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Abstract
We studied positive associations among seabirds and marine mammals at South Georgia on research cruises during the 
Austral winters of 1985, 1991 and 1993 and found statistically significant differences. We collected data on abundance and 
distribution, providing a critical reference for sub-Antarctic conservation in anticipation of future environmental changes. 
We found significant changes in the abundance of 29% of species surveyed and a consequent change in species diversity. 
We postulate that the resulting altered community composition may have previously unanticipated population effects on 
the component species, due to changes in positive interactions among species which use each other as cues to the presence 
of prey. We found a near threefold reduction in spatial overlap among vertebrate predators, associated with warming sea 
temperatures. As the strength and opportunity for positive associations decreases in the future, feeding success may be nega-
tively impacted. In this way, environmental changes may disproportionately impact predator abundances and such changes 
are likely already underway, as Southern Ocean temperatures have increased substantially since our surveys. Of course the 
changes we describe are not solely due to changing sea temperature or any other single cause—many factors are important 
and we do not claim to have removed these from consideration. Rather, we report previously undocumented changes in 
positive associations among species, and argue these changes may continue into the future, given near-certain continued 
increases in climate-related changes.

Keywords Austral winter · Climate change · South Georgia · Seabirds · Local enhancement · Positive interactions

Introduction

Seabirds are important indicator species in marine ecosys-
tems (Cairns 1987; Harding et al. 2007; Piatt et al. 2007; 
Gagne et  al. 2018; Velarde et  al. 2019); environmental 
change can propagate up the food web to impact top preda-
tors (Croxall et al. 2002; Colwell et al. 2012; Doney et al. 
2012; Sydeman et al. 2017). Seabirds commonly feed in 
large multispecies groups of other birds, mammals, and 

fishes (Burger 1988; Harrison et al. 1991). Such associations 
have been shown to be both ubiquitous and stable (Veit and 
Harrison 2017), and thus likely important to local resource 
distribution and ecosystem structuring (Veit and Harrison 
2017). Of immediate concern is that changing climate, either 
directly or indirectly, may be altering the number, composi-
tion, and quality of these multispecies feeding flocks (Bron-
stein 2015; Veit and Harrison 2017).

Antarctic krill—one of the main prey items of many sea-
birds (Croxall and Prince 1980, 1987; Harrison et al. 1991)—
have decreased as a result of climate and other anthropo-
genic changes such as increased harvesting (Loeb et al. 1997; 
Fraser and Hofman 2003; Atkinson et al. 2004; Flores et al. 
2012; Atkinson et al. 2019). Declines of krill-feeding pen-
guins are evident throughout West Antarctica and the Sco-
tia Sea (Smith et al. 2003; Trathan et al. 2012). Similarly, 
the number of breeding female Antarctic fur seals (Arcto-
cephalus gazellea) has declined at South Georgia, likely as 
a result of reduced krill availability (Forcada and Hoffman 
2014). When the predictability of encountering prey is low, 
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the foraging benefits associated with positive associations 
(Gotmark et al. 1986; Thiebault et al. 2014, 2016; Boyd et al. 
2016b; McInnes et al. 2017; McInnes and Pistorius 2019) 
may be particularly important (Bairos-Novak et al. 2015).

Our paper focuses on interactions where predators use 
others as cues to the presence of prey. Aggregations of sea-
birds around krill swarms in the Southern Ocean may involve 
many thousands of individuals (Veit and Hunt 1991; Veit 
et al. 1993) that knowingly or unknowingly transmit infor-
mation about where, what, and how to obtain food (Galef 
and Giraldeau 2001). Local enhancement (Thorpe 1956) may 
refer both to organisms cooperatively herding prey as well 
as passively producing cues (assemblages of predators in an 
otherwise unmarked at-sea landscape drawing the attention 
of other predators to a patch). Such interactions can be mutu-
alistic with more than one participant benefiting (+/+), facili-
tative/commensalistic where only a single participant derives 
direct benefits (+/0), or antagonistic where one participant 
benefits at the expense of another (+/–) (Stachowicz 2001). 
It is extremely difficult to determine whether a seabird that 
joins a feeding flock experiences enhanced fitness due to food 
obtained at that flock. Nevertheless, we believe this must at 
least in part be true (see Gotmark et al. 1986; Grünbaum and 
Veit 2003; Thiebault et al. 2014; Boyd et al. 2016b; Thie-
bault et al. 2016; McInnes et al. 2017) and therefore feel it is 
justified to explore how positive interactions among marine 
predators may change as warming oceans alter species abun-
dances. We broadly consider all positive interactions and this 
paper is not limited to any single definition of such behaviors. 
We do not attempt to identify what proportion of changes 
in positive associations are specifically caused by changing 
sea temperatures; however, as temperature has increased in 
the Scotia Sea and Antarctic Peninsula (Whitehouse et al. 
2008), and will likely continue increasing, it seems prudent to 
draw attention to declines in interspecific associations which 
have the potential to exacerbate declines in individual species 
abundance (Bronstein 2015).

Changes in seabird abundance have been precipitated by 
changing climate in the California Current (Veit et al. 1996, 

1997), the North Atlantic (Veit and Manne 2015), and the 
polar regions (Croxall et al. 2002; Jenouvrier et. al 2005a; 
Jenouvrier et  al. 2005b; Descamps et  al. 2017), among 
others (see Poloczanska et al. 2016 for a global report on 
climate-related changes across marine predators and their 
prey). Changes in seabird abundance are, of course, pre-
cipitated by numerous other inter-related factors such as 
ice cover, prey availability, and fishery mortality, which are 
exacerbated by rising temperatures (Croxall et al. 2002; Tuck 
et al. 2003; Robertson et al. 2014; Sydeman et al. 2015; Phil-
lips et al. 2016; Pardo et al. 2017); strikingly, Paleczny et al. 
(2015) report a near 70% decrease in the monitored seabird 
population worldwide from 1950 to 2010. While such link-
ages between climate change and species abundance have 
been well established (Burger 1988; Croxall et al. 2002; 
Forcada et al. 2008; Doney et al. 2012; Boyd et al. 2016a), 
our paper additionally explores how changes in abundances 
may impact the number and quality of positive interactions 
among species (Janzen 1974, 1985; Terborgh 1986; Bron-
stein 2015; Veit and Harrison 2017). In seabirds, density of 
conspecifics has been found to be a better predictor of feed-
ing than prey density (Grünbaum and Veit 2003; Thiebault 
et al. 2016); if a population drops below some abundance 
threshold, individuals from that population may no longer be 
present in large enough numbers to facilitate local enhance-
ment, reducing the feeding success of those that previously 
benefited from such associations (McInnes et  al. 2017; 
Fig. 1). The framework we present is one of “ecological” or 
“functional” extinction, where declines in abundances are 
severe enough such that species cease to perform their eco-
logical roles (discussed in the context of marine ecosystems 
in McCauley et al. 2015). Implicit in this framework is that 
ecosystem functioning and services will also be lessened.

Predictions by Janzen (1974), Terborgh (1986), and 
Dakos and Bascompte (2014) about the potential fragility 
of mutualisms to anthropogenic change and the disruption 
of “keystone mutualisms” may already be underway in the 
Southern Ocean. Ocean warming in the Antarctic is most 
evident during the winter months in the Scotia Sea and in 
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Fig. 1  Proposed drivers of change in foraging success. Changing spe-
cies interactions may originally be driven by ecological change (link-
ages a and b), but then the changed interactions themselves drive 
unexpectedly large changes in community structure (linkages c and 
d) and feeds back to change abundances (linkage e). Linkage e shows 
the breakdown of interspecific interactions accentuating the impacts 

of declining abundance—if a species has declined (either due to cli-
mate, prey availability or some other cause/combination of causes) 
then that decline may precipitate further decline due to loss of oppor-
tunities for positive interactions (i.e., facilitation and local enhance-
ment)
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the west Antarctic waters surrounding South Georgia (Loeb 
et al. 1997; Smith et al. 2003; Whitehouse et al. 2008), a 
region with an exceptionally large and diverse seabird popu-
lation (Croxall and Prince 1979). While several quantitative 
pelagic surveys of marine bird and mammal communities 
have been conducted at South Georgia during the summer 
months (Harrison et al. 1991; Hunt et al. 1992; Veit et al. 
1993), to our knowledge, none have been conducted on non-
breeding winter populations (though see Jehl et al. (1979) 
for autumn surveys and Whitehouse and Veit 1994 for win-
ter surveys off the Antarctic Peninsula). Global warming 
(accompanied by other anthropogenic changes) is rapidly 
altering the resource use and ranging patterns of a broad 
variety of species (Hickling et al. 2006; Chen et al. 2011; 
Langham et al. 2015; Poloczanska et al. 2016). Without 
proper knowledge of how things were, we are likely to inac-
curately assess the state in which things are (Pauly 1995), 
thus, such records of predator prevalence are vital to con-
ducting meaningful assessments of how climate change 
and human activity have impacted a region’s community 
ecology.

We present the results from three research cruises during 
the winters of 1985, 1991 and 1993 off the east end of South 
Georgia. From these surveys we extracted abundances and 
conducted spatial analyses to test for evidence that changes 
in species abundance, regardless of underlying cause (e.g., 
climate, exploitation, ice extent), may have substantial com-
munity level effects. If this is true, then we expect (1) a 
decrease in spatial overlap associated with ecological change 
(Fig. 1 linkage c). At South Georgia, we expect this to be 
accompanied by (2) decreases in abundances associated with 
warming temperatures (Fig. 1 linkage a) and (3) changes in 
community composition, such as warm water species that 
do not breed at South Georgia moving in to feed on the 
South Georgia shelf as temperature increases (e.g., Hunt 
et al. 1992; Fig. 1 linkage b); hypotheses 2 and 3 serve to 
investigate temperature as a possible mechanism behind 
hypothesis 1.

Methods

Transect surveys

We conducted transect surveys during three winters off the 
east end of South Georgia (Fig. 2). Two days of surveys 
were conducted in 1985, five in 1991, and six in 1993 (all 
survey dates fell between June 2 and July 2). In 1985 a sin-
gle observer (R.R. Veit) watched from the bridge of the 
R/V Polar Duke and all birds and marine mammals seen 
during 1 day’s 300 m strip transect were summed by spe-
cies. In 1991 and 1993 teams of two observers switched off 
watching and recording from within the pilothouse of the 

R/V Nathaniel Palmer on 300 m transects similar to those 
in 1985. This was standard procedure for shipboard seabird 
transects at the time (Tasker et al. 1984) as this was before 
the use of “distance sampling” (Buckland et al. 2001). There 
was never more than one person observing at any given time, 
but, to achieve consistency among observations, either Veit 
or seasoned seabird biologist Morgan was present in the 

Fig. 2  Study area (base maps produced using the R package ggmap, 
Kahle and Wickham 2013) (a) South Georgia (starred) is located 
southeast of South America and northeast of the West Antarctic Pen-
insula. b Transect surveys were conduced off the east end of South 
Georgia in 1985, 1991 and 1993. Ship speed was equal in all years. In 
1993 transects were repeated on multiple days
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pilothouse to supervise at all times when other observers 
collected data in 1991 and 1993. Ship-following birds were 
recorded only once when first noted. Data were collected 
during all weather conditions, but visibility was never below 
500 m more than briefly. Ship speed was approximately 10 
kn, and each transect required all daylight hours (about 6 h) 
to complete.

Three taxa not identified to species—unidentified giant 
petrels, diving petrels and prions—were incorporated into 
our species-level analyses because they were found to make 
up a substantial percentage of that category’s sightings. 
For example, our analysis did not consider Northern and 
Southern Giant Petrels (Macronectes halli and Macronectes 
giganteus) separately because there were substantially more 
birds in the dataset classified as “unidentified giant petrel” 
than there were birds classified as either of the component 
species. We believe the vast majority of unidentified prions 
to be Antarctic Prions (Pachyptila desolatea) and virtually 
all diving petrels to be Common Diving Petrels (Peleca-
noides urinatrix), based on birds that landed on the ship and 
identified in the hand. The remaining taxa not identified to 
species (unidentified penguin, unidentified albatross, uni-
dentified prion/Blue Petrel and unidentified bird) were found 
to make up only a small percentage of their taxa’s sightings 
(often < 1%, never more than 7%) and so were excluded from 
species-level analyses but included in broader analysis when 
stated. Common and Latin names of all species sighted are 
listed in Online Resource 1. Unless otherwise stated, for 
each day of survey, all sightings were summed and divided 
by transect length to obtain the number of individuals (birds 
or marine mammals) observed per kilometer.

Spatial co‑occurrence

We used Recurrent Group Analysis (Fager 1957; Veit 1995) 
to identify statistically significant pairings of species for 
1991 and 1993 (for 1985 the abundance data are only avail-
able as daily sums). To determine whether pairs of species 
co-occurred (i.e., interspecific associations) we divided the 
transects into ~ 1-h bins (equal to ~ 18.5 linear km). If the 
distribution data (individuals/km) showed statistically sig-
nificant overlap among bins, we considered those pairs of 
species co-occurring (Fager 1957; Veit 1995; Silverman and 
Veit 2001; Grünbaum and Veit 2003; Silverman et al. 2004). 
We determined for each pair of species whether the number 
of joint occurrences was significantly (p < 0.01) greater than 
would be expected given random association.

The value of recurrent group analysis for measuring 
interspecific association lies in its two-step implementa-
tion: first, groups of species that show non-random asso-
ciation on the basis of presence/absence data are identified, 
then abundance relationships among the species within the 
groups are calculated. Thus, recurrent group analysis avoids 

the ambiguity of interpreting negative correlations that are 
negative because the two species choose different habitats in 
which to search for food (Fager 1957; Veit 1995).

Temperature

Monthly sea surface temperature (SST) values were 
extracted from Meredith et al. (2008) using the program 
WebPlotDigitizer (https ://autom eris.io/WebPl otDig itize r/) 
and denormalized by adding the series mean and multiplying 
by the standard deviation. Data represent optimum interpola-
tion SST from 53.51° S, 32.51° W (just north east of South 
Georgia) compiled from in situ and satellite SST. Mean tem-
peratures during winter months (May–August, n = 4) were as 
follows: The coldest year was 1991 (− 0.98 °C ± 0.07 SE), 
the warmest year was 1993 (0.63 °C  ± 0.1 SE), and 1985 
was an intermediate year (− 0.06 °C  ± 0.16 SE).

Results

Spatial co‑occurrence

We found strong evidence of statistically positive association 
among species. Furthermore there was a substantial shift 
between 1991 and 1993 in the proportion of species found 
to be co-occurring. There were significantly fewer associa-
tions among possible taxonomic pairings in 1993 (13% of 
231 possible pairings) than in 1991 (36% of 136 pairings) 
(Chi-square test, Xdf = 16.7, p < 0.0001). Example pairs of 
species strongly associated in 1991 but not 1993 can be seen 
in Fig. 3.

Our data revealed evidence of a decline in intraspecific 
associations as well. The average size of a single species 
aggregation was larger in 1991 than 1993. The mean aggre-
gate size of the 1991 dataset (single species counts as they 
were reported by the observer) was ~ 7 individuals/aggre-
gation (6.6 ± 0.44 SE, n = 4193). For comparison, in 1993 
the mean aggregate size of the dataset was ~ 2 individuals/
aggregation (1.8 ± 0.06 SE, n = 3104).

The largest single species aggregations were also seen in 
1991. Four aggregations each consisting of 500 individual 
diving petrels were sighted, as well as two aggregations of 
Cape Petrels (Daption capense) of the same size. In 1993 
the largest single species aggregations all belonged to Blue 
Petrels (Halobaena caerulea), only involving 65, 50 and 50 
individuals (a decrease from 1991 of 87–90%).

Relationship between temperature and abundances

Our analyses are based on the sighting of 60,453 birds and 
seals over the three winters of data collection. Of the 24 total 
species observed across the three survey years, 38% were 

https://automeris.io/WebPlotDigitizer/
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absent from at least 1 year of surveys and 54% never reached 
abundances > 1 individual/km (Figs. 4 and 5). Petrels as a 
group were the most sighted taxa (Figs. 4 and 5a), with Cape 
Petrels the most consistently abundant (Fig. 5a).

Individuals/km was statistically similar between years 
(Kruskal–Wallis test, H2 = 2.1, p = 0.3513), however, a 
Dunn test on species by year revealed significant differences 
(p-values corrected using the Bonferroni method, Fig. 4). 

While the majority of species (71%) had abundances that 
remained statistically similar across years (p > 0.05, Fig. 4a), 
significant differences were seen in select petrels and seals 
(Fig. 4b). Abundances of Antarctic Fulmars (Fulmarus gla-
cialoides), prions, Kerguelen Petrels (Aphrodroma brevi-
rostris), diving petrels, and Antarctic fur seals all exhib-
ited negative relationships with temperature in at least one 
comparison (and no significant positive relationships). 
Snow Petrels (Pagodroma nivea) and Gray-headed Alba-
trosses (Thalassarche chrysostoma) were the only species 
to exhibit any statistically significant positive relationship 
with temperature (and displayed no significant negative rela-
tionships). Of these species that exhibited any significant 
change in abundance, four were most abundant in 1985 (an 
intermediate temperature).

In the coldest of the survey years we observed the fewest 
species while the most species were observed in the warmest 
year (17 species in 1991, 19 in 1985, 22 in 1993 Fig. 5a). 
Shannon–Wiener diversity (Zar 1999) was significantly 
different between years (ANOVA, F2 = 4.77, p = 0.0351). 
A post hoc Tukey–Kramer revealed significant differences 
between the warmest (1993) and coldest (1991) years 
(p = 0.044) (Fig. 5b).

Changes in abundance by habitat type

Habitat (warm water species of the sub-Antarctic or cold 
warm species of the high-Antarctic) was determined based 
on range maps in Brooke (2004) and Harrison (1987) (See 
Online Resource 1 for each species’ habitat classification). 
The relationship between temperature and abundance does 
not appear to be habitat dependent (Table 1)—high-Ant-
arctic species were not more likely to decline with increas-
ing SST and sub-Antarctic birds were not more likely to 
increase.

Discussion

Our study supports our prediction that changed abundances 
can lead to reduced interspecific associations. There was a 
near threefold reduction in the number of significant species 
associations between the coldest and warmest years (1991 
and 1993). The inference from this finding is that environ-
mental change may precipitate changes in foraging success, 
especially negative ones, that could cause nonlinear effects 
above and beyond simple declines in abundance (Fig. 1).

To investigate Fig. 1 linkages c and d, we needed to estab-
lish whether the spatial association among foragers who use 
each other as cues to prey (Harrison et al. 1991; Tremblay 
et al. 2014; Veit and Harrison 2017) had changed, as this 
is a prerequisite to asking whether the selective benefit of 
the association has changed (analogous changes have been 

Fig. 3  Example pairs of bird and marine mammal species strongly 
associated in 1991  but not 1993 (base maps produced using the R 
package ggmap, Kahle and Wickham 2013). SST was warmer in 
1993 than in 1991 and in 1993 there was also significantly less spa-
tial overlap among species. Sampling effort was approximately equal 
between years: ~ 35.5 h of observation in 1991 and ~ 39.5 h of obser-
vation in 1993. Ship speed was also equal. In 1993 transects were 
repeated on multiple days. Transects (off the east end of South Geor-
gia as shown in Fig. 2b) depicted in white, point colors made slightly 
transparent to show overlap.  a In 1991 Cape Petrels and prions over-
lapped in 19 locations (56% of bins) (b) in 1993 this decreased to 8 
locations (22% of bins).  c In 1991 blue Petrels and Antarctic fur seals 
overlapped in 29 locations (85% of bins), d in 1993 they overlapped 
in 9 locations (~ 24% of bins)
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reported for systems of pollinators, Winfree et al. 2014). 
Pelagic communities of seabirds are assemblages of species 
that occur together within the same marine habitat (Pock-
lington 1979; Briggs et al. 1987; Ribic and Ainley 1989; 
Wahl et al. 1989); if such assemblages were a random mix 
of species each pursuing prey independently, then the spatial 
distribution of each species would be independent of oth-
ers. In contrast, the benefits associated with positive interac-
tions should be associated with a highly connected network 
(Thébault and Fontaine 2010). As co-occurrence (statistical 
overlap) is an index of the use of local enhancement or facili-
tation (Veit and Harrison 2017), the change we witnessed is 
consistent with our prediction that changes in abundances 
could have disproportionate impacts upon feeding success 
of the component species.

Positive interspecific associations are the products of their 
community (characteristic combinations of species and their 
relative abundances, Veit and Harrison 2017). Different spe-
cies of seabirds may constitute “behavioral phenotypes” as 
they join feeding flocks at different stages of their formation 
and exhibit different feeding strategies. The net result is that 
more prey gets captured per group member. Thus, it may 
be important to conserve groups of species that facilitate 
one another as units of biodiversity (Greggor et al. 2017). 
Furthermore, communities that are more behaviorally het-
erogeneous may occupy a greater diversity of niches and 
could thus be buffered against environmental change (Brown 
2013).

Reliance on others for prey capture success may put such 
social species disproportionately at risk to declines in bio-
diversity (Veit and Harrison 2017), an idea supported by 
simulations run by Dakos and Bascompte (2014) which sug-
gested mutualistic networks run a high risk of experiencing 
a tipping point: exposure to a gradual weakening of mutual-
istic strength caused abrupt onset community collapse in all 
79 of their simulated plant/pollinator or plant/seed disperser 
communities; specialists were generally the first to collapse. 
Such a result may hold true for intraspecific positive associa-
tions as well: Grünbaum and Veit (2003) found that albatross 
density at South Georgia had a higher impact on feeding rate 
than did prey density, indicating, first, the importance of 
local enhancement (albatrosses responding to albatrosses) 

and second, that at low densities local enhancement may 
not be effective.

Any alteration to a species’ habitat has the potential to 
disrupt social networking and thus, how animals obtain and 
transfer information (Greggor et al. 2016, 2017). The need 
to use local enhancement may depend on the abundance and 
type of prey available (Bairos-Novak et al. 2015), which 
may vary predictively between seasons but unpredictably 
between years (Murphy et al. 1998). Such associations may 
be particularly beneficial during times of stress, as positive 
interactions may stabilize a community (Stachowicz 2001; 
Bruno et al. 2003). The benefits of positive associations 
have been demonstrated both in theory (see simulations run 
by Boyd et al. 2016b) and experimentally (Gotmark et al. 
1986). A formative study by Thiebault et al. (2014) showed 
that wild Cape Gannets (Morus capensis) that made use of 
social information substantially reduced their search time 
(a proxy for feeding success). Additionally, McInnes et al. 
(2017) showed catch-per-unit-effort increased during group 
versus solitary foraging wild African penguins (Sphenis-
cus demersus). Key questions still remain, however, as to 
the direct benefits positive associations may offer (such 
as access to better quality patches, increased prey intake, 
or offspring survival) especially in regards to interspecific 
associations.

Importantly, some species/individuals might serve as 
more conspicuous cues than others (due to coloration or 
body size, Bretagnolle 1993; Silverman et al. 2004; Bai-
ros-Novak et al. 2015) or may be a preferred cue (due to 
dietary overlap between the flock initiator and flock joiner 
or because of the initiator’s patch-finding aptitude). Whether 
these associations are obligate or merely opportunistic 
(Bronstein 2015), it suggests important fitness consequences 
for the evolution of coexisting species and their interdepend-
ence (Bretagnolle 1993; Laland et al. 1999; Laland and 
Boogert 2008).

We provide an example of how continued environmental 
change (e.g., expected temperature increases) may impact 
foraging success via changes in positive interactions. Of 
immediate concern is that changing climate can change the 
abundances of those engaged in multispecies feeding flocks, 
and indeed the nature of interactions among species previ-
ously engaged in mutually positive associations can change 
(Janzen 1974; Terborgh 1986; Bronstein 2015; Anguita and 
Simeone 2016), leading to faster/larger declines than may 
have otherwise been predicted (Fig. 1 linkage e).

Contrary to our predictions, abundances of most spe-
cies did not decrease as temperatures increased. However, 
21% of the 24 the species sighted exhibited negative rela-
tionships with temperature in at least one comparison. 
These changes were seen in select species of petrels and 
fur seals. The remaining taxa (gulls and terns, penguins, 
shags, and skuas) all exhibited relatively low abundances 

Fig. 4  Changes in abundance across survey years and SST. Plot 
colors correspond to SST with red being the warmest survey year, 
blue being the coldest and purple corresponding to an intermediate 
temperature (standard errors and sample sizes for mean winter tem-
peratures are given in “Methods”). Phylogeny and common names 
taken from Dickinson and Remsen (2013). Note each plot has a 
unique y-axis scale. Width of the boxes proportional to the square 
root of the sample size. a Species whose abundance did not signifi-
cantly change between years/with temperature (b) species exhibiting 
significant changes in abundance between survey years. The length of 
the annotated line indicates which years the significant comparison is 
between. Significance levels indicated by *p < 0.05 and **p < 0.01

◂
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across the three survey years (Fig. 4). Fifty-four % of 
all species never reached abundances > 1 individual/km 
(Fig. 4) suggestive of a possible floor effect, where we do 
not see many significant declines in abundances because 
abundances are all low to begin with. Additionally, the 
difference between our coldest and warmest survey year’s 
mean winter temperature was ~ 1.6 °C, but there is sub-
stantial evidence showing the waters around South Geor-
gia have warmed since then and will continue to warm 
(Whitehouse et al 2008; Boyd et al. 2016a). Thus, it is pos-
sible some of our species’ climate envelopes have shifted 
since our data were collected.

Regardless of what percentage of the species exhibited 
changed abundances, and regardless of the mechanism (be 
it temperature change or some other factor), the changes in 
abundances witnessed were sufficient to produce significant 
changes to the community (Fig. 5).

Contrary to our predictions, high-Antarctic species were 
not more than likely to decline with increasing SST and sub-
Antarctic birds were not more likely to increase. In fact, the 
only species to exhibit significant positive relationships with 
temperature were cold water birds: Gray-headed Albatrosses 
(cf. Ryan 2018 and Poncet et al. 2017) and Snow Petrels 
(Fig. 4). Both of these species are known to associate with 
ice flows, Snow Petrels obligatorily so (Brooke 2004). In 
warm years sea ice often pushes farther north (Turner et al. 
2016) into the sub-Antarctic, and this may in part account 
for the responses by these species. The majority of species 
exhibited no significant changes in abundance between 
years, regardless of oceanographic habitat (Fig. 4, Table 1). 
Still, however, significant changes to community composi-
tion were found (Fig. 5).

Conclusions

Figure 1 linkages a and b are well established (Burger 
1988; Veit et al. 1996, 1997; Croxall et al. 2002; Jenou-
vrier et al. 2005a, b; Forcada et al. 2008; Doney et al. 2012; 
Veit and Manne 2015; Boyd et al. 2016a). The point of this 
study, however, is (1) the novel establishment of linkage 
c—changes in the community resulting in changed species 
interactions and (2) the presentation of a framework for how 
continued environmental change (e.g., expected temperature 
increases, Fig. 1 linkage a) may impact fitness and feedback 
to alter future abundances via said changed species interac-
tions (Fig. 1 linkages d and e). Our study highlights such 
changes within a winter community (although changes to 
the community between seasons has previously been shown 
to coincide with changed species interactions, Anguita and 
Simeone 2016). Of course, many factors besides SST are 
important and we do not claim to have removed these from 
consideration. Rather, the framework we present highlights 
the expediency of incorporating behavioral data into con-
servation decisions, consistent with recent suggestions by 
behavioral ecologists (Blumstein and Fernandez-Juricic 
2010; Camphuysen et al. 2012; Bronstein 2015; Greggor 
et al. 2016, 2017).

Fig. 5  Community change over time. a Yearly average individuals/
km, standardized against the highest average value for the given year. 
Species ordered highest to lowest based on 1985 abundances. b Shan-
non Wiener diversity calculated based on daily individual/km values 
(using the R package vegan, Oksanen et al. 2019). Boxplot overlaid 
on top of these daily values. Color-coding and significance annota-
tions as in Fig. 4

◂ Table 1  Number of species that exhibited decreased, increased, or 
non-significant changes in abundance (p < 0.05, see Fig. 4) by habitat. 
(a) Changes between years where SST decreased (1985–1991), (b) 
changes between years where SST increased (1985–1993 and 1991–
1993)

(a)
Habitat Decreasing 

species
Increasing species No change

Colder water 1 1 11
Warmer water 0 0 9

(b)

Colder water 3 1 9
Warmer water 2 0 7
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