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Abstract
Key message  Paclitaxel synthesis in Taxus cells correlates with a cell-fate switch that leads to vacuoles of a glossy 
appearance and vermiform mitochondria. This switch depends on actin and apoplastic respiratory burst.
Abstract  Plant cell fermentation, the production of valuable products in plant cell culture, has great potential as sustainable 
alternative to the exploitation of natural resources for compounds of pharmaceutical interest. However, the success of this 
approach has remained limited, because the cellular aspects of metabolic competence are mostly unknown. The production 
of the anti-cancer alkaloid Paclitaxel has been, so far, the most successful case for this approach. In the current work, we 
map cellular aspects of alkaloid synthesis in cells of Taxus chinensis using a combination of live-cell imaging, quantitative 
physiology, and metabolite analysis. We show evidence that metabolic potency correlates with a differentiation event giving 
rise to cells with large vacuoles with a tonoplast that is of a glossy appearance, agglomerations of lipophilic compounds, and 
multivesicular bodies that fuse with the plasma membrane. Cellular features of these glossy cells are bundled actin, more 
numerous peroxisomes, and vermiform mitochondria. The incidence of glossy cells can be increased by aluminium ions, and 
this increase is significantly reduced by the actin inhibitor Latrunculin B, and by diphenylene iodonium, a specific inhibitor 
of the NADPH oxidase Respiratory burst oxidase Homologue (RboH). It is also reduced by the artificial auxin Picloram. 
This cellular fingerprint matches the implications of a model, where the differentiation into the glossy cell type is regulated 
by the actin–auxin oscillator that in plant cells acts as dynamic switch between growth and defence.

Keywords  Taxus · Paclitaxel · Plant cell fermentation · Cell differentiation · Actin · Auxin

Introduction

According to the seminal definition by Kössel (1891), pri-
mary metabolites are required for any cell of an organism, 
while secondary metabolites accumulate only in specific 
cells and, thus, do not fulfil housekeeping functions. Still, 
they are relevant for survival, for instance, by supporting 
adaption to environmental challenges, or by steering the 
interaction with other organisms. In consequence, plants 

as sessile organisms are endowed with a particularly rich 
secondary metabolism with > 100,000 specific metabolites 
identified already (Verpoorte 1998). Many of them possess 
interesting biological activities and find applications, such as 
pharmaceuticals, insecticides, dyes, flavours, and fragrances 
(Goossens et al. 2003). Of particular importance is the use 
of plant secondary metabolites in medicine. Some of the 
most significant examples are morphine and related alka-
loids from Papaver somniferum (Morimoto et al. 2001), the 
sesquiterpenoid artemisinin against malaria from Artemisia 
annua (Covello 2008), or the anticancer drugs vinblastine 
and vincristine from Catharanthus roseus (van der Heijden 
et al. 2004), or paclitaxel from the bark of Taxus brevifolia 
and other Taxus species (Altmann and Gertsch 2007). Glob-
ally, well over 50,000 plant species used for medicinal pur-
poses (Gómez-Galera et al. 2007), have remained relevant. 
For instance, still over 60% of anticancer drugs and 75% of 
drugs for infectious disease are either natural products or 
analogues of natural products (Newman et al. 2003).
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Among these plant-derived products, the tubulin-binding 
diterpene alkaloid taxol (paclitaxel), first isolated from the 
Pacific Yew (Taxus brevifolia), has attracted considerable 
attention for its efficacy against ovarian and breast cancer 
(for review see Malik et al. 2011). There are different related 
taxanes accumulating in different species of the genus (for 
review see Baloglu and Kingston 1999), such as 10-dea-
cetylbaccatin III in the European Yew T. baccata, whose 
semi-synthetic derivative is commercialized under the 
name taxotere (docetaxel) or baccatin VI, which has also 
been isolated from T. baccata (Küpeli et al. 2003). There 
are analogues of paclitaxel which have proven bioactivities 
or can be converted to derivatives with activity compara-
ble to paclitaxel. One example among others is baccatin VI 
(Kingston et al. 1999; Küpeli et al. 2003). Baccatin III is 
a common precursor for production of both paclitaxel and 
Baccatin VI. The mode of action of these taxanes is to bind 
to polymerised microtubules and suppressing their innate 
dynamics, disrupting the formation of the mitotic spindle 
and, thus, inducing mitotic catastrophe culminating in apop-
totic cell death (for review see Jordan and Wilson 2004).

The main problem of extracting anticancer drugs from 
the natural sources is the low concentration of these com-
pounds in the plant tissue. In case of Taxus 10,000 kg of 
bark are required to obtain 1 kg of paclitaxel (Vidensek 
et al. 1990). Another problem is the very slow growth of the 
trees (Vidensek et al. 1990) and the fact that the production 
of paclitaxel in plants is subject to seasonal fluctuations in 
which temperature and light play a role (Nasiri et al. 2016). 
In addition, extraction from the tree requires a complex sys-
tem and specific purification techniques using advanced and 
expensive technology (Malik et al. 2011). Overharvesting 
has shifted individual species of Taxus, such as Taxus wal-
lichiana to the verge of extinction (Farjon and Page 1999), 
stimulating the search for alternative strategies to harvesting 
directly from natural populations. Although total chemical 
synthesis of paclitaxel is possible in principle (Nicolaou 
et al. 1994), it is not economically feasible because of the 
complex structure of paclitaxel and the large number of steps 
required (Cusido et al. 2014; Lin et al. 2018). Likewise, a 
strategy for semi-synthesis turned out to be difficult, because 
protective groups had to be added and later removed, ren-
dering the procedure laborious and hardly practical (Lin 
et al. 2018). Only recently, the need for protective groups 
has been circumvented by using the precursor baccatin III 
(which by itself is already a very complex molecule) to 
yield a bioactive derivative of paclitaxel (Thornburg et al. 
2017). Metabolic engineering of heterologous systems has 
been employed as well. For instance, expressing taxadiene 
synthase allows to re-route the carotenoid precursor gera-
nyl–geranyl pyrophosphate to yield the paclitaxel precur-
sor taxadiene, which has been successful in tomato (Kovacs 
et al. 2007), and, using a His-tagged version of taxadiene 

synthase, in Arabidopsis thaliana (Besumbes et al. 2004). 
However, taxadiene is just the first committed step of pacli-
taxel synthesis.

One of the economically successful and sustainable 
approach to produce paclitaxel has been plant cell fermen-
tation. These have numerous advantages over the natural 
plant system–independence of seasonal, rapid growth, and 
the possibility for standardised production meeting the cri-
terion of Good Manufacturing Practice (for reviews see Rao 
and Ravishankar 2002; Yue et al. 2016). Successful scale-up 
to large bioreactors with 75,000 L capacity allows to pro-
duce paclitaxel efficiently and in a sustainable manner from 
cell cultures which allows the market leader Phyton Biotech 
to produce hundreds of kilograms of pure paclitaxel per year 
(https://​phyto​nbiot​ech.​com/​apis/​pacli​taxel).

Secondary metabolites often accumulate in the context 
of a plant response to a particular environmental condition, 
and often in cells that differentiate. A classic example is the 
accumulation of anthocyanin in response to activation of the 
photoreceptor phytochrome that requires vacuolar expansion 
to initiate (Steinitz and Bergfeld 1977). These conditions for 
the activation of secondary metabolism are often not met in 
cell cultures, leading to very low yields for the compounds 
of interest. To overcome this limitation, the accumulation of 
secondary metabolite can be stimulated by treatments with 
so called elicitors, such as activators of pathogen defence or 
wound responses, mimicking attacks by pathogens or her-
bivores as conditions, where secondary metabolism is acti-
vated in the natural context. The term elicitor is here used in 
a different and much broader sense than in phytopathology, 
where elicitors designate microbial molecules activating a 
defence response (for review see Boller and Felix 2009). In 
the context of plant cell fermentation, elicitors can be either 
elicitors in sensu stricto, i.e., peptides or oligosaccharides 
from bacteria or fungi that activate plant defence, but they 
can also be of phytohormonal nature, such as ethylene or 
jasmonic acid, or they can be even abiotic, such as salts, met-
als, or physical factors (reviewed in Ramirez-Estrada et al. 
2016). We will, in the context of the current work, use the 
term elicitor in this broad, biotechnological sense. One of 
the most potent elicitors is methyl jasmonate (MeJA), the 
methylated derivative of jasmonic acid that in plants acts 
as systemic signal for defence responses and can even con-
vey alarm signals to neighbouring plants (Farmer and Ryan 
1990). Indeed, tobacco BY-2 cells that otherwise are unable 
to form alkaloids can be triggered to accumulate nicotine 
alkaloids by elicitation with MeJA (Shoji and Hashimoto 
2008; Rajabi et al. 2017). For suspension cells of Taxus as 
well, MeJA was shown to activate Geranyl–Geranyl–Pyroph-
osphate Synthase (T. baccata Laskaris et al. 1999), and the 
jasmonate analogue coronatine was able to induce the first 
committed metabolite, taxene (T. x media, T. globosa, Ram-
irez-Estrada et al. 2015).

https://phytonbiotech.com/apis/paclitaxel
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On the cellular level, jasmonate signalling is often fol-
lowed by a re-organisation of intracellular architecture. 
For instance, microtubules are specifically eliminated in 
response to MeJA when cells pass through S-phase, while 
cortical and mitotic microtubule arrays persist (Abe et al. 
1990). In contrast, cortical microtubules respond to jasmonic 
acid by bundling as shown by live-cell imaging in grapevine 
cells transformed with a GFP-tagged tubulin marker (Guan 
et al.2015). The actin cytoskeleton is responsive as well. For 
instance, treatment of pollen tubes with MeJA leads to actin 
bundling, which causes a breakdown of polarity, such that 
bipolar pollen tubes result (Çetinbaş-Genç and Vardar 2020).

Remodelling of actin filaments often heralds ensuing 
terminal differentiation–a phenomenon, well known from 
animal cells (for review, see Gourlay and Ayscough 2005), 
but also observed in plant cells (for reviews, see Franklin-
Tong and Gourlay 2008; Smertenko and Franklin-Tong 
2008). In plant cells, the dynamic actin network subtend-
ing the cell membrane is involved in sensing of membrane 
integrity through superoxide generated by the plasma-mem-
brane located NADPH oxidase Respiratory burst oxidase 
Homologue and responds to entry of superoxide into the 
cortical plasma by rapid bundling (Chang et al. 2015; Egg-
enberger et al. 2017). This bundling can be mitigated by 
auxins that can suppress actin bundling. Since superoxide is 
also recruited for auxin signalling, a system of two intercon-
nected oscillators results that can switch between cell growth 
and cell death. How actin bundling leads to programmed cell 
death, is neither clear, nor is the connection inevitable, since 
there exist triggers that can induce actin bundling without 
subsequent cell death, as found recently for glycyrrhizin, 
the active compound of Gan Cao (Glycyrrhiza uralensis), 
a plant drug used in Traditional Chinese Medicine (Wang 
et al. 2021).

"The current study was motivated by the question: why 
has plant cell fermentation, a strategy with great potential, 
been successfully employed only in a limited number of 
cases?" One of the limitations might be that most cell cul-
tures are not a homogenous “biomass” to use a term which is 
very common in bioengineering but consist of different cell 
types with different metabolic potencies. This heterogene-
ity is often perceived as a factor introducing noise into the 
system, interfering with standardisation and, thus, limiting 
the efficiency of the entire approach. However, when we 
consider that metabolic potencies often develop in the con-
text of cellular differentiation (with elicitors often acting 
as promoter of this process), we ask the question, whether 
heterogeneity in these dedifferentiated cell cultures might 
be useful to successfully pursue plant cell fermentation. 
Supporting this analogy, suspension cultures of cambial 
meristematic cells had also been shown previously to suc-
cessfully produce paclitaxel (Lee et al. 2010). Using sus-
pension cells of Taxus chinensis as successful paradigm 

for plant cell fermentation, we investigate cellular aspects 
of paclitaxel synthesis. In fact, we find that the metabolic 
competence for product synthesis correlates with a specific 
cell type, which we term glossy cells. These cells are highly 
vacuolated and secrete lipophilic compounds (most likely 
paclitaxel) through multivesicular bodies. The differentiation 
of glossy cells seems to be under control of both, the actin 
cytoskeleton, and the membrane-located NADPH oxidase 
Respiratory burst oxidase Homologue.

Materials and methods

Cell cultures and subcultivation

Suspension cells of Taxus chinensis (Pilg.) Rehder were pro-
vided by Phyton Biotech GmbH (Ahrensburg, Germany) and 
were subcultivated weekly, by inoculating 1.5 g fresh weight 
of cells (at day 7 of the culture cycle–stationary cells) into 
50 ml of fresh Gamborg B5 medium (Duchefa, Haarlem, 
The Netherlands) supplemented with maltose monohydrate 
(10 g/l), picloram (2.42 mg/l) and TDZ (0.022 mg/l). The 
pH of the liquid medium was adjusted to 5.6 prior to auto-
claving. The cells were incubated at 23 °C under constant 
shaking (120 rpm) on a Unimax 2010 platform shaker (Hei-
dolph Instruments GmbH & Co. KG, Schwabach, Germany) 
in 250 ml polycarbonate Erlenmeyer flasks with filter caps 
(Corning GmbH, Kaiserslautern, Germany) for maintenance. 
Experiments involving elicitation were conducted in half of 
the volume (0.75 g of cells in 25 ml of medium in 125 ml 
polycarbonate Erlenmeyer flasks with filter caps.

Quantification of culture growth

While this is principally correct, one needs to consider that 
there exists no single method that ideally can fulfil this task, 
each approach has its limitations. This is exactly the rea-
son, why we used several methods in parallel. To quantify 
culture growth, we used three approaches in parallel. As 
first approach, cell density was estimated by a haemocy-
tometer (Fuchs-Rosenthal) under bright field illumination 
to determine the number of cells in suspension and the aver-
age length of the cell cycle. The latter was implemented 
using an exponential model for proliferation (Nt = N0 × ekt 
with Nt = cell density at time point t, N0 = cell density at 
inoculation, e = Euler constant, and k = time constant). Data 
represent the mean from five biological replications.

As second method, we determine Packed Cell Volume 
(PCV) modified from Jovanović et al. (2010) for BY-2 cell 
cultures. At the sampling time, the cell suspension was vig-
orously mixed to ensure homogeneity, and two aliquots of 
10 ml were poured into two graded 15-ml tubes (Falcon, Carl 
Roth, Karlsruhe, Germany). The tubes were kept upright in 
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the fridge for three days to allow complete sedimentation 
of the cells. Then, the volume of the sedimented cells was 
read out in technical duplicates using the grading of the tube 
and scored as percentage of the measuring volumes (10 ml).

Now, PCV just by itself is not a very efficient readout in 
case of cells which do not keep constant volume through-
out the culture period. Plant cells especially continue to 
rapidly grow in volume at the stationary phase by vacuola-
tion. Hence, as a third approach, we measured fresh and 
dry weight at a given time point. To obtain a readout for 
fresh weight, the medium was removed from the cell sus-
pension by vacuum filtration (Vacuum pump ME 4 NT, 
Vacuubrand GmbH & Co KG, Wertheim, Germany) and 
weighed directly. To measure dry weight, this cell mate-
rial was kept at 60 °C in a drying oven over three days to 
and then weighed. To characterise culture growth, we also 
determined a growth index over 7 days (GI7). This was the 
ratio of fresh weight of the culture at day 7 (i.e., the time of 
subculturing) over the inoculum (1.5 g) originally added to 
the medium at day 0.

To follow culture growth in a non-invasive manner, we 
monitored the sugar consumption by means of a portable 
Brix refractometer (Model PAL, Atago Co. Ltd., Tokyo, 
Japan). Small volumes (20 µl) of vacuum-filtered medium 
were applied on to the refractometer to determine the refrac-
tive index by measuring the rotation of polarised light due 
to sugar chirality. The inferred concentration drops over the 
culture cycle depending on the metabolic activity of the 
cells. Specifically, on sugar consumption, we have found in 
numerous cell lines that the sharp decline of sucrose con-
tent coincides with cell expansion, probably due to the fact 
that cellulose is built. This decline is proportional with the 
number of cells and with the intensity of their expansion. 
Therefore, the extent of sucrose consumption can be used 
as proxy to monitor overall cell growth (comparable to PCV 
and the cell counting that was done in parallel).

Phenotyping of Taxus cells

The cells were quantitatively phenotyped with respect to 
cellular morphology, growth patterns, cell growth, and sugar 
consumption. Since Taxus cells form aggregates hampering 
microscopical analyses, for some measurements, the cells 
were individualised by a mild treatment with 0.25% of drise-
lase (Sigma-Aldrich, Munich, Germany) for 20 min at 23 °C. 
To validate the degree of standardisation of this cell line, we 
followed over 6 months on a weekly base the GI7. To quan-
tify cell size, aliquots were sampled under sterile conditions 
from individual flasks over time and individual cells were 
captured using an AxioImager Z1 microscope (Zeiss, Jena, 
Germany) and the MosaiX-module sampling system (Zeiss, 
Jena, Germany), covering an area of approximately 2.5 mm2 
composed of 25 individual images. Cell length L and width 

W were measured from the central section of the cell using 
the AxioVision software (Rel. 4.8.2) (Zeiss, Jena, Germany) 
according to Maisch and Nick (2007). From those measure-
ments, the ratio of the long over the short axis of each cell 
(so called aspect ratio) was calculated as W/L. Likewise, we 
estimated cell volume by approximating the cell as cylinder 
using the formula:

Each data point represents a population of 1000–1200 
individual cells. Viability was quantified using 0.1% of a 
5 mg/ml fluorescein diacetate (FDA; Merck Chemicals 
GmbH, Darmstadt, Germany) stock solution according 
to Widholm (1972). FDA is a widely used viability test 
with decades of experience in plant cell culture. There is 
substantial evidence in the scientific literature to provide 
sufficient proof about the use of Fluorescein diacetate as 
a vital stain to assay viability. The non-fluorescent FDA is 
membrane permeable and cleaved by cytoplasmic esterases 
into the fluorescent fluorescein. Since dead cells lack this 
enzyme activity, they will not yield a signal. The viable, 
green-fluorescent cells were viewed by an AxioImager Z.1 
microscope (Zeiss, Jena, Germany), using the filter set 38 
HE (excitation: 470 nm, beamsplitter: 495 nm and emission: 
525 nm, Zeiss).

Mitochondrial phenotyping

Mitochondria were visualised in  vivo by staining with 
MitoTracker Red FM (Thermo Fisher Scientific Inc., 
Waltham, MA, USA), a far red-fluorescent dye that stains 
mitochondria depending on the membrane potential, unlike 
MitoTracker Green FM, which is independent of membrane 
potential (Monteiro et al., 2020). The dye was added to the 
cell suspension culture at a final concentration of 100 nM 
freshly prepared from a 100 µM stock solution in dimethyl 
sulfoxide (DMSO), and the cells were observed immedi-
ately without incubation or washing. As to acquire high-
resolution images, an AxioObserver Z1 inverted microscope 
(Zeiss, Jena, Germany) was used, equipped with a laser dual 
spinning disc device from Yokogawa (Yokogawa CSU-X1 
Spinning Disc Unit, Yokogawa Electric Dorporation, Tokyo, 
Japan) and a cooled digital CCD camera (AxioCam MRm; 
Zeiss). Pictures were recorded using the 561 nm emission 
line of the Ar-Kr laser and a Plan-Apochromat 63x/1.44 DIC 
oil objective operated via the Zen 2012 (Blue edition, Zeiss) 
software. To quantify the mitochondria, their coverage over 
the cross area of the cell was determined using quantita-
tive image analysis (ImageJ, https://​imagej.​nih.​gov/​ij/) from 
confocal sections through the cell centre. After transforma-
tion into a binary image, microtubules were thresholded, 

V = � ×

(

W

2

)2

× L.

https://imagej.nih.gov/ij/
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and the image then inverted. Using the Analyse Particle tool 
(full circularity to include also interconnected mitochondria, 
and an area of 10-infinity square pixels), the cross-area of 
mitochondria over the entire cross section of the cell was 
determined. Each data point represents a sample of 20–80 
individual cells.

Visualisation of paclitaxel by immunofluorescence 
and by Nile Red

Taxus cells sampled from the growth phase and production 
phase were stained for paclitaxel by indirect immunofluores-
cence according to Naill and Roberts (2005). After fixation 
with 1% (w/v) paraformaldehyde in 10 mM phosphate-buff-
ered saline, the cells were processed as described in Nick 
et al. (2000), using a mouse monoclonal anti-taxol (Santa 
Cruz Biotechnology, Inc., Dallas, USA) as primary, and 
a TRITC-conjugated goat polyclonal anti-mouse (Sigma-
Aldrich, Munich, Germany) as secondary antibody. As 
alternative approach, we detected lipophilic compounds in 
samples from specified stages with 1 µg/ml Nile red (Carl 
Roth, Karlsruhe, Germany) diluted from a stock solution 
in acetone after incubation for 1 h. In both approaches, the 
samples were viewed by spinning-disc confocal microscopy 
as described above for mitochondrial analysis.

Elicitor treatment and precursor feeding

To get insight into the signals that modulated the incidence 
of glossy cells and the accumulation of alkaloids, we used 
various elicitors. To probe for the role of basal defence, 
we used 100 µM of methyl jasmonate (Duchefa, Haarlem, 
The Netherlands) at a final concentration of the solvent 
ethanol of 0.02%. A potential role of hypersensitive reac-
tions was assessed by 100 µM of salicylic acid (Sigma-
Aldrich, Deisenhofen, Germany) at a final concentration 
of the solvent ethanol of 0.04%. To target membrane-
associated actin filaments, we used aluminium chloride 
(Merck, Darmstadt, Germany) as aqueous solutions in 
10, 50, and 100 µM. To eliminate ethylene, we admin-
istered silver nitrate (Carl Roth, Karlsruhe, Germany) in 
50 or 100 µM, again as aqueous solutions. To block the 
membrane-located NADPH oxidase Respiratory burst oxi-
dase Homologue, we used 20 µM of diphenylene iodonium 
(Sigma-Aldrich, Deisenhofen, Germany) in 0.2% DMSO. 
To activate auxin signalling, we used 10 µM of Picloram 
(Duchefa, Haarlem, The Netherlands). Appropriate con-
trols using the final concentration of the respective sol-
vent alone were included throughout. The concentrations 
for different elicitors were not chosen arbitrarily or in 
ignorance of physiology but based on preparatory experi-
ments in this and many other cell lines (Eggenberger et al. 
2017, Wang et al. 2022; Duan et al. 2016). The suspension 

culture of our Taxus cell lines form aggregates from a few 
to several hundred cells. Thus, these cells are very com-
pact, and the effective concentration is much lower than 
the concentration added to the medium.

Quantification of baccatin III and VI

The filtered cell material was lyophilised and extracted 
by a Soxhlet extractor in fifty cycles with methanol. After 
reducing the methanol volume by rotary evaporation, the 
samples were analysed by HPLC according to Witherup 
et al. (1989) with minor modifications as described by 
Bringi et al. (2012).

Quantification of gene expression

For sampling of the cell suspension cultures, the medium 
was removed by a vacuum pump and approximately 100 mg 
of cells were transferred to 2-ml reaction tubes, shock-frozen 
in liquid nitrogen and kept at − 80 °C until further process-
ing. The frozen cells were homogenised into a powder with 
mortar and pestle using quartz sand. The RNA was extracted 
using a column-based commercial protocol (innuPREP 
Plant RNA Kit, Analytik Jena, Jena, Germany) according 
to the manufacturer instructions. Potential contaminations 
by genomic DNA were removed by digestion with RNAse-
free DNAse (Qiagen, Hilden, Germany) for 15 min at 37 °C. 
Quality and integrity of the extracted RNA were verified via 
spectrophotometry by NanoDrop (peqlab ND-1000, Erlan-
gen, Germany) and agarose gel electrophoresis. A template 
of 2 μg of RNA was reversely transcribed into cDNA with 
the M-MuLV Reverse Transcriptase (New England Bio-
labs, Frankfurt, Germany). Steady-state transcript levels for 
Taxadiene Synthase (TS), Taxadiene 5 Hydroxylase (T5H), 
10-Deacetyl-Baccatin III-10-O-Acetyltransferase (DBAT), 
and 3 ‘-N-Debenzoyl-2-Deoxytaxol-N-Benzoyltransferase 
(DBTNBT) were determined by quantitative Real-Time 
PCR (qRT-PCR) as described in Svyatyna et al. (2014). An 
initial denaturation for 3 min at 95 °C was followed by 40 
cycles of denaturation for 20 s at 95 °C, annealing for 30 s at 
52–58 °C depending on the transcript, and synthesis for 40 s 
at 70 °C. The homogeneity of the amplicons was pre-tested 
by semiquantitative PCR and gel electrophoresis and verified 
by recording a melting curve from 50 °C to 95 °C in 0.5 °C 
increments. The details of the oligonucleotide primers are 
listed in Suppl. Table S1. Steady-state transcript levels were 
calculated according to Livak and Schmittgen (2001) and 
normalised against 18S RNA as reference. Data represent 
mean and standard errors from three independent experi-
ments, each in technical triplicates.
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Statistical analysis of data

Differences between treatments were tested pairwise for 
significance using a by two-tailed Student ‘s t test assuming 
with a confidence interval of 95% using Microsoft Excel. 
Comparisons of several samples were conducted using 
ANOVA followed by a Tukey HSD post hoc test with R 
version 3.5.0 assuming independence and normal distribu-
tion of values, and a confidence interval of 95%.

Results

Suspension cells of Taxus can differentiate 
during maturity

In suspension culture, the Taxus cells form aggregates from 
a few to several hundred cells. Most cells display the typical 
morphology of parenchymatic cells with a nucleus located 
in a lateral cytoplasmic pocket that is connected by trans-
vacuolar cytoplasmic strands with the opposite flank of the 
cell (Fig. 1C). In the Differential Interference Contrast, the 
cytoplasmic strands are distinct against the translucent cen-
tral vacuole. However, a minority of the cells look clearly 
different (Fig. 1D). They lack transvacuolar strands, and the 
central vacuole is reflecting the light, such that cytoplasm 
and nucleus are very hard to discern. Due to its bright aspect, 

this prominent cell type is in the following termed as “glossy 
cells”. Parenchymatic and glossy cells coexist in the same 
aggregate (Fig. 1A, B). Sometimes, asymmetric divisions 
can be observed, where a basal cell still maintains features 
of the parenchymatic state, while the apical cell already has 
fully expressed the glossy phenotype (Fig. 1E).

The cellular parameters of the suspension underwent 
characteristic dynamics that were monitored on a quantita-
tive level (Suppl. Fig. S1). However, since the cells were 
growing in agglomerations, it was difficult to sample reliable 
data from individual cells. So, we chose a strategy, where 
quantification was integrating over the entire cell popula-
tion. Here, the behaviour of the cell line was quite stable. 
When we followed the growth index (ratio of fresh weights 
at the end of the cultivation cycle over the initial inoculum) 
over half a year, it was stable around 2.5 through 15 cycles 
(Suppl. Fig. S1A) giving evidence for a high level of stand-
ardisation. After an initial lag of around 2 days following 
subcultivation, dry weight increased at a constant rate, till 
reaching a plateau at day 12 after subcultivation (Suppl. Fig. 
S1B). Fresh weight followed at a slower pace, but increased 
steeply after day ten after subcultivation, i.e., at a time, when 
the increase in dry weight had already slowed down. This 
indicates that during the later stage of the cycle, growth is 
mainly due to an increase of cell volume, while cell prolif-
eration is contributing less to the increase in fresh weight 
during this time. This conclusion was supported by the time 
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course of Packed Cell Volume (PCV), which was increas-
ing at a slow rate in the first half of the cultivation cycle but 
increased steeply from day 10 (Suppl. Fig. S1C). Since cell 
expansion requires an elevated activity of phospholipid and 
cellulose synthesis for the expanding cell wall, we estimated 
sugar consumption from the cultivation medium, which can 
be done in a non-invasive manner by refractometry. The 
readout, as °Brix, reflects the sugar content remaining in 
the medium. In fact, we observed that the estimated sugar 
content first dropped at a slower pace, but decreased rapidly 
from day 10, i.e., at the time, when fresh weight (Suppl. 
Fig. S1B) and PCV (Suppl. Fig. S1C) increased vigorously. 
This quantitative phenotyping of the cultivation cycle is con-
sistent with a pattern, where cells preferentially proliferate 
during the first half of the cycle, but preferentially expand 
during the late phase of the cycle.

Incidence of glossy cells correlates with alkaloid 
accumulation

To get insight into the conditions that foster the appear-
ance of glossy cells, we conducted a time course study and 
observed that glossy cells appear during the later stage of 
the cultivation cycle (Fig. 2A), from day 10, i.e., during 

the phase, when proliferation has slowed down, and cells 
undergo expansion (Suppl. Fig. S1). In the next step, we 
searched for conditions that would accelerate this phenom-
enon, scoring at day 6, when the frequency of glossy cells is 
usually low (Fig. 2B). In fact, we could show that addition 
of aluminium ions strongly promoted the formation of glossy 
cells, while inhibition of the NADPH oxidase Respiratory 
burst oxidase Homologue by Diphenylene Iodonium (DPI) 
was suppressive. Addition of the artificial auxin Picloram 
was suppressive as well, a similar, somewhat milder suppres-
sion was seen for Salicyclic Acid (SA). In contrast, Methyl 
Jasmonate (MeJA) was clearly inducing, and this induction 
could be eliminated by DPI. The effect of MeJA and alu-
minium was not additive, but MeJA partially mitigated the 
induction of glossy cells by aluminium. To probe for a link 
between the induction of glossy cells and the accumulation 
of alkaloids, we measured the levels of baccatin III, a precur-
sor of the paclitaxel branch of the pathway, and baccatin VI, 
a shunt derivative of baccatin III (Fig. 2C). Here, we could 
observe that baccatin III was induced by aluminium ions 
and that this induction was completely suppressed by DPI 
(Fig. 2D). Furthermore, we saw an induction of baccatin 
VI in response to MeJA, which was mildly mitigated by 
simultaneous addition of aluminium ions. Thus, the pattern 
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seen for the incidence of glossy cells is clearly reflected in 
the abundance of these alkaloids. The speciation into the 
main branch (baccatin III) and the shunt pathway (baccatin 
VI) was modulated by the type of elicitor, though. While 
both, aluminium ions and MeJA, promoted the formation 
of glossy cells (Fig. 2B), baccatin III, but not baccatin VI 
was induced by aluminium ions, while, inversely, MeJA was 
inducing baccatin VI, but not baccatin III. Thus, while the 
incidence of glossy cells correlates well with the accumula-
tion of alkaloids, there must be a second layer deciding on 
the speciation of the pathway.

Paclitaxel leaves the cells through the multivesicular 
body

We localised paclitaxel using indirect immunofluorescence 
with an anti-paclitaxel antibody using a mild fixation proto-
col with only 1% of paraformaldehyde, which allowed to pre-
serve membrane integrity while allowing penetration of the 
antibody. In fact, we were able to detect fluorescent signals 
along the cell wall of glossy cells, but also in the cell interior 
by collecting confocal z-stacks (Fig. 3A) and the confocal 
microscopy also allowed to resolve details of the signal. The 
signal was partially punctate, partially found in larger round 
clusters of 2–4 µm diameter, where dark, unstained vesicles 
were seen inside. A comparison of the fluorescent signal 
with the differential interference contrast image revealed that 
these signals corresponded to multivesicular bodies close to 
the plasma membrane. Occasionally, even fusion events of 
these organelles with the plasma membrane could be caught 

in action (Fig. 3A, arrow). When we scrutinised confocal 
sections from deeper in the cell (Fig. 3B), we also detected 
a fluorescent signal in the spindle-shaped nucleus. Here, the 
entire karyoplasm was stained, but the signal was excluded 
from the nucleolus. No signal was detected in the cells dur-
ing growth phase where the incidence of glossy cells was 
very limited (Suppl. Fig. S3).

To assess, to what extent this signal localisation reflects 
the situation in living cells (i.e., prior to chemical fixation, 
which is inevitable for immunofluorescence), we made use 
of the lipophilic character of paclitaxel that can be stained 
by Nile Red (Suppl. Fig. S2). Again, we observed a strong 
fluorescent signal in glossy cells, mostly lining the plasma 
membrane, but also organised in large vesicular structures 
that enclosed vesicles of different size and by size and 
structure matched the structures visualised by paclitaxel 
immunofluorescence.

Glossy cells harbour vermiform mitochondria

Since terminal differentiation is often linked with an oxida-
tive burst in mitochondria (Lam et al. 2001), we wondered, 
whether there might be changes of mitochondrial morphol-
ogy in different cell types or at different stages of the cul-
tivation cycle. In fact, when we followed mitochondria by 
the fluorescent dye Mitotracker Red, we observed that they 
existed in two forms (Fig. 4A). Either, mitochondria were 
punctate, or they were vermiform. Within a given cell, the 
respective mitochondrial morphology was clearly prevail-
ing, e.g., if a cell displayed vermiform mitochondria, it was 
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almost impossible to detect any punctate mitochondrion and 
vice versa. We quantified mitochondrial coverage over the 
cell cross-section and followed coverage over the cultivation 
cycle separately for non-glossy and glossy cells (Fig. 4B). 
In non-glossy cells, this coverage was constantly at around 
30% of the total cross area over almost the entire cultivation 
cycle, but increased significantly, by around a third from day 
15. When, from day 10, glossy cells appeared in significant 
proportions, these exhibited the same mitochondrial cover-
age as the non-glossy cells. However, they lacked the termi-
nal increase of coverage seen in their non-glossy compan-
ions. While overall coverage did not fluctuate much, there 
was a clear change in morphology, when the frequency of 
cells with punctate (i.e., the population without vermiform 
mitochondria) was scored Fig. 4C. In non-glossy cells, the 
frequency of cells with punctate mitochondria increased 
steadily in an approximately linear fashion (upon linear 
regression, R2 was determined as 0.53). The situation was 
different for glossy cells, that only rarely displayed punc-
tate mitochondria. At the final time point, less than 10% 
of glossy cells harboured punctate mitochondria, contrast-
ing with the around 50% seen in non-glossy cells. In other 
words, the predominant fraction of glossy cells produced 
vermiform mitochondria, representing a clear cytological 
hallmark for the glossy cell state.

Conditions that promote glossy cells upregulate 
specific transcripts of Paclitaxel synthesis

To get insight into the metabolic events underlying the 
increased alkaloid accumulation in response to aluminium 
ions, we probed the steady-state transcript levels for four 
key genes of the Paclitaxel biosynthesis pathway by real-
time RT-qPCR (Fig. 5) either in response to the synthetic 
auxin Picloram (which down modulates the incidence of 

glossy cells), or in response to aluminium ions (which pro-
mote the formation of glossy cells). While the transcripts 
for taxadiene synthase, catalysing the first committed step 
of the pathway, did not reveal any significant regulation, we 
observed distinct responses for Taxadiene 5 Hydroxylase 
(generating the early precursor Taxa-4(20),11-dien-5alpha-
ol). Transcripts for this enzyme were significantly lower on 
treatment with Picloram but induced by aluminium ions. 
Transcripts for 3 ‘-N-Debenzoyl-2-Deoxytaxol-N-Benzo-
yltransferase (DBTNBT) were even more responsive. In 
presence of Picloram, this increase observed at day 3 was 
completely suppressed at day 6. In response to aluminium 
ions, there was a late increase of DBAT at day 6 and there 
was an early increase of DBTNBT transcripts at day 3. In 
case of DBTNBT, this sharp increase was transient and fol-
lowed by a sharp decline till day 6. Thus, the regulatory pat-
tern for Taxadiene 5 Hydroxylase, DBAT and for DBTNBT 
transcripts (suppression by Picloram, stimulation and accel-
eration in response to aluminium ions) mirrors the pattern 
seen for the incidence of glossy cells and the accumulation 
of alkaloids (Fig. 2).

Discussion

To obtain insight into cellular aspects of metabolic compe-
tence in Taxus suspension cultures, we discovered a differ-
entiation event that gave rise to a peculiar cell type with a 
hypertrophic central vacuole of a glossy appearance, when 
viewed by differential interference contrast. These glossy 
cells appeared during progressive stages of the cultivation 
cycle and their frequency could be stimulated by aluminium 
ions, requiring the activity of NADPH oxidases and actin 
filaments. The frequency of glossy cells correlated with the 
accumulation of paclitaxel precursors. When we scrutinised 
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the subcellular details of the glossy cells by immunofluo-
rescence, we could detect paclitaxel in multivesicular bod-
ies that were fusing with the plasma membrane. Similar 
structures were seen upon live cell imaging using Nile Red. 
Furthermore, we found that the differentiation into glossy 
cells coincided with a transition of mitochondria into a ver-
miform morphology. These findings lead to several ques-
tions: What is the link between glossy cell state and alkaloid 
accumulation? How is this cell state initiated? And, how can 
it be promoted by aluminium ions? After having discussed 
these questions, we will show that this phenomenon can be 
explained as manifestation of the actin–auxin oscillator, a 
mechanism that calibrates stress signalling against growth 
in plant cells (for review see Nick 2010), leading to further 
implications and open questions for future research.

Cellular “competence” for paclitaxel accumulation 1: 
role of vacuolar differentiation

The incidence of glossy cells occurs in the later phase of the 
cultivation cycle (Fig. 2A), and conditions that stimulate 
the formation of glossy cells are also conditions that stimu-
late the accumulation of baccatin III and VI (Fig. 2B-D). 
Thus, the ability of the cells to produce alkaloids correlates 
with the cell state. Different responses of genetically equal 
cells to an external factor have been termed as differential 
“competence” (Mohr 1972). A classical system to study 

“competence” has been the induction of anthocyanin bio-
synthesis in the cotyledons of white mustard triggered by 
activation of the plant photoreceptor phytochrome (Steinitz 
et al. 1976). This “competence” correlated with the degree 
of vacuolation (Steinitz and Bergfeld 1977). Using micro-
irradiation, even neighbouring cells in this model system 
could be shown to be qualitatively different in their response 
to the light beam, depending on their degree of expansion, 
whereby “competence” of individual cells did not appear 
gradually, but in an all-or-none fashion, as result of a devel-
opmental switch (Nick et al. 1993). For Taxus, as well, the 
“competence” for the differentiation into a glossy cell (and, 
hence, for alkaloid accumulation) seems to be linked with 
vacuolar development. Beginning with day 10 of the culti-
vation cycle, Packed Cell Volume exhibits a strong step-up 
accompanied by a sharp step-down in the sugar content of 
the medium (Suppl. Figure 1C), and a strong increase in 
fresh weight (Suppl. Figure 1B). These three events can be 
used as proxy for cell expansion, because dry weight, which 
correlates with cell number (Suppl. Figure 1B) has approxi-
mated saturation at this time point, such that the significant 
increase in fresh weight seen in this final phase of the cell 
cycle goes on account of water uptake into the cells. The 
most straightforward explanation for the concomitant peak 
in sugar consumption is the massive increase of cell-wall 
synthesis that is required to balance the rapidly expanding 
cells against hypo-osmotic burst.
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Why should the transition towards vacuolar expansion 
contribute to the cellular competence for alkaloid accumula-
tion and secretion? When a plant cell accumulates secondary 
compounds with a toxic effect, it has either to sequester them 
into the vacuole to safeguard the functionality of the cyto-
plasm, or it must secrete them out of the cell. Sometimes, 
both mechanisms even co-exist in different parts of the cell. 
A classic example is the alkaloid nicotine, which is formed 
in tobacco roots in response to herbivory, is secreted into 
the xylem to reach the leaf through the transpiration stream. 
Once arrived there, it is sequestered in the vacuole, from 
where it is released upon wounding and, thus, can kill the 
intruder (for review see Baldwin 2001). A similar phenom-
enon is seen for the Vinca alkaloids in Catharanthus roseus 
that accumulate in specific idioblasts that, like the glossy 
cells, are characterised by large vacuoles (for review see 
Liu et al. 2017) and undergo terminal differentiation into 
laticifers (Eilert et al. 2011). It is conceivable, therefore, that 
paclitaxel accumulating cells initiate autolysis, thus, releas-
ing alkaloids into the medium, a mechanism known as lysi-
genic secretion (for a conceptual review see Turner 1999). 
There are two arguments speaking against this hypothesis. 
Lysigenic secretion should go along with an increase of cell 
mortality. However, stimulation of paclitaxel release into the 
culture medium was not accompanied by such an increase 
of mortality (Zhang et al. 2007). If glossy cells would be 
precursors of lysigenic secretion, the alkaloids should be 
mainly found in the vacuole. However, neither the immu-
nofluorescence with anti-paclitaxel antibodies (Fig. 3), nor 
visualisation of lipophilic compounds by Nile Red (Suppl. 
Fig. S2) detected any signal inside the vacuole, all signals 
were associated with the plasma membrane or multivesicular 
bodies in the cytoplasm.

If secretion of paclitaxel is not brought about by lysigenic 
secretion, it has either to go through membrane transport-
ers, such as the MATE transporters that are responsible for 
nicotine transport (Shitan et al. 2009), or it is secreted vesi-
cles. There is supporting evidence for both mechanisms. A 
fluorescent derivative of paclitaxel, flutax, can be taken up 
into Taxus protoplasts (Naill et al. 2012). In protoplasts, the 
cytoskeleton is disorganised disabling directional vesicle 
flow, which becomes reinstalled only upon regeneration of a 
new cell wall (Zaban et al. 2013). Uptake into protoplasts is, 
therefore, most likely brought about by membrane passage. 
Since the uptake of flutax is saturable and can be outcom-
peted with unlabelled paclitaxel, the most straightforward 
model is that of a specific membrane transporter. In fact, 
uptake of radioactively labelled paclitaxel into Taxus sus-
pension cells was vanadate sensitive (Fornalè et al. 2002), 
indicative of an ATPase-dependent function, such as it is 
typical for (ATP-binding cassette) ABC transporters. In 
fact, a molecular candidate for such a ABC transporter has 
been identified in Taxus japonica (UniProt ID E6Y0T0). 

However, there is also evidence for secretion. Very recently, 
the last hydroxylation step in the conversion of baccatin III 
into the final product paclitaxel, was shown to be brought 
about by an enzyme that is localised in the endoplasmic 
reticulum by a transmembrane helix and with a high prob-
ability is predicted to act in the secretory pathway (Sanchez-
Muñoz et al. 2020). This would also be more compatible 
with our observation, where both, the paclitaxel signal 
detected by immunofluorescence (Fig. 3), as well as the Nile 
Red positive signals (Suppl. Fig. S2) were seen concentrated 
in secretory organelles, rather than being diffusely distrib-
uted across the cytoplasm.

This leads to a different model for paclitaxel secretion that 
is also able to explain the link between vacuolar differentia-
tion and paclitaxel accumulation in the medium. In recent 
work by Hanano et al. 2022 on the high producing paclitaxel 
Taxus media cell suspension lines, showed accumulation of 
paclitaxel in the lipid droplets originating from the ER and 
the role of caleosins in enhancing paclitaxel biosynthesis. 
Based on our data obtained on T. chinesis suspension cell 
line, we suggest an alternate model. In our cell lines, the 
Paclitaxel would initiate its path in the ER, pass the Golgi 
and reach the multivesicular body. This organelle has two 
options–in proliferating cells, it can travel to the vacuole 
and, thus, contributes to the formation of a large central 
vacuole (for review see Cui et al. 2016). However, in cells 
that are already fully expanded, the multivesicular body 
can be re-directed towards the plasma membrane and, thus, 
contributes to unconventional secretion (for review see Hu 
et al. 2020). This unconventional secretion is of particular 
relevance in a defence context (for review see Li et al. 2018), 
i.e., exactly under the conditions mimicked by addition of 
MeJA as elicitor.

Cellular “competence” for paclitaxel accumulation 2: 
role of mitochondria

The second cytological hallmark of the glossy cell type is 
the presence of vermiform mitochondria. This mitochon-
drial shape is often observed in response to hypoxia (van 
Gestel and Verbelen 2002) and counter intuitively, often 
comes with oxidative burst in the intermembrane space, 
because mitochondrial electron transport is perturbed at 
complex III leading to the accumulation of superoxide as 
shunt product (reviewed in Wagner et al. 2018). The shift in 
mitochondrial redox homeostasis is conveyed to the nucleus 
through retrograde signalling, leading to defence-related cel-
lular responses that depend on the context. A mild stress 
can be faced, for instance, by activation of mitochondrial 
superoxide dismutase that will buffer redox homeostasis as 
concluded from experiments using a mitochondria-targeted 
peptoid mimick of the ROS scavenger Coenzyme Q (Asfaw 
et al. 2020). However, in case of a severe stress, as it may 
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be caused by pathogen attack or wounding, the superox-
ide will not be mitigated, leading to leakage of the inner 
mitochondrial membrane, the formation of a permeability 
pore, release of calcium and cytochrome c and, eventually, 
the activation of programmed cell death (for review see 
Zancani et al. 2015). Whether hypoxia, expected to occur 
in cell aggregates, is the trigger for the differentiation into 
glossy cells, or whether it is a by-product or consequence of 
vacuolar differentiation, remains to be elucidated. The fact 
that vermiform mitochondria prevail also in early stages, 
where glossy cells are not detectable, and only subsequently 
shift into punctate mitochondria (Fig. 4C) does not support 
a causative role for differentiation, but rather places the 
maintenance of vermiform mitochondria as consequence of 
differentiation.

Towards a cellular model for paclitaxel 
“competence”

The differentiation of glossy cells correlates with pacli-
taxel accumulation, but under control conditions, only 
around 10% of the cell population display this phenotype 
(Fig. 2A). This is consistent with a previous report that only 
a subpopulation of around 5% of the cells accumulate pacli-
taxel, if not elicited (Naill and Roberts 2005). We observed 
that MeJA and Al3+ ions stimulated both, the incidence of 
glossy cells, and the accumulation of paclitaxel precursors 
(Fig. 2B-D). Interestingly, this induction could be sup-
pressed by Diphenylene Iodonium (DPI), an inhibitor of 
membrane located NADPH oxidases, a central signalling 
component in plant defence (for review see Marino et al. 
2012). This inhibitor of NADPH-dependent flavoproteins 
inhibits at low concentrations, supporting its specificity. The 
absence of plant NOS as a second target for DPI, as well as 
its ability to inhibit at very low concentration to obtain a 
cellular response emphasize the specificity of DPI against 
membrane located NADPH oxidases. We, therefore, used 
DPI to address the role of RboH-dependent oxidative burst. 
The specific features of this regulatory pattern (induction 
by MeJA and by aluminium ions, inhibition of this induc-
tion by DPI) recapitulate features of a model developed to 
explain programmed cell death in response to breached 
membrane integrity (Eggenberger et al. 2017). Here, the 
NADPH oxidase Respiratory burst oxidase Homologue 
(RboH) generates superoxide, which can induce the bun-
dling of cortical actin filaments triggering terminal differ-
entiation (Gourlay and Ayscough 2005; Franklin-Tong and 
Gourlay 2008; Smertenko and Franklin-Tong 2008). This 
cycle can be mitigated by auxins, which causes debundling 
of actin by recruiting the superoxide generated by RboH for 
its own signalling (Eggenberger et al. 2017). An implication 
of this model is that auxin should be able to mitigate elicitor 
triggered cell death, because it prevents actin bundling (for 

review see Nick 2010). This implication has been experi-
mentally confirmed for cell death triggered by harpin, an 
elicitor from the phytopathogenic bacterium Erwinia amylo-
vora (Chang et al. 2015). Our observation that Picloram can 
suppress the formation of glossy cells (Fig. 2B) indicates 
that a similar mechanism regulates the cellular competence 
for paclitaxel biosynthesis. But would such a model of actin 
remodelling as cellular switch be able to explain the induc-
tion by MeJA and by aluminium ions? In fact, MeJA can 
induce actin bundling (Çetinbaş-Genç and Vardar 2020), 
and the same holds true for aluminium ions (Ahad and Nick 
2007). This aluminium-induced actin bundling can trigger 
defence genes and is dependent on RboH because the pro-
cess can be blocked by DPI (Wang et al. 2022). Aluminium 
can lead to (endogenous) SA, which develops in the con-
text of other defence responses, including actin remodelling 
(Wang et al. 2022). Exogenous SA, in contrast, hits a cell 
that had not been primed (in our hands by Al). Thus, the 
treatment of exogenous SA is not equivalent with that of Al 
(leading, after some time, to the formation of endogenous 
SA), because exogenous SA hits a naïve cell, which will, 
therefore, deploy only a part of the responses compared to a 
cell, where actin remodelling had already activated defence 
responses (as seen also be accumulation of paclitaxel bio-
synthesis transcripts).

Thus, the regulatory fingerprint in the induction of cel-
lular competence is matching that of the actin-RboH circuit 
that is used to sense cellular integrity and by its interaction 
with the actin–auxin oscillator (Nick 2010; Eggenberger 
et al. 2017) decides between growth versus terminal dif-
ferentiation. Applying Occam’s Razor (Clauberg 1691), 
we arrive at the following working model (Fig. 6) for the 
suspension cells of Taxus chinensis (Pilg.) Rehder used in 
this study:

Activation of the NADPH oxidase Respiratory burst oxi-
dase Homologue (either in course of culture progression or 
induced by MeJA or aluminium ions) generates superoxide, 
which enters the cytoplasm through aquaporins and inter-
feres with the dynamic turnover of actin filaments (for the 
underlying molecular mechanisms, see Eggenberger et al. 
2017). As a result, actin is bundled. Due to the close interac-
tion of actin filaments and plant mitochondria (van Gestel 
et al. 2002), the remodelling of actin will modulate mito-
chondrial structure and metabolism, which becomes mani-
fest as the vermiform mitochondria prevalent in glossy cells 
(Fig. 4). This will then lead to the cellular events commonly 
associated with mitochondrial perturbation in all eukary-
otes (Gourlay and Ayscough 2005), such as formation of 
a mitochondrial transition pore, leakage of cytochrome C 
and calcium into the cytoplasm, activation of metacaspases, 
and eventually programmed cell death. Since actin remod-
elling also activates defence genes (Wang et al. 2022), the 
terminal differentiation is also accompanied by induction of 
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biosynthetic genes as precondition for paclitaxel accumula-
tion and secretion.

Conclusions

Plant cell cultures are not only a promising platform to 
produce secondary metabolites but can also serve as a 
system of reduced complexity to address cellular mecha-
nisms. Although plant cells in culture are often considered 
as “dedifferentiated”, they often preserve certain features 
from their source tissue (Opatrný et al. 2014). To fully 
unfold the potential of cell-culture systems, it is impor-
tant to lend more importance to this innate differentiation 
between cells. The current work is addressing the link 
between cellular differentiation and metabolic potency in 
Paclitaxel accumulation by Taxus suspension cells as para-
digm for Plant Cell Fermentation. We can show that the 
competence for Paclitaxel synthesis correlates with the dif-
ferentiation of a specific cell type (so called glossy cells) 
with enlarged and modified vacuoles and a reorganisation 
of the secretory apparatus. This correlation is not only 
seen in the temporal development of the two phenomena, 
but also their regulation in response to elicitors and inhibi-
tors. The competence of these glossy cells is linked with 
subcellular events, such as the transition of mitochondria 
from a spherical into a vermiform shape, or the appear-
ance of multivesicular bodies that collect Paclitaxel and 

secrete it to the medium by fusion with the plasma mem-
brane. It is also accompanied by corresponding induction 
of transcripts for genes involved in Paclitaxel biosynthesis. 
The key enzymes seem to be Taxadiene 5 Hydroxylase 
and DBTNBT. This cellular differentiation can be stim-
ulated by aluminium ions, but inhibited by diphenylene 
iodonium, a blocker of the membrane located NADP 
oxidase Respiratory burst oxidase Homologue. Both fea-
tures indicate that the transition towards the glossy cell 
state involves actin remodelling. This work highlights the 
importance of cellular differentiation (even though it is 
less evident as compared to cells in a tissue context).

Outlook

The stimulation of glossy cell formation by aluminium ions, 
the inhibition of this transition by DPI, and the inhibition 
by exogenous auxin represents a specific hallmark indicat-
ing that actin remodelling is steering the transition into 
the glossy cell state (Fig. 6). A testable implication of our 
hypothesis would be that Latrunculin B, a specific compound 
sequestering G-actin from assembly into F-actin, should sup-
press the frequency of glossy cells as well. Furthermore, 
generation of a fluorescent actin-marker line expressing the 
actin-binding domain of plant fimbrin in fusion with GFP 
would allow to visualise the aluminium induced remodelling 
directly (Wang et al. 2022). For the context of Plant Cell 
Fermentation, it might be rewarding to focus initially on 
sustaining cell proliferation which leads to accumulation of 
biomass exclusively. Once this has been achieved, triggers 
could be then set to allow differentiation into glossy cells 
which may lead to activation of metabolic potency to reach 
higher product yields. Another interesting research avenue 
would be to understand epigenetic changes if any between 
the non-glossy and glossy cell types. As a new emerging 
field (Brzycki et al. 2021), to look for epigenetic changes 
would be certainly rewarding, here, one might test the effect 
of compounds that interfere with histone acetylation. Thus, 
understanding epigenetic regulation on these Taxus cell lines 
could perhaps identify epigenetic engineering targets to pro-
duce more glossy cells for increased paclitaxel production.
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