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Abstract
The plasticity of functional traits promotes invasiveness of a species. Biomass allocation, as one of these traits, is responsi‑
ble for resource acquisition, and its plastic modifications can be of adaptive value in new environments before any genetic 
adaptations may occur. Our aim was to compare in situ biomass allocation in aboveground and belowground organs in an 
Antarctic and a Polish population of annual bluegrass (Poa annua), the only alien plant species successfully invading Ant‑
arctica. The Antarctic population was characterised by three times lower aboveground biomass, more compact plant growth 
habit and higher fraction of biomass allocated into belowground organs than in the Polish population. The differences between 
populations are probably a result of adaptation to local conditions. The modifications of the studied traits in the Antarctic 
population are most likely a response to extreme atmospheric and edaphic conditions and enable the species to survive and 
spread in this hostile environment. Our results are in accordance with the balanced growth hypothesis. At the same time, 
these trait values enhance species performance under Antarctic conditions making P. annua a potential threat to local plant 
communities under altering climate changes and growing human impact scenario.
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Introduction

Plastic resource allocation in plants is a response to varying 
growing conditions affecting dispersal, distribution, resil‑
ience, and speciation (Harper and Ogden 1970; Hickman 
1975; Reekie and Bazzaz 1987; Dong and de Kroon 1994). 
Hence, it has a substantial effect on plant’s competitiveness 
(Berendse and Elberse 1990). Functional traits related to 
physiology, biomass allocation, growth rate, size, and fitness 
affect invasiveness (Alpert et al. 2000; van Kleunen et al. 
2010; Espeland 2013; Colautti et al. 2017). Invasive species 

are often physiologically plastic, which allows them to take 
advantage of a variety of habitats and different ecological 
niches (Baker 1974; Meekins and McCarthy 2001; Richards 
et al. 2006). In consequence, a species can be well adapted to 
the conditions of the colonised area without genetic changes 
(Alpert et al. 2000; Chwedorzewska and Bednarek 2012). 
The plastic response enables the survival of a population 
even before any favourable genetic changes may take place. 
Therefore, species plasticity has been suggested as one of 
the key traits important for predicting species invasiveness 
(Rejmanek and Richardson 1996).

Many authors point to resource allocation as one of the 
traits important for species invasiveness. This is because 
plastic biomass allocation enables the control of resource 
absorption from the environment. Greater root biomass 
allows for better acquisition of nutrients and water from 
soil, and greater photosynthetically active biomass enables a 
more efficient collection of solar energy (Sultan 1995, 2000; 
Ryser and Eek 2000). Plastic biomass allocation is therefore 
an important parameter during species invasion, because it 
directly affects adaptation to the conditions prevailing in 
the new environment. This results in a broadening of the 
tolerance to environmental conditions, whereby species can 
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survive in different ecological niches (Sexton et al. 2002; 
Richards et al. 2006; Geng et al. 2016).

Theoretically if the source and invaded habitats share 
similar environmental conditions, there is no need for plas‑
tic response of a species conquering new sites. Phenotypic 
plasticity of the invasive species is most evident and often 
necessary when conditions differ between the source and tar‑
get habitats. In such a case, plasticity can be the main factor 
that determines establishing of the species in a new environ‑
ment and further invasion success (Hulme 2007; Espeland 
2013; Colautti et al. 2017). In particular, harsh conditions, 
differing from the majority of potential source habitats and 
being on the border of endurance for most vascular plant 
species, are met in Maritime Antarctica (e.g. Robinson et al. 
2003; Galera et al. 2015).

The only invasive plant species successfully conquering 
the harsh Maritime Antarctic environment and establishing 
a self-sustaining population in the region is annual bluegrass 
(Poa annua L.), one of the most common grass species in the 
world. The species is of Eurasian origin with the centre of its 
range in temperate climates (Grime et al. 1988; Mitich 1998; 
Vargas and Turgeon 2003). It grows in a variety of climatic 
zones from the equator to the polar regions (Vargas and Tur‑
geon 2003). The species has been noted for over 30 years 
in Point Thomas Oasis on King George Island, Maritime 
Antarctica (Galera et al. 2017). Due to harsh environmental 
factors, this Antarctic population exhibits specific morpho‑
logical traits (Galera et al. 2015).

The aim of our work was to compare biomass alloca‑
tion in aboveground and belowground organs of annual 
bluegrass in two populations of the species occurring under 
different environmental conditions in Maritime Antarctica 
and Poland. We were interested in finding out how these 
traits may vary to exploit the local environment and to what 

extent the biomass allocation of the studied species is shaped 
by different climatic and/or edaphic factors. This is an ini‑
tial study of biomass allocation of the species in situ. This 
research reports differences in the studied populations under 
local conditions and precedes a common garden study in 
which climatic factors and soil properties will be controlled.

Methods

Data collection

For our study, we chose two locations where P. annua pop‑
ulations are found. One of the sampling sites was situated 
in the vicinity of the Polish Antarctic Station H. Arctowski 
(62°09′36″S, 58°28′16″W), King George Island, South 
Shetlands, Maritime Antarctica. The other sampling site 
was situated in the Botanic Garden of the Polish Academy 
of Sciences (52°06′19″N, 21°05′43″E), Warsaw, Poland—
representing one of the core native range populations 
(Tutin 1952). The two locations differ in climatic charac‑
teristics (Table 1). The King George Island site has polar 
climate (Galera et al. 2015, 2018) with sub-zero tempera‑
tures even during the short Antarctic “summer” (annually 
143 days with mean daily temperature above 0 °C, Kejna 
1992). There is no growing season defined as a period with 
mean daily temperature above 5 °C (Table 1). The site 
is characterised by strong desiccating wind (Wierzbicki 
2009), soil of initial type (Bölter et al. 1997; Nędzarek 
2008; Łachacz et al. 2018), low competition, and no her‑
bivory (Galera et al. 2018). Contrastingly the Warsaw site 
receives a temperate climate with sufficient rainfall and 
optimal temperature during the growing season (Galera 
et al. 2015) that lasts over 200 days a year (Table 1). In this 

Table 1   Comparison of climatic 
characteristics between study 
sites

Length of the growing season calculated according to Frich et al. (2002) definition (period with mean daily 
temperature above 5 °C)
a WeatherOnline (2016)—data from Warsaw-Okęcie Meteorological Station, means based on 2005–2015 
time span
b WeatherOnline (2016)—data from Argentinian Carlini Station, means based on 2005–2015 time span
c Czernecki and Miętus (2017)—data from meteorological stations located in Eastern Lowlands in Poland, 
means based on 1951–2010 time span
d Kejna (1992)—data from Arctowski Polish Antarctic Station, means based on 1978–1989 time span

Climate characteristics Warsaw King George Island

Mean annual temperature (°C) 9.2a − 1.9b

Mean temperature during the coldest month (°C) − 1.7 (January)a − 6.3 (July)b

Mean temperature during the warmest month (°C) 10.5 (July)a 2.2 (January)b

Mean annual precipitation (mm) 553.9a 429.7b

Mean annual wind speed (km/h) 12.6a 32.8b

Mean annual number of days with snowfall (days) 125a 210b

Mean length of the thermal winter season (days) 89c 222d

Mean length of the growing season (days) 214c 0d
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site, the dry podzolic soil (Puchalski and Gawryś 2002) is 
relatively more fertile than in our Antarctic study site, but 
there is pressure from competitors as well as herbivores.

In each site, we sampled 60 randomly selected P. annua 
tussocks. The sampling was performed at the end of P. 
annua growth cycle in February/March 2015 in the Ant‑
arctic site and in October 2015 in the Warsaw site. We 
measured the height of each tussock (0.5 cm accuracy) 
and carefully dug them without disturb the roots. Our goal 
was to assess the differences in biomass of aboveground 
and belowground organs of annual bluegrass in both stud‑
ied populations. During our study, we observed that tus‑
socks from the Antarctic population were not large enough 
to measure the dry weight of their organs and failed to 
be detected by our scale. We therefore had to employ a 
procedure to extrapolate their mass from photographs of 
individuals (Fig. 1).

Tussocks were transported to the laboratory, washed 
to dispose of any remaining soil, separated into individu‑
als in order to minimise the overlapping of leaves and 
photographed (Fig. 1). The images were used to calculate 
the area of the above- and belowground parts of the plant 
(0.01 cm2 accuracy) as a proxy of biomass, as well as to 
measure the maximum length of the root within the tus‑
sock (0.01 cm accuracy). The measurements were taken 
with ImageJ software (Rasband 1997–2018). All annual 
bluegrass individuals were subsequently fractioned into 
aboveground organs and roots and dried at 40 °C for 24 h. 
We weighed the aboveground and belowground organs of 
each tussock on a laboratory scale (0.0001 g accuracy). 
For the Arctowski population, we were able to collect 

biomass information for only 27 tussocks as the remain‑
ing 33 tussocks were too small to be detected by the scale.

Statistical analysis

Our dataset included a direct biomass measure of the above‑
ground and belowground organs, as well as an indirect bio‑
mass estimate based on photographs. We compared the 
assessment of biomass using these two methods by correla‑
tion analysis. We estimated Pearson correlation coefficients 
and least-squares linear regression coefficients between 
the biomass and organ area on the photographs. We com‑
pared the regression slopes between direct measurement of 
biomass and its estimate from photographs separately for 
aboveground and belowground organs between populations 
with pairwise comparisons of least-squares means using the 
Tukey method (Piepho 2004). As the regression coefficients 
differed between populations, we used them in subsequent 
analyses to estimate the biomass of organs based on the pho‑
tographs according to the formula: B = A × R (B–biomass of 
plant organs, A—area of plant organs on photographs, R—
regression coefficient). Based on our method comparison 
results, further analyses of biomass were performed not on 
the direct measurements of biomass, but on their regression-
based estimate.

We compared the studied populations in regard to the 
number of individuals per tussock, tussock height, the 
length of the longest root in a tussock and aboveground, 
belowground and total tussock biomass. Furthermore, we 
calculated shoot-to-root length ratio per tussock and per‑
centage of the belowground biomass in total biomass. The 

Fig. 1   All (4) separated and 
washed individuals of Poa 
annua comprising one of the 
tussocks collected in Poland. 
The scale is visible below the 
plants. Phot. A. Rudak
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Shapiro–Wilk test showed that the distribution of the meas‑
ured parameters deviated from the normal distribution; 
therefore, the Kruskal–Wallis test was used to compare data 
from analysed populations. All statistical analyses were car‑
ried out in the R program with the use of base (R Core Team 
2018), lsmeans (Lenth 2016) and multcompView (Graves 
et al. 2015) packages.

Results

We recorded 233 individuals in 60 tussocks from Poland and 
209 individuals in the same number of tussocks from Ant‑
arctica. The median tussock height was three times greater 
in the Polish population than in the Antarctic, but plant roots 
were shorter (Table 2). In both populations, shoot-to-root 
length ratio was lower than 1, indicating that roots were 
longer than shoots, but there were large differences between 
the populations (Table 2).

We found a strong linear correlation between the biomass 
and the area of the plant organs on photographs for tussock 
from both studied populations (Figs. 2, 3). Comparison of 
the regression slopes between biomass and plant organ area 
on photographs indicated two groups (Fig. 4). We did not 

find significant differences between linear regression slopes 
for biomass and area of photographed organs within each 
population, but the slopes differed between populations. The 
average regression coefficients were 0.0117 for the Antarctic 
and 0.0079 for the Polish population.

The total biomass of tussocks from Poland was about 2 
times higher than from the Antarctic (Table 2). Aboveground 
tussock biomass was significantly higher in the Polish than 
in the Antarctic population. The only studied trait that is not 
significantly different between studied populations was root 
biomass (Table 2). Biomass allocation expressed as the per‑
cent of the belowground biomass in the biomass of the entire 
tussock also differed between populations with 26.6% for the 
Polish population and 60.1% for the Antarctic one (Table 2).

Discussion

Estimating biomass based on the photograph area 
of plant organs

Due to small size of the plants studied, especially from 
the Antarctic population we had to develop another means 
of assessing plant biomass. Therefore, we used linear 

Table 2   Comparison of studied 
traits between the Polish and 
Antarctic P. annua tussocks

*p < 0.05, **p < 0.005, nsp > 0.05

Median value of trait of the tussock Location K–W test

Poland Antarctic H1 statistics p value

Number of individuals 3 1 4.274 *
Tussock height (cm) 4.5 1.5 56.191 **
The length of the longest root (cm) 5.93 8.87 7.650 *
Shoot to root length ratio 0.74 0.16 77.660 **
Total biomass (g) 0.1025 0.0509 6.347 *
Biomass of aboveground organs (g) 0.0728 0.0213 17.675 **
Biomass of belowground organs (g) 0.0248 0.0290 0.080 ns
The percent of the belowground organs in 

the total biomass (%)
26.6 60.1 65.503 **

Fig. 2   The relation between 
the surface of the belowground 
(a) and aboveground (b) plant 
organs on photographs, and the 
dry mass of Poa annua tussocks 
from Poland
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regression to estimate the biomass of organs from photo‑
graphs. The regression method is indirect, but gave satis‑
factory results. The interlacing of roots and leaves induces 
an error in the estimate, but the error is similar over all 
measured objects. Our results indicated strong correlation 
between photographed area and biomass, which may sug‑
gest that measuring the photographed area of plant organs 
is a good proxy of biomass for comparison purposes. This 
technique may be helpful in biomass allocation estimation, 
as it requires less time or resources to perform and can help 
measure specimens otherwise not eligible for examination.

Similar methods are used widely for difficult measure‑
ments, like large-area estimations of forest biomass (Brown 
et al. 1989), commonly using existing regression equa‑
tions for this purpose. Generalised equations may cause 

significant errors and every usage of regression estimates 
should be thoroughly checked before being applied (Wang 
et al. 2002). We found significant differences in population-
specific regression equations confirming their cross-inappli‑
cability. Also extrapolating the regression line beyond the 
range of both measured variables can be questioned, but in 
our opinion it is a better estimate than not having any results 
at all, especially from unique sites, like Antarctica.

Factors shaping studied tussock traits

Environmental conditions considerably differ between 
South Shetlands and Poland (Table 1). This demands plastic 
changes from the invading plant species. Apart from such 
factors as temperature and soil properties, which may be 

Fig. 3   The relation between 
the surface of the belowground 
(a) and aboveground (b) plant 
organs on photographs, and the 
dry mass of Poa annua tussocks 
from Antarctica

Fig. 4   Regression coefficients 
with 95% confidence intervals 
for relation between biomass 
and surface for aboveground 
and belowground plant organs 
from Poland and Antarctica. 
Lowercase letters indicate 
Tukey grouping at p < 0.05
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studied under controlled environment, biomass allocation 
may be influenced by an interlacing complex of other fac‑
tors, which are hard to simulate. One of them is water avail‑
ability restricting plant growth in the Antarctic. Despite a 
large supply of water on King George Island in the form of 
glacial caps, it is periodically inaccessible to plants inducing 
physiological drought due to low temperature and salinity 
(Mahajan and Tuteja 2005). Very strong wind often exceed‑
ing 40 m/s is another important factor affecting plant growth 
in Maritime Antarctica (Kowalski 1985; Wierzbicki 2009). 
Wind acts both as a stressor, causing plant desiccation, and 
as disturbance factor (Berjak 1979; Gardiner et al. 2016). 
Differences in these environmental factors may induce mul‑
tiple responses in plants, which determine the ultimate trait 
values, depending on their magnitude and potentially inter‑
active effects (Bradshaw 1965).

Response of local populations to contrasting 
environmental conditions

Our results unequivocally indicate differences in tussock 
traits and biomass allocation in populations from the two 
study sites. In the Antarctic population, P. annua had lower 
aboveground biomass than in the Polish population. We 
did not detect differences in belowground biomass, but 
plants from the Antarctic had longer roots. Differences in 
biomass allocation detected by us between the study sites 
are in accordance with the balanced growth hypothesis 
(Shipley and Meziane 2002), which states that plant organs 
responsible for acquisition of the limiting resource should 
develop better than others. Under harsh conditions, pio‑
neer plants exhibit a similar scheme of biomass allocation 
which is driven by abiotic factors (Jumpponen et al. 1999). 
Lower total biomass is often detected in plants growing in 
sites prone to drought (Enquist and Niklas 2002). In polar 
regions, members of the Poaceae (grass family) exhibit a 
xerophytic character, including a lower biomass of the 
aboveground organs, longer root system and higher root 
biomass (Giełwanowska et al. 2011).

Low aboveground biomass of plants in the polar regions 
was found to be driven by low temperature and strong wind 
(Giełwanowska et al. 2011). Lower biomass of the above‑
ground organs and lower tussock height detected by us in the 
Antarctic in comparison with the Polish population may be a 
result of the differences in temperature and wind conditions 
between the studied sites. Under suboptimal low tempera‑
ture, plant growth may be much slower than under optimal 
climatic conditions. The temperature on the soil surface can 
be even 10 °C higher than temperature recorded by meteoro‑
logical stations (Kellman-Sopyła and Giełwanowska 2015). 
In the Antarctic, a compact plant growth habit may allow 
aboveground organs to be confined to more favourable con‑
ditions present just above the soil surface as well as reduce 

transpiration caused by desiccating wind. Deschampsia ant-
arctica Desv. (Antarctic hair grass) was shown to have a dif‑
ferent growth habit depending on the wind speed, with more 
erect plants under lower wind speed and more procumbent 
plants under high wind (Parnikoza et al. 2015). In contrast, 
plants from a temperate climate may be taller to win com‑
petition for light (McCarthy and Enquist 2007).

Species more resistant to drought and harsh climatic con‑
ditions were found to have higher biomass allocation in roots 
(Fort et al. 2012). In comparison with plants cultivated under 
optimal conditions, the root system of plants experiencing 
harsh conditions was even twice as large (Gleeson and Till‑
man 1990). The impact of low nitrogen and phosphorus 
availability in soil was experimentally shown to impact bio‑
mass allocation in many species (Aerts et al. 1991; Müller 
et al. 2000). The study of nutrient deficiency on the devel‑
opment of Arabidopsis thaliana (L.) Hynh. (thale cress) 
indicated that increased root growth is a consequence of 
nitrogen and phosphorus deficiency, while other nutrient 
deficiency does not enhance root growth (Hermans et al. 
2006). Although we did not find differences in root biomass 
between the Antarctic and Polish population, the roots in the 
Antarctic plants were significantly longer. The larger rhizo‑
sphere in the Antarctic population may aid in nutrient and 
water acquisition. A similar root biomass allocation pattern 
was found for annual bluegrass occurring in a sub-Antarctic 
site (Williams et al. 2018). Longer root system may also 
better anchor the plants against strong wind (Reubens et al. 
2009; Gardiner et al. 2016).

The role of phenotypic plasticity in the invasion of P. 
annua

Our results confirm that P. annua is a highly plastic spe‑
cies. The differences in biomass allocation observed in this 
study between two populations of the same species, but 
from climatic zones highly differing in environment severity 
(Table 1), show the species high adjustment capability. Also, 
our previous findings regarding differences in morphological 
traits between individuals confirm the highly adaptive nature 
of this species. Modifications of morphological traits make 
the tussocks (this study) as well as individual specimens 
(Galera et al. 2015) more compact under harsh conditions, 
and differences in biomass allocation help with the acquisi‑
tion of scarce resources. While individuals in the Antarctic 
population tended to be composed of more shoots (Galera 
et al. 2015), they still have lower aboveground biomass than 
individuals from the Polish population. Also their sexual 
organs are smaller, more compact enabling lower seed 
set under Antarctic conditions, despite the higher number 
of panicles per individual (Galera et al. 2015). This may 
indicate high influence of harsh conditions on plant perfor‑
mance. Nevertheless, these traits can be modified in such a 
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way that although fecundity is lowered in comparison with 
optimal growing conditions, the species is able to adapt 
and set viable seeds in the Antarctic. Together these traits 
facilitate the ongoing invasion of the species in this hostile 
environment.

Annual bluegrass has also been reported to show plastic 
physiological response to different environmental conditions 
(Giełwanowska et al. 2011). High plasticity in all of these 
traits, rather than genetic diversity, makes the species highly 
invasive. This adaptability allows alien species to “set foot” 
in novel environments before any genetic adaptations may 
have time to take place (Frenot et al. 2005; Richards et al. 
2006). The species has been reported as invasive in sub-
Antarctic islands (e.g. Scott and Kirkpatrick 2005; Whinam 
2009; Williams et al. 2016; Greve et al. 2017). The species 
successfully penetrated the Antarctic geographical barrier 
(Chwedorzewska et al. 2015; Hughes and Pertierra 2016) 
and established a breeding population on King George 
Island (Galera et al. 2017). This confirms the pivotal role 
of high phenotypic plasticity of this species in the invasion 
success in the broad Antarctic region.

Phenotypic plasticity has been observed to determine 
the ability of species to succeed in a broad range of habi‑
tats (Pigliucci 2001; Leger and Rice 2003; Richards et al. 
2006). Modifications of developmental, physiological and 
life-history traits observed in natural populations exposed 
to novel environments can be driven by plastic response 
(Chevin et al. 2013). We found such response in our study 
species. Besides promoting species persistence, adaptive 
plasticity can facilitate the rapid spread of invasive species 
across diverse new habitats (breaking the survival barrier, 
Blackburn et al. 2011). The start of expansion of P. annua 
in Point Thomas Oasis (Wódkiewicz et al. 2018) may be an 
effect of this facilitation. The invasion of P. annua at Point 
Thomas Oasis, possible due to the species plasticity, is a 
most pronounced invasion in the region. It enabled us to 
study the invasion process in harsh environments and species 
traits facilitating this invasion. Nevertheless, we started the 
eradication process to protect this unique ecosystem (Galera 
et al. 2017). The plasticity of P. annua may pose a risk of 
local tundra communities under a changing climate sce‑
nario. Hopefully this invasion can be stopped with the use 
of proper eradication methods.

Conclusions

Biomass allocation is an important adaptive trait, and its 
variation can be a response to variable environmental factors 
like wind speed, availability of nutrients and water condi‑
tions. The Antarctic population of P. annua in comparison 
with the Polish one shows significant differences in bio‑
mass allocation. The plasticity of this trait as well as other 

morphological, developmental and physiological traits may 
greatly facilitate the species invasibility in polar regions. 
Higher biomass allocation in the belowground organs in the 
Antarctic population may allow plants to better exploit nutri‑
ents and water resources, as well as more efficiently anchor 
the plant to the ground. Smaller and compact aboveground 
organs restrict transpiration and reduce surface resistance, 
making plants less vulnerable to the adverse influence of 
wind abrasion. Plants are therefore better adapted to survive 
and set seed under local Antarctic conditions. To what extent 
these differences are population specific or remain flexible 
to changing environmental conditions will be a focus of our 
further studies involving transplant experiments under simu‑
lated environmental conditions.
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