978; Bamforth et al. 
2005). Encysted protists have been found to be viable after 
decades or even millennia (Lewis and Trainor 2012; Shma-
kova et al. 2016), and phagotrophic protist communities 
in Antarctica may be able to persist in inhospitable con-
ditions for similar periods of time (Matsuo et al. 2018). 
Phagotrophic protists spend much of their time encysted, 
waiting for optimal conditions to arise before excysting 
to eat and reproduce (Bamforth 2001; Adl and Gupta 
2006). The transition from dormant to active can happen 
relatively quickly, altering community composition and 
structure on very brief time scales (Bamforth 2001; Adl 
and Gupta 2006).

Encystment also allows some protists to survive pas-
sive dispersal (especially aeolian) and thereby helps to 
determine regional species pools (Foissner 1987; Les-
sard et al. 2012; Fernández 2015; Fernández et al. 2017), 
yet it is largely unknown how phagotrophic protist dis-
persal affects community structure in Antarctica. Smith 
(1985) discussed the effects of dispersal on fresh tephra 
on Deception Island in the late 1970s. Smith noted that 
a period of 10–30 months was required for any coloni-
zation to occur, and that small flagellates and amoebae 
were the first phagotrophic protists to arrive (Smith 1974, 
1985), while testate amoebae were found only after a site 
had been vegetated for some time (Smith 1985). Smith 
also found that while time was correlated to an increase 
in protozoan diversity, a stronger driver was the arrival 
of moss propagules. This is likely due to moss-colonized 
soil retaining more moisture and providing higher niche 
diversity, greater nutrient concentrations (via photo-
synthesis), and an increase in pore size and variability 
(Smith 1985), itself a strong driver of phagotrophic protist 
diversity (Rønn et al. 2012; Geisen et al. 2014). Despite 
the evidence for dispersal among Antarctic phagotrophic 
protists, some authors reported high local heterogeneity 
(Smith 1974; Bamforth et al. 2005; Niederberger et al. 
2015). Conversely, Obbels et al. (2016) observed a high 
degree of shared diversity across habitat types but point 
out that closely related species might have been obscured 
by their methodologies. The degree of species heteroge-
neity across the landscape could itself vary, with more 
homogeneity near sources of water and less in more arid 
areas (Fernández 2015). Heterogeneity could also indicate 
more the inhospitableness of landing site conditions than 
the lack of dispersal (Fernández 2015). A systematic study 
of heterogeneity in these ecosystems is needed as dispersal 
has a stabilizing effect on communities when local extinc-
tion rates are high (Sabelis and Diekmann 1988) (e.g., in 
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extreme environments) but also encourages the invasion 
of non-native species (Lockwood et al. 2005).

Biotic factors: co‑occurrence and trophic 
interactions

It is debated whether biological drivers are a major factor 
in structuring communities in Antarctic soils (Hogg et al. 
2006) and nematode abundance and bacterial diversity were 
observed to be unrelated in SVL soils (Barrett et al. 2006b), 
although recent studies have shown that biotic drivers may 
be more significant than previously thought (Caruso et al. 
2019; Lee et al. 2019), especially for protists (Thompson 
et al. in review). Most studies reviewed did not report co-
occurrence between phagotrophic protists and other micro-
bial groups (Online Resource 2). Those that did reported 
the presence of nematodes, tardigrades, and rotifers (the 
main groups of metazoa occurring in these ecosystems; 
Adams et al. (2006)), rarely utilized deliberate methodol-
ogy for exploring the correlation between these groups, and 
none examined relationships between individual species. 
Bamforth et al. (2005) (SVL) reported that flagellates and 
amoebae co-occurred more frequently with nematode taxa 
than without, rarely with tardigrades and rotifers, and with 
ciliates only in the presence of other metazoan taxa. Decloî-
tre (1964) (AL) also noted an absence of tardigrades and 
rotifers where phagotrophic protists (testate amoebae from 
moss, in this case) were found. In other studies, ciliate and 
tardigrade taxa were found co-occurring in every sample 
examined while few rotifers were recovered, and nematodes 
were entirely absent (Steele et al. 1994). Bates et al. (2013) 
(SVL) noted a relatively weak correlation between protis-
tan and bacterial communities, though this study drew these 
conclusions from a collection of globally distributed sites 
that included Antarctica, so whether this pattern holds true 
independently in Antarctic soils is uncertain. A number of 
studies report moss species associations with specific phago-
trophic protist species or community assemblages (Toriumi 
and Kato 1961; Sudzuki 1964; Mieczan and Tarkowska-
Kukuryk 2014). Mieczan and Tarkowska-Kukuryk (2014) 
observed that moss species influenced ciliate body size but 
concluded that microsite physicochemical parameters had 
a greater influence on ciliate abundance and diversity than 
did host moss species.

Interactions between phagotrophic protist species and 
their respective prey can have a significant impact on com-
munity structure and ultimately ecosystem functioning 
(Corno and Jurgens 2008; Glucksman et al. 2010; Hünning-
haus et al. 2017; Gao et al. 2019; Thakur and Geisen 2019). 
Traditionally phagotrophic protists were viewed as uniformly 
bacterivorous, but recent work suggests that greater trophic 
diversity exists (e.g., facultative and obligate mycophagy, 
algavory, osmotrophy and predation) among even closely 

related phagotrophic protist species (Petz and Foissner 1997; 
Bjørnlund and Rønn 2008; Glucksman et al. 2010; Geisen 
et al. 2018). In Antarctic soils, algavory has been observed 
in Pseudonotohymena antarctica Park, Jung, Min and Kim 
(2016) (Park et al. 2017b) and Saccamoeba stagnicola Page, 
1974 (Bamforth et al. 2005). Keronopsis helluo Penard, 
1922 (Ciliophora)—a consumer of rotifers and other large 
ciliates—has been isolated from King George Island (NAP) 
(Park et al. 2017a), although this behavior has not yet been 
observed in Antarctic populations. Fungivorous taxa, P. nana 
(Ciliophora) from SVL and Grossglockneria acuta Foissner, 
1980 from NAP and predatory species, such as Urosomoida 
antarctica Foissner, 1996, a ciliate from SVL which feeds on 
bacteria and possibly flagellates and naked amoebae (Foiss-
ner 1996) have also been reported. The predatory genus 
Spathidium (Ciliophora) occurred in three regions (NAP, 
EA, SVL—S1) and in a variety of habitats, and was more 
frequently recovered from guano sites than vegetated soils 
(Smith 1978). Colpodella edax (Klebs, 1892), found in SVL 
soils (Bamforth et al. 2005) and Peranemopsis trichophora 
(Ehrenberg, 1832) from NAP (Smith 1985), are known pred-
ators of colorless and photosynthetic flagellates (Simpson 
and Patterson 1996; Triemer 1997). Many bacterivores are 
also present, including the stramenopiles Oikomonas termo 
(Müller, 1773) and O. mutabilis Kent, 1880; the discoban 
T. rostratus; the cercozoan flagellates Cercomonas agilis 
(Moroff, 1904), C. vibrans (Sandon, 1927), C. crassicauda 
Dujardin, 1841, Cercomonas longicauda Dujardin, 1841 and 
H. globosa; the cercozoan testate amoebae C. and T. lineare 
Penard, 1890; and the ciliophorans C. steinii and C. cucullus.

Methodological biases and challenges

Study distribution

Diversity estimates are influenced by the uneven distribu-
tion of studies across regions and the asymmetric sampling 
effort of each of those studies (Fig. 1). Intra-continental 
regions (e.g., SVL, North Victoria Land (NVL), TM, and 
Prince Charles Mountains (PCM)) have been the subject of 
fewer studies than higher latitude, coastal sites (e.g., EA 
and NAP), and two of the intra-continental sites (Ellsworth 
Land (EL) and Ellsworth Mountains (ELM)) remain com-
pletely unstudied (Fig. 2B, Fig. 1). Study density is strongly 
skewed toward NAP and SVL (Fig. 2B) and taxa counts for 
South Antarctic Peninsula (SAP), AL, TM, Marie Byrd Land 
(MBL), PCM, and DML are disproportionately lower. MBL 
and TM have been the focus of only one study, and NVL, 
PCM, SAP and AL of only two each. NAP has received the 
most attention by far with 25 studies, more than twice as 
many as the next most studied region, SVL, with 12 stud-
ies (Fig. 2B), while DML and EA have been the subject of 
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5 and 6 studies, respectively. Possible explanations behind 
this geographic bias could include logistics—i.e., those 
regions that are the most accessible like NAP—and national 
resources allocated to science support. McMurdo station, 
by far the largest station in Antarctica, borders the Ross Sea 
region where the McMurdo Dry Valleys of SVL are located. 
From Fig. 1, it is apparent that even the sampling distribu-
tion across SVL itself is heavily biased toward areas within 
easy reach of McMurdo Station. Similar local biases occur 
in the NAP, DML and EA, despite their relatively high study 
number and taxonomic count.

Accurately identifying phagotrophic protists

The difficulty involved in accurately identifying protist 
species is perhaps the greatest challenge for assessing the 
function of phagotrophic protists in Antarctic soil com-
munities. Morphological studies can suffer from a lack of 
distinguishing morphological characteristics and unknown 
culturing parameters (Boenigk 2008; Caron and Hu 2019). 
Distinguishing protists using only morphological traits has 
likely led to the “everything is everywhere” observation 
and hypothesis (e.g., Finlay (2002)), as there are probably 
far fewer morphospecies than genetically distinct cryptic 
species (Foissner 2008). Thus, it is probable that identifica-
tions made in morphological studies underestimate biodi-
versity (type II error; Adams (1998)) due to morphological 
convergence with well-known, globally distributed spe-
cies. For example, three formerly recognized taxa in this 
dataset, Stylonychia mytilus, Nebela collaris (Ehrenberg, 
1848), and C. aerophila are now considered to be species 
complexes (Foissner and Korganova 2000; Haentzsch et al. 
2006; Kosakyan et al. 2013). Culture-based approaches are 
biased toward those taxa that respond best to the culturing 
conditions, regardless of their ecological significance, abun-
dance, or functioning in the source environment (Smirnov 
and Brown 2004; Geisen et al. 2015). Some authors used the 
most probable number (MPN) method for isolating living 
protists from their samples (Steele et al. 1994), which has 
been shown to seriously alter community composition by 
creating conditions that selectively suit some protists over 
others (Foissner 1987; Berthold and Palzenberger 1995). 
More accurate techniques exist, such as the flooded petri 
dish method, and were used in some but not all studies 
reviewed (Luftenegger et al. 1988; Petz 1997), but the lack 
of standardization is a concern. In addition, morphological 
identifications are challenging for the inexperienced, and 
the training required to be able to make such distinctions 
satisfactorily is time consuming—as such, several authors 
did not identify protists past motility-based groupings, e.g., 
ciliates, flagellates, and amoebae (Steele et al. 1994; Barman 
2000; Velasco-Castrillón et al. 2014). Molecular tools pro-
vide additional characters in the form of nucleotides, do not 

suffer from culturing biases, are generally more standard-
ized, are easier for the taxonomically inexperienced to carry 
out, and have higher-throughput and greater data generation 
per unit time invested (Caron et al. 2009). However, molecu-
lar studies are also subject to biases: of the Antarctic studies 
that targeted the 18S ribosomal RNA gene, none targeted the 
same region (Hodgson et al. 2010; Jung et al. 2015; Tyml 
et al. 2016; Park et al. 2017b). PCR amplification (a key step 
in many molecular-based approaches) and DNA extraction 
protocols (Santos et al. 2015) also alter community com-
position (Geisen et al. 2015; Guo et al. 2016) and species 
identification from molecular data alone, especially single 
gene studies, can be misleading (Caron et al. 2009; Paw-
lowski and Burki 2009; Caron and Hu 2019). A paucity of 
adequate reference sequences in properly curated databases 
and relatively arbitrary clustering based on sequence simi-
larities can make identifications difficult and often unreliable 
(Lawley et al. 2004; Caron et al. 2009; Obbels et al. 2016). 
PCR bias can be mitigated by shotgun metagenomic stud-
ies, but differences in sequencer model and bioinformatic 
pipelines used can also bias results (Czechowski et al. 2016). 
Finally, deciding appropriate similarity binning cutoffs and 
how to treat singletons (real or artifacts) introduces a degree 
of subjectivity into these analyses that can lead to under- or 
overestimating true taxonomic diversity.

A lack of a standardized approach

The assessment of protist diversity in Antarctica has been 
subject to a wide variety of approaches (Smith 1992; Foiss-
ner 1996; Bamforth et al. 2005; Czechowski et al. 2016). 
Differences include the amount of soil extracted, the number 
of sample replicates assessed, the culturing method (e.g., 
flooded Petri vs MPN) and temperature, the amount of time 
between sampling and processing, the level of taxonomic 
expertise, sampling depth, storage temperatures and trans-
port conditions. Many studies stemmed from opportunistic 
sampling, owing to the great difficulty involved in success-
fully accessing the Antarctic continent, especially in the 
beginning (Richters 1907, 1908; Murray 1910; Penard 1911; 
Sandon and Cutler 1924). Other studies were more deliber-
ate, involving well-designed sampling efforts across a wide 
range of locations and habitat types (Smith 1992; Foissner 
1996; Bamforth et al. 2005; Czechowski et al. 2016). Some 
were even exclusively focused on protists (Smith 1978; Sud-
zuki 1979; Ryan et al. 1989; Bamforth et al. 2005), though 
frequently studies only included protists as part of a broader 
assessment (Broady et al. 1987; Broady 1989; Schwarz et al. 
1993; Obbels et al. 2016). Even across more methodical 
studies, sampling depth was not consistent or even reported 
(Richters 1907, 1908; Murray 1910; Penard 1911, 1913; 
Sandon and Cutler 1924; Smith 1972, 1987). When sampling 
depth was reported, it ranged from 0 to 10 cm (Smith 1974, 
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1978, 1985; Petz and Foissner 1996; Bamforth et al. 2005; 
Park et al. 2017b). Studies used a variety of sample storage 
temperatures and interim time prior to sample processing, 
but samples were always stored at temperatures consistent 
with their natural climate—i.e., between 20 and − 20 °C. 
Freeze–thaw cycles have been shown to reduce survival of 
soil organisms in Antarctica (Knox et al. 2015), and while 
the effect of storage temperature and duration have not been 
specifically tested on phagotrophic protist diversity, Miec-
zan and Tarkowska-Kukuryk (2014) and Petz (1997) pro-
cessed their samples immediately after sampling. Removing 
and storing Antarctic soil samples for later analysis likely 
decreases the diversity of the samples, and thus sample anal-
ysis should be performed as soon after sampling as possible 
(Petz 1997; Adl and Gupta 2006). Another factor that can 
affect biodiversity estimates is the volume of soil used for 
subsequent processing—whether for culture-based examina-
tions, live extraction, or nucleotide extraction (Smith 1974, 
1987; Fell et al. 2006; Bates et al. 2013). Finally, sample 
descriptions are frequently vague such that characterizing 
the difference between soil and moss taxa in this review, for 
example, became challenging. Moreover, soils near lakes 
and streams, while apparently dry during sampling, can be 
unknowingly subject to greater input of liquid water over a 
season than soils farther from these sources. In some cases, 
whether a sample was from near a lake margin or within it 
(Hada 1966; Chatterjee et al. 2000; Hodgson et al. 2010; 
Mieczan and Tarkowska-Kukuryk 2014) was unclear and as 
a result some studies were excluded from this study (Hada 
1966; Chatterjee et al. 2000; Hodgson et al. 2010). A corol-
lary to this challenge is the lack of sample coordinates or 
sufficiently detailed site description such that researchers 
could return to the sampled sites for future analyses (Rich-
ters 1908; Murray 1910; Penard 1913; Sandon and Cutler 
1924; Smith 1972, 1974, 1978, 1987). Future assessments of 
diversity will need to include more detailed sample metadata 
if they are to be reliably used for drawing broader conclu-
sions on Antarctic protist diversity.

Insights and future studies

There has been a wide diversity of approaches to assessing 
diversity, both methodologically and logistically. Whether 
and how much this variety of methods has biased diversity 
estimates is unknown, but a standardized approach would 
facilitate more accurate and comparable diversity assess-
ments between study sites and across biodiversity regions. 
This standard approach should consist of both morphologi-
cal and molecular assessments (Roland et al. 2017; Geisen 
et al. 2018). Of 53 studies from across a continent roughly 
half again as large as Australia, 67% were based on morphol-
ogy alone, while 29% used only molecular data (Fig. 4). Six 

studies combined molecular and morphological data (Jung 
et al. 2015, 2016; Tyml et al. 2016; Park et al. 2017a, 2017b, 
2018), yet none used both in a general diversity survey. Envi-
ronmental DNA studies, especially high-throughput analyses 
of diversity like those in the burgeoning field of microbial 
metagenetics, are currently poorly equipped to generate data 
that inform morphology, physiology, and ecological func-
tion, especially in those microbial groups that have received 
less attention, like protists (Caron et al. 2004, 2009). Tra-
ditional methods, on the other hand, excel at these types 
of investigations, even considering the powerful potential 
of fields like environmental metagenomics and metatran-
scriptomics (Geisen et al. 2015). Both methods should use 
reliable techniques (i.e., direct counting over most probable 
number; Foissner (1987), Luftenegger et al. (1988), Foissner 
(1992), Berthold and Palzenberger (1995)), curated data-
bases (e.g., PR2; Guillou et al. (2013)), consistent extraction 
protocols (Santos et al. 2015), and where possible, sequenc-
ing approaches that reduce bias and inform ecology as well 
as diversity (e.g., metatranscriptomics and shotgun metagen-
omics) (Guo et al. 2016). When targeted sequencing using 
primers is more reasonable, consider that current universal 
eukaryotic primers may not be appropriate for sampling all 
eukaryotic lineages equally (Geisen et al. 2015). For exam-
ple, Bates et al. (2013) recovered primarily organisms from 
the AH/SAR supergroup (i.e., Plantae, Rhizaria, and Alveo-
lata) but recovered little from the Discoba or Amoebozoa 
lineages. This is most striking in their study of the McMurdo 
dry valleys, where a number of Amoebozoa taxa were recov-
ered using a culture-based approach (Brown 1982; Bamforth 
et al. 2005). Care should be taken to verify that the prim-
ers being used can indeed sample all lineages sufficiently 
(Fell et al. 2006), or that studies target smaller taxonomic 
groupings. Standardized sampling procedures should also 
account for the heterogeneity inherent in the field and the 
variability in permafrost depth across sites (Chown and 
Convey 2007; Doran et al. 2010; Priscu 2013; Convey et al. 
2014). Sampling vegetated soils must involve careful separa-
tion of above- and belowground habitat space, while thor-
ough description of sites and the procedures used should be 
included in the methods sections of associated publications. 
Sample processing should be carried out as soon as possible 
after sampling occurs, involve limited time in storage and 
transport, and include expert support (Petz 1997).

Conclusion

Most of the identified 236 species of phagotrophic soil 
protists known from continental and peninsular Antarctica 
are concentrated in only a handful of regions, namely the 
North Antarctic Peninsula, EA and SVL. Overall, most of 
this diversity is regionally unique and as of yet the diversity 
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shared between regions does not show strong trends. C. 
dubium is the most common species in soil and moss, while 
H. globosa type cercozoan flagellates are the most widely 
distributed, exclusively soil species. More protist species 
have been found in moss than soil habitats. Understand-
ing how phagotrophic protist diversity relates to ecosystem 
functioning in Antarctica will require future investigations 
into community structure, food web interactions, and func-
tional redundancy. Characterizing food webs in the more 
extreme sites (e.g., SVL, Transantarctic Mountains, Ells-
worth Land, Prince Charles Mountains) could be a feasible 
first step, owing to their relative lower diversity. Answering 
questions concerning the resiliency of soil ecosystems in 
the Antarctic in the face of climate change can be facilitated 
by understanding the specific contribution of key antarc-
tic phagotrophic protists to nutrient cycling, the functional 
overlap between species, and the potential for local extinc-
tion of these taxa. A special focus on the effects of species-
specific interactions on communities will also be important, 
including the susceptibility of key species to changes in tem-
perature, moisture content, and invasive species. Such iden-
tification can be inferred from relative abundances (direct 
counting, metagenomics, and metatranscriptomics), trophic 
interactions (determined by stable isotope probes; Crotty 
et al. (2012)), and in vitro experiments using cultured iso-
lates and mesocosms (Warren et al. 2003; Glucksman et al. 
2010). Treating Antarctic terrestrial ecosystems as model 
systems for other microbial ecosystems worldwide (Priscu 
2013) and recognizing phagotrophic protists as important 
elements of Antarctic ecosystems will deepen our under-
standing of community structure, stability, and nutrient 
cycling in soils and improve our ability to predict and miti-
gate the effects of major environmental disturbances (i.e., 
climate change) on soil ecosystems.
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