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Abstract
Plants, known for their immobility, employ various mechanisms against stress and damage. A prominent feature is the 
formation of callus tissue—a cellular growth phenomenon that remains insufficiently explored, despite its distinctive cellular 
plasticity compared to vertebrates. Callus formation involves dedifferentiated cells, with a subset attaining pluripotency. 
Calluses exhibit an extraordinary capacity to reinitiate cellular division and undergo structural transformations, generating 
de novo shoots and roots, thereby developing into regenerated plants—a testament to the heightened developmental plasticity 
inherent in plants. In this way, plant regeneration through clonal propagation is a widely employed technique for vegetative 
reproduction. Thus, exploration of the biological components involved in regaining pluripotency contributes to the foundation 
upon which methods of somatic plant propagation can be advanced. This review provides an overview of the cellular 
pathway involved in callus and subsequent de novo shoot formation from already differentiated plant tissue, highlighting 
key genes critical to this process. In addition, it explores the intricate realm of epigenetic regulatory processes, emphasizing 
the nuanced dynamics of DNA methylation that contribute to plant regeneration. Finally, we briefly discuss somaclonal 
variation, examining its relation to DNA methylation, and investigating the heritability of epigenomic changes in crops.

Keywords Pluripotency · Dedifferentiation · In vitro regeneration · De novo organogenesis · DNA methylation · 
Somaclonal variation

Introduction

Plants, as immobile land-dwelling organisms, have evolved 
a variety of defense mechanisms to guard against damage 
and stress. One understudied process is the formation of 

so-called callus tissue, a dedifferentiated growth of cells 
that develops in response to injury. Plant biology research-
ers have long utilized this phenomenon to grow plant tissues 
indefinitely in culture, representing a key model for plant 
physiological processes, and akin to animal cell culture.

Plants exhibit a notably higher degree of natural cellular 
differentiation plasticity compared to vertebrates, as demon-
strated by prior research (Ikeuchi et al. 2013; Sugimoto et al. 
2010). When plants are subjected to stress factors such as 
physical injury or pathogen invasion, unorganized clusters of 
cells known as callus can form (Ikeuchi et al. 2013; Nagata 
and Takebe 1971; Steward et al. 1958). While the dediffer-
entiation occurring in callus tissue bears some resemblance 
to animal cancer, scientists have observed recovery of an 
almost embryo-like totipotency since the early years of cal-
lus research (Steward et al. 1958). In in vitro experiments, 
the induction of callus formation is achieved through vari-
ous methods, including mechanical injury to plant organs 
or tissues and culturing plant explants on an auxin-rich 
callus-inducing medium (CIM). Subsequently, the induced 
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callus can be further cultured on a cytokinin-rich shoot-
inducing medium (SIM) or an auxin-rich root-inducing 
medium (RIM) to promote the regeneration of shoots or 
roots, respectively (Fig. 1) (Skoog and Miller 1957; Valvek-
ens et al. 1988). Therefore, regenerants can be obtained by 
sequentially transferring newly developed shoots to a RIM 
to stimulate root formation.

In the past, observations have revealed that calluses pos-
sess the remarkable ability to reinitiate cellular division 
in previously quiescent cells and undergo structural trans-
formations (Sugimoto et al. 2010). Consequently, it was 
believed that somatic cells, with a predetermined cell fate, 
could undergo dedifferentiation and transform into pluripo-
tent cell masses capable of regenerating into entirely de novo 
shoots or roots (Kareem et al. 2016a). This is reminiscent 
of the in vitro reprogramming possible in mammalian cells 
to so-called induced pluripotency (Takahashi et al. 2007; 
Takahashi and Yamanaka 2006; Yu et al. 2009). In contrast 
to plants, however, in mammals, somatic reprogramming can 
only occur in the presence of exogenous signals from key 
transcription factors. As such, aside from the pathological 
cellular transformation that characterizes cancer develop-
ment, reprogramming to pluripotency is not known to occur 
in somatic cells in vivo. These differences make plants a 
unique and valuable system for studying totipotency and 
pluripotency. In this review, we will explore the fundamental 
aspects of plant regeneration in the model plant Arabidopsis 
and other crop plants. In addition, we will delve into the cur-
rent understanding of DNA methylation dynamics during the 
regeneration process. Finally, we will discuss somaclonal 
variation in relation to DNA methylation.

Overview of plant regeneration: cellular 
diversity of callus

Recent research suggests that callus formation cannot be 
simply characterized as a generic dedifferentiation into an 
undifferentiated state. Instead, it is more comparable to 
the formation of root meristem-like tissues regardless of 
explant origin (Sugimoto et al. 2010). Some researchers 
describe callus formation as a transdifferentiation process 
that enhances developmental potency (Sugimoto et al. 2011). 
Contrary to previous beliefs, it has been observed that cal-
lus outgrowths, initiated on CIM, do not originate from all 
cells of the explant but predominantly from pericycle cells 
located opposite the protoxylem poles (Atta et al. 2009; Sug-
imoto et al. 2010, 2011). The broad pluripotent potential of 
xylem pericycle cells was further demonstrated when their 
direct transfer onto media containing cytokinin resulted in 
the regeneration of shoot apical meristems (SAMs) from 
sites where lateral roots would have typically initiated (Atta 
et al. 2009). Furthermore, recent studies have found cal-
luses to be a heterogeneous group of cells that are not lack-
ing of tissue organization (Atta et al. 2009; Sugimoto et al. 
2010, 2011; Zhai and Xu 2021). The clusters of callus cells 
were grouped into three cell layers; outer, middle, and inner 
layer based on their transcriptional identity (Fig. 2a) (Zhai 
and Xu 2021). Out of these layers, the quiescent center-like 
middle cell layer had WUSCHEL RELATED HOMEOBOX 

Fig. 1  Scheme of in vitro plant regeneration. Various tissues such as 
true leaves, hypocotyls, and roots can be used as explants for callus 
induction. When the explant is incubated on an auxin-rich callus-
inducing medium (CIM), dedifferentiation occurs, leading to callus 
induction from pericycle-like cells. Incubating the callus on a cyto-
kinin-rich shoot-inducing medium (SIM) or an auxin-rich root-induc-
ing medium (RIM) results in differentiation, leading to the induction 
of de novo shoots or roots, respectively. It has been revealed that de 
novo shoots are induced from the productive progenitors in the mid-
dle layer of the callus. Regenerants can be obtained by sequentially 
culturing the explant on CIM, SIM, and RIM
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5 (WOX5) and WOX7 activity which promoted TRYPTO-
PHAN AMINOTRANSFERASE OF ARABIDOPSIS 
(TAA1)-mediated auxin production. The cytokinin sign-
aling pathway operates through a negative feedback loop 
involving type-A and type-B Arabidopsis Response Regu-
lators (ARRs); type-B ARRs activate type-A ARRs, while 
type-A ARRs repress the signaling initiated by type-B ARRs 
(Buechel et al. 2010; To et al. 2004; Zhai and Xu 2021). By 
breaking the negative feedback loop between type-B ARR12 
and type-A ARR5, WOX5 and WOX7 increase cytokinin 
sensitivity in the signaling pathway (Zhai and Xu 2021). 
This mechanism strongly suggests that the middle cell layer 
gains the pluripotency needed for further organ regenera-
tion in response to hormones in CIM. Upon transfer to SIM, 
the shoot progenitor marker gene, WUSCHEL (WUS), was 
induced in this layer, and cells forming adventitious shoots 

were shown to be descended from WOX5-expressing cells 
(Zhai and Xu 2021). Latest research has found that this mid-
dle cell layer can again be divided into sub-populations of 
productive progenitors that actually develop into shoot mer-
istems and pseudo-progenitors that abort mid-way (Fig. 2b) 
(Varapparambath et al. 2022). The interactions between the 
productive progenitor and non-progenitor cells, coupled with 
loosening of the cell wall in non-progenitor cells by CUP 
SHAPED COTELYDON 2 (CUC2) and XYLOGLUCAN 
ENDOTRANSGLUCOSYLASE/HYDROLASE 9 (XTH9), 
induce cell polarity in productive progenitor, leading to the 
formation of a functional shoot apical meristem (Fig. 2c) 
(Varapparambath et al. 2022). This research indicates that 
calluses are far from being a disorganized mass and have a 
degree of spatial organization among the diverse cells with 
selective fate transition ability in certain layers.

From genes to growth: understanding plant 
regenerative network

Several critical genes have been identified to play a funda-
mental role in each regeneration process (Fig. 3; Table 1). 
Plant regeneration can be initiated by both wound stress and 
hormone signaling. WOUND-INDUCED DEDIFFEREN-
TIATION 1 (WIND 1) and its paralogs (WIND2, WIND3, 
and WIND4) play a crucial role in the formation of callus 
in response to wounding (Iwase et al. 2011, 2015). Local-
ized wound stress triggers the expression of WIND1, which 
directly binds to the promoter of ENHANCER OF SHOOT 
REGENERATION 1 (ESR1), thereby activating its expres-
sion (Iwase et al. 2017). In addition, WINDs facilitate the 
activation of type-B ARRs participating in cytokinin sign-
aling, indirectly leading to the activation of ESR1. Thus, 
ESR1 promotes the formation of callus at wound sites and 
further influences the formation of de novo shoots through 
activating CUC1 and CUC2 (Banno et al. 2001; Iwase et al. 
2011, 2017).

Auxin and cytokinin are the two pivotal hormones in 
the regeneration process. High concentrations of auxin in 
CIM consistently and ectopically activate the expression 
of WOX11 and WOX12 (Liu et  al. 2014, 2018b). This 
activation sequentially leads to the expression of WOX5, 
WOX7, LATERAL ORGAN BOUNDARIES-DOMAIN 16 
(LBD16), and LBD29, ultimately inducing callus formation 
during subsequent incubation on CIM through the ectopic 
activation of the root development pathway (Fan et al. 2012; 
Feng et al. 2012; Liu et al. 2014, 2018b). Auxin also triggers 
the activation of AUXIN RESPONSE FACTOR 7 (ARF7) and 
ARF19, promoting the expression of LBD16 and LBD29, 
thereby contributing to callus induction. In addition, these 
ARFs regulate PLETHORA3 (PLT3), PLT5, and PLT7, 
which function downstream in auxin-mediated lateral 

Fig. 2  De novo shoot formation from  the middle layer of callus. (a) 
The outer and middle layer cells of the callus become non-progenitor 
and progenitor cells, respectively, when cultured on SIM. (b) Progen-
itor cells can be further subdivided into productive progenitors which 
undergo a promeristem stage to generate a functional de novo shoot 
apical meristem (SAM), and pseudo-progenitors that fail to form a de 
novo SAM. (c) CUC2 activates XTH9 in non-progenitor cells, caus-
ing cell wall loosening. Interactions involving mechanical conflicts 
and regulatory feedback between the productive progenitor and adja-
cent non-progenitor cells contribute to the establishment of cell polar-
ity within the productive progenitor. Consequently, the functional 
SAM emerges from the productive progenitor
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root initiation within pericycle cells (Hofhuis et al. 2013). 
PLT3/5/7 leads to the induction of maintenance regulators 
of root stem cells, specifically PLT1 and PLT2 (Kareem 
et al. 2015). Another auxin response factor ARF3 functions 
as a negative regulator of de novo organ regeneration by 
directly binding to the ISOPENTENYLTRANSFERASE 
5 (IPT5) promoter, disrupting the cytokinin biosynthesis 
pathway under high auxin concentration conditions 
(Cheng et al. 2013). Furthermore, epigenetic modifications 
such as H3K27me3 are also apparent when it comes to 
transcriptional repression of regeneration-associated 
genes (He et  al. 2012; Ikeuchi et  al. 2015; Lafos et  al. 
2011; Mozgova et al. 2015; Yan et al. 2020). Particularly, 
the complex POLYCOMB REPRESSIVE COMPLEX 2 
(PRC2), a histone methyltransferase known to be crucial in 
developmental transition, increases H3K27me3 marks at loci 
of genes such as WINDs, PLT1, PLT2, WOXs, YUCCAs 
(YUCs), and WUS (Bemer and Grossniklaus 2012; 
Ikeuchi et al. 2015; Xiao et al. 2017). On CIM, WOX13, 
a negative regulator of shoot regeneration, is upregulated 
by auxin. WOX13 induces cell wall modifiers as well as 
transcriptionally represses shoot meristem regulators such as 
WUS, SHOOTMERISTEMLESS (STM), ESR2, and CUC1 
(Ogura et al. 2023).

De novo organogenesis from callus can be categorized 
into shoot regeneration and root regeneration (Fig. 1), with 
the determining factors being the balance of auxin and 
cytokinin, along with their associated genes (Che et al. 

2006; Feldmann and Marks 1986; Liu et al. 2018b; Skoog 
and Miller 1957; Zhao et al. 2013). Callus, the lateral root 
meristem (LRM)-like structure, can subsequently be repro-
grammed into SAMs when transferred onto SIM. The pres-
ence of LRM or LRM-like primordia is considered a prereq-
uisite for de novo shoot formation (Sugimoto et al. 2010). 
PLT3, PLT5, and PLT7 establish competence for regenerat-
ing shoot progenitor cells by inducing root stem cell regula-
tors PLT1 and PLT2. Consequently, CUC2 is upregulated. 
It is noteworthy that as described earlier, CUC2 is also acti-
vated by the WIND1-ESR1 pathway. Thus, CUC2 serves as 
a key regulator in the initiation of shoot formation, bridg-
ing the WIND1 and PLT pathways and PIN-FORMED 1 
(PIN1) induced by CUCs determines the future location of 
shoot progenitors (Gordon et al. 2007). In the early stages on 
SIM, METHYLTRANSFERASE 1 (MET1), induced by the 
cytokinin-CYCLIN D3 (CYCD3)-E2FA module, represses 
WUS expression, thereby preventing the transition of cells 
into shoot cells and maintaining the identity of callus (Liu 
et al. 2018a). Other DNA methylation-related genes CHRO-
MOMETHYLASE 3 (CMT3) and DOMAINS REARRANGED 
METHYLASE 1 (DRM1) and DRM2 also repress the expres-
sion of WUS (Shemer et al. 2015). During further incuba-
tion on SIM, the region expressing MET1 turns into the 
outer cell layers of the callus, while WUS is activated by the 
type-B ARRs beneath the MET1-expressing regions (Liu 
et al. 2018a). WUS interacts with STM, a transcription fac-
tor crucial for the proliferative state of meristematic cells, 

Fig. 3  Regulatory mechanisms during plant regeneration. Wound 
stress induces callus formation via WIND1-ESR1 pathway and it also 
affects de novo shoot regeneration. The genes involved in callus for-
mation on CIM are included in the middle box. The genes that play a 

role in de novo shoot formation are shown in the left box. The genes 
that contribute to root formation on RIM are displayed in the right 
box
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enhancing its binding to the CLAVATA3 (CLV3) promoter 
and promoting CLV3 expression. Both WUS and STM are 
key transcription factors in the initiation of shoot organo-
genesis (Su et al. 2020). On SIM, WUS represses WOX13, 
enabling the operation of shoot meristem regulators includ-
ing STM, ESR2, and CUC1. Simultaneously, this repres-
sion lessens the inhibition of WUS by WOX13 (Ogura et al. 
2023). Recent research has also indicated the potential for 
direct regeneration, wherein shoot apical meristems can 
develop directly from root explants, bypassing the callus 
stage (Kareem et al. 2016b; Rosspopoff et al. 2017).

In the process of de novo root regeneration on RIM, auxin 
initiates the expression of WOX11 and WOX12, activating 
a cascade involving WOX5, WOX7, and LBD16, which 
collectively contribute to the division of root founder cells 
and their subsequent transition into root primordium cells 
(Liu et al. 2014, 2018b). LBD16 is expressed in dividing root 
founder cells and developing root primordia but diminishes 
during the establishment of the root meristem, while WOX5 
is confined to the stem cell niche in the emerging root apical 
meristem (RAM) (Hu and Xu 2016). The genes PLT1 and 
PLT2, whose transcription relies on auxin accumulation and 
ARFs, play a crucial role in specifying the quiescent center 
and maintaining stem cell activity in the RAM (Aida et al. 
2004). WOX5 is essential for PLT1 expression in RAMs 
(Ding and Friml 2010).

Beyond the pivotal changes in key gene expression, 
recent reports are progressively unveiling the critical 
role of epigenetic reprogramming, encompassing histone 
modifications and DNA methylation, in the induction of 
regenerative competency throughout the regeneration 
process. Our primary focus will be exploring the DNA 
methylation dynamics during regeneration in Arabidopsis 
and other crop plants.

DNA methylation dynamics 
during Arabidopsis regeneration

DNA methylation, characterized by the addition of a methyl 
group to the 5th carbon of cytosine, stands as a crucial epi-
genetic modification with pivotal roles in transposon silenc-
ing and gene regulation. The latter often depends on the 
specific position of the methylated region in regard to the 
gene (Fig. 4). DNA methylation processes can be catego-
rized into three distinct phases: establishment, maintenance, 
and removal (Law and Jacobsen 2010). These stages involve 
specific enzymes and pathways that ensure the accurate 
inheritance of epigenetic marks during cell division and 
differentiation, and exhibit conservation with the process 
in animals. However, whereas DNA methylation primarily 
occurs in the CG context in animals, three cytosine contexts 
can be methylated in plants: CG, CHG, and CHH (where Ta
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H = A, T, or C). The de novo establishment of methylation 
in plants occurs through the RNA-directed DNA methyla-
tion (RdDM) pathway, regardless of context. DRM2 plays a 
crucial role in this process. For maintenance of methylation 
after establishment, MET1 is involved in the CG context, 
CMT3 is involved in the CHG context, and CMT2, DRM1, 
and DRM2 are involved in the CHH context (Grimanelli 
and Ingouff 2020; Law and Jacobsen 2010; Yaari et al. 
2019). DNA demethylation can be divided into passive and 
active demethylation. Passive demethylation arises due to 
imperfect maintenance of methylation during replication, 
while active demethylation is driven by the action of DNA 
demethylases. Active demethylation takes place through 
the DNA base-excision repair pathway, facilitated by DNA 
glycosylase-domain protein, including REPRESSOR OF 
SILENCING 1 (ROS1), DEMETER (DME), DME-LIKE 2 
(DML2), and DML3 in Arabidopsis (Choi et al. 2002; Gong 

et al. 2002; Liu and Lang 2020; Ortega-Galisteo et al. 2008; 
Penterman et al. 2007).

Arabidopsis, as a model plant, has offered invaluable 
insights into the role of DNA methylation in plant 
regeneration. During the transition from leaf to callus, it 
has been observed that average CG methylation remains 
relatively stable, while CHG methylation increases and CHH 
methylation decreases, with these changes being particularly 
enriched in transposable elements (TEs) (Shim et al. 2021a). 
Interestingly, these changes in CHG and CHH methylation 
levels correspond with alterations in the expression of their 
respective enzymes. Notably, during the callus formation 
process, an upregulation of CMT3 and a downregulation of 
CMT2 were observed (Lee et al. 2016).

MET1-mediated DNA methylation in callus exerts a 
negative regulatory influence on the activity of key genes 
involved in shoot regeneration, such as WUS, thereby 
restricting the initiation of de novo shoot organ development 

Fig. 4  Regulation of gene expression via DNA methylation. (a–d) 
Promoter methylation. While promoter methylation is widely rec-
ognized for its role in silencing gene expression (a, b), in some 
instances, methylation in the promoter region can promote gene 
expression. This possibly occurs as methylation acts to inhibit the 
binding of repressor proteins (c, d). (e) Gene body methylation. 
Gene body methylation (GbM) is most commonly observed in con-

stitutively expressed genes, often referred to as housekeeping genes. 
Although the function of GbM remains largely unknown and is still 
a subject of debate, one plausible role is maintaining homeostasis 
(Zilberman 2017). This may involve preventing aberrant transcription 
from internal cryptic promoters within the gene body or enhancing 
splicing efficiency. (f) Methylation at the 5′-upstream and 3′-down-
stream regions of the WUS gene influences gene expression
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(Li et al. 2011; Liu et al. 2018a). However, when shoots are 
initiated from callus, there is a reduction in global DNA 
methylation levels. This decrease in DNA methylation levels 
induces WUS transcription, ultimately accelerating shoot 
formation (Berdasco et al. 2008; Li et al. 2011; Shemer et al. 
2015). Consistent with this, more shoots were generated 
from met1 mutant callus when transferred to SIM (Shim 
et al. 2021b).

The regeneration capacity of Arabidopsis can be 
influenced not only by global changes in methylation 
levels, but also by alterations in the methylation levels of 
individual genes associated with regeneration. Interestingly, 
several key genes associated with pluripotency, cell 
proliferation and replication, such as PLT1, PLT2, ORIGIN 
RECOGNITION COMPLEX 1 (ORC1), REPLICATION 
FACTOR C 2 (RFC2), MITOTIC ARREST DEFICIENT 
1 (MAD1), and DISRUPTION OF MEIOTIC CONTROL 
1 (DMC1), exhibited transcriptional upregulation, along 
with CHH hypomethylation, during callus induction (Shim 
et al. 2021a). Therefore, it is tempting to speculate that 
dynamic methylation changes during callus formation 
might activate genes for pluripotency acquisition and cell 
proliferation. Since Arabidopsis regeneration involves 
intricate DNA methylation dynamics with context-specific 
patterns influencing gene expression and cell differentiation, 
investigating these epigenetic changes will shed light on the 
molecular mechanisms underlying plant regeneration.

Impact of DNA methylation pathway gene 
mutations on Arabidopsis regeneration

It has been consistently reported that alterations in DNA 
methylation can lead to varying degrees of regeneration, 
suggesting that changes in DNA methylation alone can 
potentially influence the callus induction and de novo shoot 
formation (Table 2). In the met1 mutant, there was a lower 
induction of callus compared to the wild type (Berdasco 
et al. 2008). Promoter hypermethylation and transcriptional 
repression in some key genes of undifferentiated calluses 
were altered in met1 mutants (Berdasco et al. 2008). This 
is consistent with another study showing a slight decrease 
followed by an increase in MET1 expression during wild 
type callus formation (Shim et al. 2021a). It is plausible 
that met1-mediated hypomethylation could lead to the 
transcriptional de-repression of negative regulator for callus 
formation or, could create a new target site for PRC2 or 
repressor binding, potentially leading to the silencing of the 
activator (Fig. 4).

During the de novo shoot formation process, WUS, 
the organizing center regulator, is induced earlier in the 
met1 shoots compared to the wild type. As a result, shoot 
induction occurs more precociously in met1 than in the wild 

type (Li et al. 2011). Even though more shoots were induced 
in met1 mutant calluses (Shim et al. 2021b), the ratio of 
shoot-producing calluses to the total number of calluses 
cultured on SIM was similar to that of the wild type (Li 
et al. 2011). Similarly, the number of induced shoots from 
met1 mutants remained relatively unchanged in prolonged 
SIM conditions at 18 days (Li et al. 2011). Intriguingly, the 
shoot regeneration phenotype of a MET1-overexpressing line 
showed a decrease in both the number of shoots per calluses 
and the ratio of shoot-producing calluses (Liu et al. 2018a). 
Adding another layer of complexity, cell cycle regulators 
E2FA and CYCD3 activate MET1 expression. Despite 
MET1’s known role in repressing WUS, mutants of e2fa or 
cycd3 result in reduced WUS expression (Liu et al. 2018a). 
This implies that WUS expression might be regulated not 
only by MET1, but also by other cell cycle targets. Further 
studies are needed to elucidate the precise molecular 
mechanisms underlying genetic network associated with 
MET1-mediated DNA methylation effects during the 
regeneration process.

CMT3 is required for maintaining CHG methylation. 
Despite an increase in CHG methylation levels during wild 
type leaf to callus transition, more calluses were induced 
in cmt3 mutants (Berdasco et al. 2008). Interestingly, root 
explants from cmt3–11 and cmt3–7 mutants that were 
placed directly on SIM without preincubation on CIM 
exhibited a high ability to regenerate shoots compared to 
wild type (Shemer et al. 2015). By contrast, the expression 
of DRM2, a de novo methyltransferase, gradually decreases 
during the initial stages of callus induction (Shim et al. 
2021a). Callus induction was reduced in drm2 mutants but 
enhanced in drm1/drm2 double mutants, possibly due to 
their redundancy (Berdasco et al. 2008; Jiang et al. 2015). 
Direct organogenesis, as observed in cmt3 mutants, was 
also noted in drm1/drm2/cmt3 (ddc) triple mutants. While 
wild type explants directly incubated on SIM showed no 
endogenous WUS expression, those subsequently incubated 
on CIM-SIM, as well as ddc explants directly incubated on 
SIM, exhibited WUS expression, which is essential for shoot 
regeneration. This suggests that the reduction of non-CG 
methylation in the ddc mutant enabled WUS expression in 
response to SIM and implies that DNA methylation plays a 
critical role in the regulation of WUS expression (Shemer 
et al. 2015). In summary, it is plausible that the loss of 
non-CG DNA methylation can enhance callus induction and 
direct shoot organogenesis.

DME, a DNA glycosylase that removes DNA methylation 
as part of the base-excision repair (BER) pathway, also influ-
ences callus and de novo shoot formation (Kim et al. 2021). 
During callus induction, the expression of DME diminishes 
over time (Shim et al. 2021a). Accordingly, more calluses 
were generated in dme mutants compared to wild type (Kim 
et al. 2021), which is opposite to the met1 mutant phenotype 
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which shows less callus formation. Furthermore, de novo 
shoot formation of dme mutants was significantly increased 
compared to wild type Ler (Kim et al. 2021). When compar-
ing the dme-2 transcriptome to wild type, numerous genes 
related to regeneration, such as LBD16, PLT1, PLT2, PLT5, 
WOX4, WOX5, WOX12, and WOX14, exhibited significantly 
higher expression levels (Kim et al. 2021). It is tempting to 
speculate that DME directly activates negative regulators of 
cell division or regeneration via DNA demethylation, so that 
more cell proliferation can be observed in dme calluses or 
de novo shoots. Interestingly, the cellular overproliferation 
phenotype was first reported in the dme mutant endosperm 
(Choi et al. 2002). The phenotype observed in dme mutants 
during regeneration cannot be solely attributed to DNA 
methylation; it may involve more complex control mecha-
nisms, such as RNA-directed DNA methylation and down-
stream polycomb activities. In-depth analyses, incorporating 
transcriptome, methylome, and small RNAome studies using 

these methylation mutants in conjunction with dme mutants, 
will provide insights into the effects of DNA methylation 
and demethylation on the regeneration process.

Generation of somaclonal variation 
during regeneration

The term somaclonal variation, first coined by Larkin and 
Scowcroft, is used to describe variants within tissue-cultured 
plants that arise from the varying weights of contributions 
from sequence-level modifications and epigenetic changes 
(Bairu et al. 2011; Larkin and Scowcroft 1981). Regenerants 
often show strong variation which can be hard to pinpoint 
to a few singular causal factors. Studies have found factors 
ranging from explant origin to conditional factors such as 
hormone concentration, light condition, and temperature to 
influence regeneration (Ikeuchi et al. 2016; Nameth et al. 

Table 2  Regeneration phenotypes of methylation-related mutants of Arabidopsis 

a Frequency was calculated as the number of shoot-producing calluses divided by the total number of calluses cultured on SIM

Affected protein name 
(Protein ID)

Mutant name Original function Regeneration phenotype Ecotype References

MET1 (AT5G49160) met1 DNA methyltransferase 
(CG)

Reduced callus 
induction (size)

Ws Berdasco et al. (2008)

MET1 (AT5G49160) met1 DNA methyltransferase 
(CG)

Precocious shoot 
induction;  frequencya 
of shoot induction 
unchanged at 18 days

Ws Li et al. (2011)

MET1 (AT5G49160) met1-3 DNA methyltransferase 
(CG)

Increased shoot 
induction at 3 weeks 
(number per callus)

Col Shim et al. (2021b)

MET1 (AT5G49160) MET1-overexpressing 
(MET1-OE)

DNA methyltransferase 
(CG)

Decreased shoot 
induction  (frequencya, 
number per callus)

Col Liu et al. (2018a)

CMT3 (AT1G69770) cmt3 DNA methyltransferase 
(non-CG)

Enhanced callus 
induction (size)

Ws Berdasco et al. (2008)

CMT3 (AT1G69770) cmt3-11, cmt3-7 DNA methyltransferase 
(non-CG)

High ability of shoot 
induction on SIM-
direct

Col-0 (cmt3-
11), Ws 
(cmt3-7)

Shemer et al. (2015)

DRM2 (AT5G14620) drm2 DNA methyltransferase Reduced callus 
induction (size)

Ws Berdasco et al. (2008)

DRM1, DRM2 
(AT5G15380, 
AT5G14620)

drm1/drm2 double 
mutant

DNA methyltransferase, 
DNA 
methyltransferase

Enhanced callus 
induction (size, 
weight)

Ws Jiang et al. (2015)

DRM1, DRM2, 
CMT3 (AT5G15380, 
AT5G14620, 
AT1G69770)

drm1/drm2/cmt3-11 
triple mutant

DNA methyltransferase, 
DNA 
methyltransferase, 
DNA 
methyltransferase 
(non-CG)

High ability of shoot 
induction on SIM-
direct

Col-0 Shemer et al. (2015)

DME (AT5G04560) dme-2 DNA glycosylase Enhanced callus 
induction (weight); 
increased shoot 
induction (number per 
callus)

Ler Kim et al. (2021)
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2013; Sugimoto et al. 2010). A shoot regeneration study 
of multiple Arabidopsis genotypes found that the strong 
variation within the same genotype was likely due to 
environment, physiological state of explants, and epigenetic 
effects (Lardon et al. 2020). Other than shoot regeneration, 
multiple morphological differences ranging from root-like 
outgrowths to structures resembling leaves or flower buds 
were also observed (Lardon et al. 2020). When it comes to 
the genes that potentially cause these variations, multiple 
loci including novel candidate genes such as EMBRYO SAC 
DEVELOPMENT ARREST 40 (EDA40), DNA-BINDING 
WITH ONE FINGER 4.4 (DOF4.4) and AT3G09925 were 
identified at various de novo shoot organogenesis stages for 
the regulation of regeneration traits in a context-dependent 
manner (Lardon et al. 2020).

Differences in DNA methylation, in conjunction with 
genetic variations, have been identified as a significant and 
recurring source of somaclonal variation in regenerants 
(Coronel et al. 2018; Kaeppler et al. 2000). While opinions 
may vary on whether DNA methylation is the primary 
causal factor of variation, regenerated plants do indeed 
exhibit significantly different methylation patterns. These 
variations include a greater diversity and a higher number 
of transposable elements with non-fully methylated flanking 
regions, which could potentially enhance their mobilization 
(Coronel et al. 2018; Jiang et al. 2011).

DNA methylation changes during crop 
regeneration

In addition to studies on Arabidopsis, crop plants such as 
maize and rice are of significant importance due to their 
direct relevance for commercial use. In maize, an increase 
in DNA methylation associated with small RNA expression 
was observed during embryo tissue culture, resulting in 
the formation of embryo-derived calluses (Liu et al. 2017). 
These changes were found to be absent in the pre-callus 
induction maize embryo cell population, suggesting that the 
DNA methylation alterations specific to callus formation 
were not merely a consequence of the expansion of a few cell 
types into embryonic calluses. While the focus is primarily 
on embryo dedifferentiation rather than re-differentiation, 
it is worth noting that genetic manipulation through the 
former process frequently precedes callus formation during 
plant regeneration. The results of such manipulation were 
consistently considered to be indicative of epigenetic 
changes during tissue culture, which could manifest as 
phenotypic variations in regenerated maize (Liu et al. 2017).

Tissue-cultured regenerated plants also showed epig-
enomic changes, with rice and triticale showing an overall 
tendency of DNA methylation loss, and barley showing 

the opposite (Machczynska et al. 2014; Orlowska et al. 
2016; Stroud et al. 2013). In rice, CG hypomethylation 
differentially methylated regions (DMRs) were enriched 
in regenerated plants and different sites of the genome 
displayed differential susceptibility to loss of methyla-
tion (Stroud et al. 2013). Loss of non-CG methylation 
was also observed with it generally being associated with 
CHG rather than CHH methylation. In the case of CHH 
hypomethylation DMRs, loss of 24-nt siRNAs was sug-
gested as the likely reason behind their absence as the 
typical enrichment of 24-nt siRNAs at CHH methylated 
areas was absent in regenerated plants (Stroud et al. 2013). 
This suggestion is reinforced in grapevine embryogenic 
callus, in which the accumulation of CHH methylation 
was correlated with an abundance of TE transcripts and 
corresponding 24-nt siRNAs (Lizamore et al. 2021).

DNA methylation changes are particularly enriched 
in the promoter region and lead to altered expression 
of certain genes in both maize and rice (Liu et al. 2017; 
Stelpflug et al. 2014; Stroud et al. 2013). In rice, these 
genes were not closely connected to specific biological 
processes, suggesting a seemingly random pattern (Stroud 
et al. 2013). Deregulation of these genes mostly resulted 
in higher expression. In particular, Stroud et al. observed 
that the closer the hypomethylation DMR was to the gene 
transcription start site, the more deregulated the genes 
were (Stroud et al. 2013). In addition to changes in gene 
expression, retrotransposon activity was also altered 
in tissue-cultured rice (Zhang et  al. 2014). Cytosine 
methylation remodeling during and after tissue culture 
was detected in the 5′-Long Terminal Repeats (LTRs) 
of Tos17, the most active retrotransposon in rice (Zhang 
et al. 2014). This indicates that TE repression may have 
been compromised as hypermethylation at the 5′LTRs of 
retrotransposons is thought to reflect silencing through 
the RdDM pathway (Zhang et  al. 2014; Cheng et  al. 
2006). However, the mechanism behind the alteration of 
TE activity by tissue culture cannot solely be attributed 
to DNA methylation, as there were cases in which the 
correlation between DNA methylation changes and TE 
activity was strong in one and weak in another (Cheng et al. 
2006). This viewpoint is further reinforced in barley as an 
increase in global DNA methylation did not correspond 
to TE stabilization (Orlowska et al. 2016). Deregulation 
in genes and TE highlight the potential alteration of 
repressive epigenetic traits in plant tissue culture. Future 
examination of their phenotypic implications is crucial 
to understand the extent of the impact that tissue culture 
process may have.
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Heritability of epigenomic changes 
and somaclonal variation in regenerated 
plants

A methylome study of calluses, regenerants, and 
regenerant-derived progeny in maize demonstrated the 
heritability of DNA methylation changes arising from 
tissue culture processes (Stelpflug et al. 2014). Han et al. 
also observed heritable epigenomic changes in maize 
(Han et al. 2018). While only around 30% of CG and CHG 
context methylation changes in calluses were transmitted 
to primary regenerants, the majority of the CG and CHG 
methylation changes observed in primary regenerants were 
inherited by progeny. This suggests that only a subset of 
methylation changes induced during tissue culture are 
heritable to regenerants. It is also worth noting that there 
were context-wise differences in consistent DMRs, which 
are those shared by more than 50% of samples. While 
a significant portion of CG and CHG DMRs exhibited 
consistency among regenerant samples, 99% of CHH 
methylation changes were not consistent (Han et al. 2018). 
Context-wise peculiarities in methylation patterns were 
also observed in various plant backgrounds (Stroud et al. 
2013; Liu et al. 2022; Wang et al. 2022). In rice, while 
most CG hypomethylations in regenerated plants were 
stable through generations, hypermethylation that occurred 
at the  callus stage was completely lost in regenerated 
plants (Stroud et al. 2013). This hypermethylation was 
specifically in the CHH context, mostly corresponding 
to promoter regions and showing high coincidence 
between two callus samples (Stroud et al. 2013). These 
outlying tendencies of CHH methylation are intriguing 
since CHH methylation is asymmetric and patterns can 
only be recapitulated through signaling and the presence 
of guiding histone modifications. In triticale, an onset 
of reestablishment of decreased DNA methylation was 
observed in the third generation of progeny (Machczynska 
et al. 2014). However, whether this leads to a full recovery 
of tissue culture-induced demethylation in future 
generations remains unexplored.

In addition to the heritability of differential 
methylation, notable variation of differential methylation 
was observed between cell culture lines of maize, with 
no differential methylation detected between the non-
cultured sibling control plants (Stelpflug et  al. 2014). 
Overall, hypomethylation events were more prevalent 
than hypermethylation events, and hypomethylated 
regions were consistently found in independent 
regenerants. When examining the DMRs in calluses 
derived from maize embryos across four independent cell 
culture lines of the same maize plant, hypermethylated 
DMRs were predominantly observed in only one cell 

line (Stelpflug et  al. 2014). This observation suggests 
that hypermethylated DMRs were more likely to 
occur randomly or stochastically when compared to 
hypomethylated DMRs. Interestingly, the degree of 
overlap between culture-derived DMRs and naturally 
occurring DMR profiles was greater than would be 
expected by chance alone (Stelpflug et al. 2014). Han et al. 
also found that certain loci are more prone to epigenetic 
variation (Han et al. 2018). In rice, Stroud et al. found that 
certain sites were more susceptible to methylation change 
and recurred among regenerated lines (Stroud et al. 2013). 
This suggests the presence of specific genomic loci that 
are particularly susceptible to epigenetic changes when 
exposed to stress factors. These findings increasingly 
support the notion that phenotypic changes coming from 
epigenetic variations are a valuable source to draw from 
when cultivating crops in relation to various environmental 
stress factors.

Enhancing efficiency in plant regeneration 
and propagation

Many factors involved in plant regeneration efficiency have 
been identified. First, preparing media with the appropriate 
ratio of auxin to cytokinin is significantly important for 
enhancing regeneration efficiency. Using a combination of 
different types of auxins, such as 2,4-dichlorophenoxyacetic 
acid (2,4-D) and 1-naphthaleneacetic acid (NAA), can also 
enhance callus formation (Din et al. 2016). In addition, 
regulating the expression of type-B ARR to enhance 
cytokinin sensitivity can be utilized. ARR10 is particularly 
stable among type-B ARR and it is confirmed that expression 
of ARR10 driven from the ARR1 promoter enhances callus 
formation and shoot regeneration in Arabidopsis (Hill 
et al. 2013). Trichostatin A (TSA) is a histone deacetylase 
inhibitor, and the acetylation induced by TSA enhances the 
regeneration potential in certain barley genotypes (Nowak 
et al. 2024). Regulating the concentration of amino acids, 
such as tryptophan and glutamine, can also influence the 
induction performance (Din et al. 2016). Copper also plays a 
crucial role in enhancing regeneration efficiency. An optimal 
concentration of copper significantly improved the induction 
of callus and formation of shoots and roots in various plants, 
including barley, sorghum, wheat, and triticale (Dahleen 
1995; Nirwan and Kothari 2003; Purnhauser and Gyulai 
1993). Further research to enhance plant regeneration 
efficiency will directly contribute to increased crop yields.

Understanding the functional relevancy of DNA 
methylation in crop phenotypes and yield can provide insight 
into how epigenomic alterations can enhance propagation. In 
large-seeded chickpea, several seed size- and -weight related 
genes showed CG context hypermethylation within the 
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gene (Rajkumar et al. 2020). Methylation in the CG context 
plays a crucial role in the seed development of Arabidopsis. 
Global demethylation, mediated by the met1 mutation in the 
CG context but not in the CHG or CHH contexts, leads to 
distinct seed size difference depending on parental origin 
when crossed with wild type (Xiao et al. 2006; Lin et al. 
2017). These observations suggest DNA methylation in the 
CG context to be a point of focus when it comes to altering 
seed phenotypes for propagation. Plants dynamically 
modulate DNA methylation in response to environmental 
and developmental stresses, introducing another avenue 
of exploration when leveraging epigenomic modifications 
to achieve desirable crop traits. Investigating epigenomic 
changes during these stresses will unveil potential sources 
of crop trait variation, while also providing insights 
into specific regulatory pathways that can be effectively 
modulated in response to stress factors.

Conclusions and perspectives

Plant regeneration through clonal propagation is a frequently 
utilized method of vegetative propagation, representing a 
form of asexual reproduction. In theory, this method allows 
for the inheritance of beneficial genetic or epigenetic traits 
that are already present, bypassing the need for sexual 
reproduction. As this, in turn, can lead to improved crop 
yields, harnessing propagation techniques is a cornerstone of 
modern horticulture. Thus, understanding the intricacies of 
callus formation and the subsequent de novo shoot and root 
formation leading to regenerated plants is crucial. Despite 
being asexually reproduced from the same explant origin, 
calluses, shoots, and regenerants have exhibited unexpected 
vibrancy with varying gene expression and epigenetic states. 
Consequently, it is essential to gain a deeper understanding 
of the epigenetic processes governing regeneration. This is 
especially so, as the resulting variation can both be a source 
of divergence to draw from, and also a factor that needs 
to be controlled for consistent propagation of desirable 
traits. However, the molecular and hereditary mechanisms 
underlying these processes remain incompletely understood.

The study of plant regeneration has long served as 
a versatile and essential model for investigating plant 
physiology in highly controlled in vitro environments. Yet, 
the study of callus itself holds immense value in the realm 
of plant regeneration and adaptation. It contributes not only 
to our understanding of the fundamental biology behind 
regaining pluripotency but also sheds light on the crucial 
advantages conferred upon sessile plants for their survival. 
By uncovering the epigenetic processes that underlie 
the reprogramming of plant calluses, both in  vitro and 
in vivo, we can begin to unravel the genetic and epigenetic 
pathways crucial to this vital process, paving the way for 

the development of optimized somatic plant propagation 
strategies.
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