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Abstract
Plants are continuously exposed to stress conditions, such that they have developed sophisticated and elegant survival strate-
gies, which are reflected in their phenotypic plasticity, priming capacity, and memory acquisition. Epigenetic mechanisms 
play a critical role in modulating gene expression and stress responses, allowing malleability, reversibility, stability, and herit-
ability of favourable phenotypes to enhance plant performance. Considering the urgency to improve our agricultural system 
because of going impacting climate change, potential and sustainable strategies rely on the controlled use of eustressors, 
enhancing desired characteristics and yield and shaping stress tolerance in crops. However, for plant breeding purposes is 
necessary to focus on the use of eustressors capable of establishing stable epigenetic marks to generate a transgenerational 
memory to stimulate a priming state in plants to face the changing environment.

Keywords Epigenetic · Stress memory · Eustressors · Plant breeding

Introduction

Agriculture is an important worldwide economic activity 
that provides us with food, medicines, and a wide variety 
of materials from fibers to fuels. However, in the last dec-
ades, food production faces significant challenges. Despite 
the increased agricultural productivity, crop production 
has become insufficient and threatens food security due to 
the increasing world population. Plus, it is estimated that 

worldwide food production will increase by 50–70%, con-
sidering that the population is expected to rise to 10.5 billion 
people by 2050 (Goss et al. 2017; Vos and Bellù 2019). An 
alternative is to decrease crop losses, which main concerns 
are abiotic and biotic stresses which tend to intensify in the 
context of climate change. Biotic stresses, including patho-
gens and pests, are responsible for losses up to 20% (Goss 
et al. 2017). For their part, abiotic stresses, which include 
environmental factors, could limit crop production up to 70% 
and cause the most critical crop losses worldwide annually 
by being a major constraint to plant growth and develop-
ment (Mohanta et al. 2017). Furthermore, climate change 
will intensify extreme climate events and natural disasters 
that directly impact the agriculture sector. Over 2008–2018, 
crop and livestock production loss reached USD 280 billion 
worldwide, where the main disasters involve drought, floods, 
storms, landslides, and extreme temperatures, which group 
77% of the losses. In contrast, crops pets represent 9% of the 
losses. Additionally, the recent pandemic COVID-19 dis-
rupted food supply and demand, affecting vulnerable groups, 
adding urgency to find solutions (FAO 2021).

Therefore, it is essential to transform our current agricul-
tural systems by implementing eco-friendly alternatives to 
improve crop stress tolerance. Accordingly, potentiating the 
natural defensive strategies of plants has been considered a 
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modern crop approach (Tirnaz and Batley 2019). Plants deal 
with environmental perturbations constantly, and through 
time they have adapted, maximizing the phenotypic varia-
tion of suitable ecological traits that in adverse conditions 
are crucial to the population surviving (Parejo-Farnés et al. 
2019). Considering that the epigenetic mechanism has a 
fundamental role in the interactions between genes and the 
environment in the organism, they can provide novel direc-
tions to drive plant-breeding strategies. Epigenetics can help 
satisfy the demand for crop variations, potentially inducing 
a broad-spectrum resistance/tolerance, without genetic ero-
sion, and with a gene-mediated balance among resistance 
and yield (Tirnaz and Batley 2019). Even when the omics 
technologies and methodologies allowed us to insight into 
the molecular mechanisms and made punctual modifications 
in the plant genome, the lack of knowledge of the mecha-
nisms and the biological complexity of the process created 
uncertainty. However, epigenetic induction can be reached 
through plant protection products. For this, it is neces-
sary to implement strategies to trigger multigenic defense 
machinery in an opportune manner, if necessary, and plant 
biostimulants to promote the development of a diverse range 
of traits and genotypes more resilient to adverse conditions 
(Iriti and Vitalini 2021). Among the alternatives to be used 
are exposures to low doses of stress factors that trigger posi-
tive responses in plants, which can be called eustressors. 
There are different types of eustressor based on their ori-
gin: biological, which is classified in elicitors and biostim-
ulants, and non-biological, which can be physical factors 
or chemical compounds (Vázquez-Hernández et al. 2019). 
Considering that the beneficial response can be in terms of 
yield, growth, quality, and stress resistance, and even with 
multiple benefits on plants, eustressors are a potential tool 

to implement in plant breeding programs. However, some 
aspects are only starting to be discussed: stress memory 
acquisition in plants by these treatments. In this regard, we 
will discuss the memory induction potential of eustressors as 
a new breeding approach based on experimental studies that 
highlight the stable establishment of epigenetic marks that 
are useful for agriculture and of physiological responses over 
multiple generations on plants that are treated with eustress-
ors to promote stress tolerance acquisition. Towards the end, 
we highlighted some advantages of using these approaches 
in agricultural systems in the near future.

Concepts: epigenetic, phenotypic plasticity, 
stress memory, and priming

The term epigenetics was proposed by Conrad Hal Wad-
dington in 1942, referring to the study of the interactions 
between genes and environment in the organism, ergo, the 
development of characteristics by modification of the pat-
terns of the genome in response to environmental change 
(Burggren 2016; Parejo-Farnés et al. 2019; Kotkar and Giri 
2020). Nowadays, it is known that epigenetic phenomenon 
is related to biochemical modifications on the genome that 
determine the conformational state of the chromatin. These 
epigenetic marks alter the accessibility of the transcriptional 
machinery and other regulatory elements to the DNA strain, 
and by consequence, directly or indirectly affect the activa-
tion/repression of the genes. The three types of epigenetic 
marks that are stable and/or inherited: DNA methylation, 
histone post-transcriptional modifications (PTMs), and the 
presence of small RNAs (sRNAs), which are schematized in 
Fig. 1 (Mirouze and Paszkowski 2011; Holeski et al. 2012; 

Fig. 1  Epigenetic marks. A DNA methylation. It consists of a methyl 
group on the fifth carbon of cytosines (5-methylcytosine: 5-mC) in 
the DNA sequence. In plants occurs in three sequence contexts: CG, 
CHG, and CHH, where the H can be A, T, or C. B Histone modifi-
cations. It consists of post-translational covalent modifications in the 
N-tail of histones, like methylation and acetylation, the most stud-
ied modifications. C Non-coding-RNAs. They correspond to RNA 

molecules that do not encode functional proteins but act as gene 
expression regulators. These are divided based on their biogenesis in 
micro-RNAs (miRNAs), which are associated with the RNA-induced 
silencing complex (RISC) to target genes by sequence complemen-
tarity, and small-interfering-RNAs (siRNAs), which are involved in 
de novo methylation of complementary DNA sequences through the 
RNA-directed DNA-methylation (RdDM) pathway
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Pastor et al. 2013; Asensi-Fabado et al. 2017; Gallusci et al. 
2017; Lämke and Bäurle 2017; Kumar 2018).

DNA methylation, generally it is considered to cause 
chromatin condensation, such that the abundance of methyl 
groups (hypermethylation) is associated with gene silenc-
ing and the decrease of it (hypomethylation) with active 
gene expression (Asensi-Fabado et al. 2017). However, 
this correlation is not always observed, and there are some 
cases where an opposite trend was pointed out, like genes 
up-regulation with hypomethylated regions (Zhang et al. 
2006; Zhou et  al. 2019; Jiang et  al. 2020; Villagómez-
Aranda et al. 2021). It is possible that the effect of DNA 
methylation on gene expression may be determined by the 
genomic location, the underlying DNA sequence and site 
class (promoter, body-gene, repetitive sequence, transposon, 
etc.) and the interplay with other regulatory signals (Bewick 
and Schmitz 2017). Additionally, other DNA modifica-
tions have been identified: 5-hydromethylcytosine (5-hmC) 
(Kumar 2018) and N6-methyladenine (6-mA), which does 
not have a definitive role, but it has been associated with 
active gene expression of stress-related genes (Zhang et al. 
2018; Zhou et al. 2018). By contrast, histone PTMs are very 
varied: there exist eight types of modifications (acetylation, 
methylation, phosphorylation, ubiquitination, sumoylation, 
ADP-ribosylation, deamination, and proline isomerization) 
and over 60 different residues on histones where modifica-
tions occur (Kouzarides 2007). The most studied histone 
PTMs are histone acetylation, which is associated with 
active gene transcription, and histone methylation, which 
effect varies depending on the methylation site. For instance, 
histone methylation on H3K9 (9th lysine on H3) and H3K27 
is associated with transcription repression; however H3K4 
and H3K36 are marks associated with transcription acti-
vation (Fujimoto et al. 2012). Eventually, the non-coding 
RNAs regulate gene expression at the post-transcriptional 
level. There are a wide variety of these molecules. At the 
first stage, they divide into housekeeping and regulatory 
non-coding RNAs. The last is divided based on the size in 
short-chain non-coding-RNAs, which include siRNAs, miR-
NAs and piRNAs, and long chain non-coding RNAs. The 
most studied ones are siRNAs and miRNAs, but all of them 
have a gene expression regulatory role, and some are start-
ing to be closely related to epigenetic regulation by several 
mechanism (Wei et al. 2017).

Although it is true that epigenetic mechanisms act differ-
ently and have their own regulatory mechanisms, they are 
probably related to each other at some point to modulate the 
gene expression. They are essential in synchronizing bio-
chemical and physiological mechanisms in growth, develop-
ment, and reproduction in the plant cycle life. Recently, they 
are considered key in the strategies to deal with the sub or 
supra-optimal environmental conditions due to the changing 
dynamic of epigenetic marks, considering that stress and 

environmental stimulus can induce epigenetic variation in 
the genome. This leads to phenotypic plasticity, the rising 
of alternative phenotypes expressed by the same genome, 
which is explained by alterations in the epigenetic marks in 
the genome to enhance the transcriptional regulation associ-
ated with the specific needs of plants according to the envi-
ronment leading to acclimation (Asensi-Fabado et al. 2017; 
Fortes and Gallusci 2017) (Fig. 2A, B). An example of this 
phenomenon is the phenotype of clones of potatoes growing 
in 1000 m of altitude difference, in wherein the higher spot 
the plant had thicker leaves, shorter rachis, more tubers, and 
more anthocyanins, which were associated with the vari-
ability of epialleles, i.e. genetic loci that exhibit specific 
DNA methylation pattern (Ibañez et al. 2021). Similarly, 
Potentilla saundersiana, a rosacea plant, presented reduced 
biomass and height, smaller leaves, small stomatal aperture, 
cell wall thicker, skinnier vessels, and increased antioxidant 
system bioactivity compounds as a result of higher altitudes 
strategies to survive, all these phenotypes associated to epi-
genetic regulation and post-translational modification (Ma 
et al. 2015).

In nature, phenotypic plasticity is essential due to selec-
tive pressure on the population dynamics (Holeski et al. 
2012). Indeed, the epigenetic variation depends partially on 
the same driving forces as a genetic variation but is more 
related to habitat conditions; such that epigenetic varia-
tion may be part of the natural selection, ecological inter-
actions, and speciation process, and ultimately provide an 
accelerated way to evolutive changes (Parejo-Farnés et al. 
2019). Two crucial aspects of plant behavior for plasticity 
are the learning process and memory, which require a con-
tinual perception of information from the environment and 
access to past experiences to incorporate the information 
in new responses (Trewavas 2016) to impact the long-term 
and transgenerational adaptation (Mirouze and Paszkowski 
2011). Stress memory is defined as the information reten-
tion of past stress events resulting in a modified response 
that can be used to endure recurring stress (Lämke and 
Bäurle 2017; Galviz et al. 2020). This modification can be 
changed in the speed of the response or the magnitude of the 
response (Baldwin and Schmelz 1996). The learning process 
of plants involved, on the one hand, increased metabolites 
levels, signaling molecules and transcription factors, and on 
the other hand, alteration of epigenetic marks to coordinated 
changes in gene expression pattern (Crisp et al. 2016; Lämke 
and Bäurle 2017; Weinhold 2018; Galviz et al. 2020; Per-
rone and Martinelli 2020).

The memory can remain days to weeks or months for 
somatic memory, but it may be stable and inherited within 
offspring to one, two (intragenerational), or more stress-free 
generations (transgenerational) to increase progeny success 
(Crisp et al. 2016; Lämke and Bäurle 2017; Weinhold 2018; 
Galviz et al. 2020). The memory duration will depend on the 
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stability of the epialleles responsible for the stress memory. 
They can be mitotically or meiotically stable. In the first one, 
the epigenetic state is maintained in the mitosis, such that 
the changes are persistent during vegetative growth but as a 
short-term inheritance throughout newly developing tissues 
and along the lifetime of the plant. In the second one, the epi-
genetic state can be transmitted through meiosis and game-
togenesis, such that the effects on the phenotype are long-
term and can be extended to the next generation (Deleris 
et al. 2016; Lämke and Bäurle 2017). As mentioned before, 
the phenotypic plasticity brought by a determined envi-
ronment can aid in the survival of a population. However, 
after the recovery period, if the adverse conditions return to 
normal or change to another, considering that stress factors 
in nature could be transitory, some alternative phenotypes 

can become deleterious for the individual (Fig. 2D). The 
reversibility of the epigenetic mechanism allows switching 
back to the initial state and reverting to the initial state of 
the original phenotype. Even when the phenotype plasticity 
is memorized and inherited to the next generations, it still 
exists the possibility of resetting and “forgetting” the altered 
responses leading to the re-appearance of the original pheno-
type if necessary. However, the molecular mechanism driv-
ing the learning, memory and forgetting process of plants is 
still unclear. Nevertheless, it is suggested that it may depend 
on the balance between the trade-offs involved in the pro-
cess and the neutral, advantageous or disadvantageous effect 
according to the overall fitness of the individual (Burggren 
2016; Crisp et al. 2016; Galviz et al. 2020).

Fig. 2  Schematic concepts involved in the phenotype variation in an organism. A Phenotype determination. B Plasticity. C Priming. D Plant 
memory
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A stress imprint can enhance beneficial memory or prim-
ing, which refers to a modified advantageous response, usu-
ally faster, stronger, and sensitized triggered by stress set up 
by previous stimulus and improved resistance to recurrent 
stress factors (Fig. 2C). When this occurs, the regulation 
network of stress-related genes is altered, and the plant is 
considered in a "primed state" (Crisp et al. 2016; Lämke 
and Bäurle 2017; Galviz et al. 2020). However, the priming 
agent, the first triggering cue, can be the direct exposure 
to stress or through applications of chemical, biological, 
plant hormone, or elicitor treatment (Avramova 2015; Crisp 
et al. 2016; Hilker and Schmülling 2019; Galviz et al. 2020; 
Turgut-Kara et al. 2020; Magno et al. 2021). In seeds, prim-
ing treatments are applied to hydrate the seed and improve 
germination (Ibrahim 2016), and several long-lasting effects 
persist in the plant life cycle, such as improving fitness and 
stress resistance (Bruce et al. 2007).

Priming could be applied at any developmental stage 
to improve tolerance exposure, in where the priming effi-
ciency in generating a memory can vary according to the 
priming agent used; treatment duration, plant species, and 
seed primed storage. Although more studies are needed to 
apply to breeding programs, it is an interesting and potential 
approach to alleviate climate change impact on crops and 
improve agronomic traits. The use of eustressor as prim-
ing agents could be potential tools for crop management to 
generate a transgenerational memory and shape the stress 
tolerance in crops with a sustainable focus by enhancing the 
natural response innate ability of plants (Vázquez-Hernán-
dez et al. 2019).

Eustressors as stress resistance triggering 
allies

The preconditioning process implied in priming has as base 
the hormesis theory. This refers to a biological evolutionary 
theory that suggests that cells, organs, and organisms have 
a dose–response relationship to interact with environmen-
tal stressors and acclimate, such that low-dose stress may 
induce overcompensation responses, wherein occurs dam-
age repair and adaptive background responses (Agathokle-
ous and Calabrese 2019). In plants, it can promote growth, 
enhancing wound-healing capacity and secondary metabolite 
production to maintain homeostasis. The hormetic response 
is stress-dependent, such that it is classified in eustress and 
distress, according to the effect produced to plant, either 
beneficial or harmful, respectively (Vargas-Hernandez et al. 
2017; Duarte-Sierra et al. 2020).

In this sense, it has been extensively pointed out that mol-
ecules that trigger or stimulate specific defense mechanisms 
in plants are called elicitors or stimulants (Malik et al. 2020; 
Iriti and Vitalini 2021), such that they can induce eustressic 

responses in plants al low doses (Duarte-Sierra et al. 2020). 
Depending on the stress factor, dose and application oppor-
tunity can significantly induce plant immunity (eustressic 
dose) or improve plant growth and development (biostimu-
lants). Recently, it has been proposed to define any inductor 
of a positive response like enhancing biological functions, 
productivity, and activation of defense pathways as a eus-
tressor (Vázquez-Hernández et al. 2019).

The pre-exposition of plants to treatment with chemicals 
mimic endogenous stress signals leading to the activation of 
the defense mechanisms in the cells to prepare to affront the 
danger through their systemic acquired resistance (SAR) or 
induced systemic resistance (ISR) (Avramova 2019). Elici-
tors can activate defense mechanisms on the surface of the 
plasma membrane as induction of pathogenesis-related 
proteins and enzymes of oxidative stress protection and 
hypersensitive responses (Baenas et al. 2014). Early plant 
defense responses arises an ion flux  (Cl−,  K+,  Ca2+), fol-
lowed by reactive oxygen species (ROS) and reactive nitro-
gen species (RNS) production, which triggers downstream 
mitogen-activated protein kinases (MPKs) accumulation and 
stimulates hormones (SA, ABA, and JA) signaling pathways 
(Pastor et al. 2013). All these processes lead to the activation 
of transcriptional factors (TF), signaling proteins and later, 
the regulation of specific gene expression. At the functional 
level, the secondary metabolites production, oxidative stress 
protection synthesis enzymes, induction of pathogenesis-
related proteins, and the reinforcement of structural and 
defensive barriers as well as the hypersensitive response 
are induced (Baenas et al. 2014). In primed mother plants 
stressed can occur the accumulation in seeds of the com-
pounds above mentioned, and even this response can be 
across several generations because priming might facilitate 
transcriptional induction of defense genes and remain in the 
following generations if epigenetic changes occur (Pastor 
et al. 2013; Crisp et al. 2016). These may occur after the 
recovery process, fixing some responses to develop memory 
in plants (Lämke and Bäurle 2017), considering that epi-
genetic memory must exceed the duration of the original 
stimulus that established them and must have an impact on 
the subsequent gene expression (Avramova 2019). Hence, 
for the active use of eustressors in agriculture, it is desirable 
to focus on stress factors used in eustressic dose to favour a 
priming memory through epigenetic influence or has probed 
to show positive inter or transgenerational effects.

Epigenetic alterations by eustressors 
and possible stress memory triggering

Recent evidence suggests that epigenetic mechanisms are 
closely related to the fine-tuning control of all the biologi-
cal processes occurring in an organism, considering they 
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modulate the expression of genes involved in primary metab-
olism and stress-related genes, such as they are essential for 
the acclimatization and adaptation in plants. Moreover, the 
elements involved in the metabolism of DNA methylation 
and histone PTMs are regulated by interactions with reactive 
oxygen species (ROS), nitric oxide (NO) and antioxidant 
compounds (Lindermayr et al. 2020; Saravana Kumar et al. 
2020).

For instance, DNA methylation is involved in the regula-
tion of the phenolic acids biosynthesis, as suggested in the 
experiment by Yang et al. (2018), in where the treatment 
with 5-AzaC (5-Azacytidine), DNA methylation inhibitor, 
and SAM (S-Adenosyl methionine), methyl donor, affected 
the phenolic acids production in S. miltiorrhiza. In the case 
of 5-AzaC, it induced the expression of genes involved in the 
two pathways of phenolic acids (phenylpropanoid and tyros-
ine-derived) and, accordingly, the concentration of phenolic 
acids. Additionally, it altered the methylation pattern of RAS 
promoter, inhibited the expression of genes involved in DNA 
methylation, as MET, and increased those involved in DNA 
demethylation, as MDB. On the contrary, with the SAM, 
these were opposite. It suggested that DNA demethylation 
is a negative regulator of phenolic acid biosynthesis (Yang 
et al. 2018). Other interesting findings come from sequenc-
ing experiments, as Zuo et al. (2017). In this, transgenic 
tomatoes to the ethylene response factor (ERF1), a regulator 
in ethylene-responsive genes, revealed several differential 
methylation regions in several genes involved in the ethyl-
ene (ETH) synthesis and signaling pathway. Additionally, 
miRNA target genes were found, which showed the intercon-
nection in the DNA methylation and miRNAs co-regulation 
(Zuo et al. 2017).

Currently, increasing evidence suggests that epigenetic 
mechanisms are intricately linked with the modulation of 
phytohormones in plants, and vice versa, because hormones 
can affect the epigenetic state of the plant. ETH and jas-
monic acid (JA) induce the expression of histone deacety-
lases HDA6 and HDA9, and on the contrary, the knocking 
out of these deacetylases provokes ABA hypersensitivity. 
This is through the interaction with transcription factors and 
associated proteins (Yamamuro et al. 2016). Similarly, multi-
ple components of the auxin-signaling pathway are under the 
control of miRNAs that target auxin-related genes and tran-
scription factors and genes controlled by dynamic changes 
in DNA methylation and histone modification levels. For 
this reason, epigenetic may be essential in the regulatory 
mechanism of hormone actions and, by consequence, in the 
stress networks in plants (Yamamuro et al. 2016).

As mentioned above, several studies have reported 
changes in the DNA methylation status and histone PTMs 
in specific genes by the exposure of plants to stress factors as 
drought (Fang et al. 2014; Kaur et al. 2018), cold (Pavangad-
kar et al. 2010; Tang et al. 2018), salinity (Sokol et al. 2007; 

Yaish et al. 2018), high light conditions (Guo et al. 2008), 
depletion of nutrients as nitrogen and phosphorous (Mager 
and Ludewig 2018), contamination with heavy metals as 
cadmium (Xin et al. 2019), exposure to sulphur dioxide (Yi 
and Li 2013), physical wounding (Polkowska-kowalczyk 
et al. 2014), and pathogenic bacterial (Latrasse et al. 2017), 
viral (Wang et al. 2018), and fungus (Luo et al. 2016) infec-
tion. Equally, several miRNAs members have been described 
as functional in response to drought, pathogens (Yu et al. 
2020), heavy metals like cadmium and aluminium, and 
activating plant immune response by pathogen-associated 
molecular patterns plant–microbe interactions (Huang et al. 
2019; Sáenz-de la et al. 2020). Some miRNAs are involved 
in multiple stresses (Wang et al. 2017), and in others, their 
expression pattern varied in a species-specific manner (Álva-
rez-Venegas et al. 2016; Banerjee et al. 2017; Kumar et al. 
2018). The epigenetic marks were correlated with activat-
ing stress-responsive genes or involved in the defense and 
immune response in all these cases.

The remaining question is about eustressors could induce 
an epigenetic pattern to trigger stress-stable tolerance with-
out compromising the phenotype. A clear example is shown 
in the work by Cao et al. (2013), the  H2O2 was tested as an 
elicitor against heat stress. The Methylation-sensitive ampli-
fied fragment length polymorphism (MSAP) analysis did not 
show significant differences in methylation levels between 
the treatments in this work. However,  H2O2 led to changes 
in methylation status in some loci that alleviated the pheno-
typic damage caused by heat stress and altered the expres-
sion of some stress-responsive genes (Cao et al. 2013). 
Another interesting case is in the work by Kellenberger et al. 
(2016) is presented, in where MSAP of leaf damage by her-
bivory and treated with MeJA was compared. Both cases 
resulted in higher demethylation events in locus, mainly in 
the MeJA treated. However, in phenotype, the elicited plant 
did not show morphological changes but displayed lower 
volatile compounds and less herbivory and attractiveness 
to pollinators (Kellenberger et al. 2016). Despite the stud-
ies focused on these quizzing are numerous, the evidence is 
still limited, and more when it comes to transgenerational 
memory experiments.

Therefore, the use of eustressors, with stable intra/
transgenerational inheritance, in the fields or under con-
trolled conditions levels might be a simple and elegant 
solution for resilient crop development. For field produc-
tions, this may presume that no antagonistic interaction 
occurs between spontaneous environmental stresses and 
the eustressors used. In addition, in some cases, the eus-
tressor could not be a milder form of the same stress, as 
in the climate-related stresses, but a chemical or biological 
eustressor treatment might induce some beneficial traits. For 
instance, phytohormones are emerging as potential prim-
ing tools for mitigating negative effects on plants by abiotic 
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stress (Rhaman et al. 2020). Even though the abiotic stresses 
more studied are temperature, drought and salt stresses, 
strengthening plants against heat stress could be achieved 
by a mimetic in a specific condition to effectively primed the 
plant (Magno et al. 2021), considering that it implies a dif-
ferent type of hydric stress pressure on the system. However, 
this approach needs much more development to define the 
application criteria to obtain the characteristics of interest. 
In Table 1, there are described some examples of studies 
wherein eustressors treatment suggested memory induction 
in the offspring.

As mentioned before, the study cases of transgenerational 
inherence of stress resistance are limited. In Table 1, it is 
shown that in most cases, the inherence is just examined 
in the next generation, being considered as intragenera-
tional memory. In these cases, transgenerational stability is 
unknown. The study of cases where two or more generations 
are considered will be necessary to improve our insight about 
the correct memory induction for transgenerational stabil-
ity. By mention, even when an enhanced stress tolerance 
is achieved and inherited to the next generation, the stress 
memory is erased in the second generation (Luna et al. 2012; 
Slaughter et al. 2012), or the memory partially remains in 
the second generation (Migicovsky and Kovalchuk 2015; 
Martínez-Aguilar et al. 2016; Ramírez-Carrasco et al. 2017; 
Cong et al. 2019). It is pointed out that memory creation is 
stochastic and conditional rather than a general response. 
It occurs when new homeostasis is reached, considering it 
depends on the trade-offs between growth and development 
against the potential benefits (Crisp et al. 2016). However, 
probably, the intensity of the stress or stimulus and time of 
development stage in the plant to exposure are critical to 
determinate efficiently the transgenerational memory (Reza 
Rahavi and Kovalchuk 2013). In addition, there must be con-
sidered the plant growing conditions to determine effective 
priming, or if need it, the more favourable conditions to fix 
the traits of interest (Magno et al. 2021).

There are two possible factors to determine memory crea-
tion: duration of the exposure and intensity of the stress. 
A long exposure could induce widespread, locus-specific 
epigenetic alterations that remain stables, so different stress 
levels could lead to different levels of stress memory (Lukić 
et al. 2020). In addition, it is possible that when the stimulus 
that originated the memory is more involved in the primary 
functions, as in the case of the N-deficiency, the benefits 
super pass the cost, and the process of stable memorizing 
could be preferred until the third stress-free generation after 
one long-stress (Kou et al. 2011).

The point of decision between remembers or forget relies 
on the balance of trade-offs, benefits, and costs in each 
case, and it occurs during the stress recovery period. On 
the one hand, memory fixation may offer protection against 
future stress and acclimation to changing environments. 

Acclimation refers to the capacity of short-term responses 
of one organism to environmental changes through gene 
expression, developmental, morphological, and physiologi-
cal adjustments to survive and extend its tolerance ranges. 
The acclimation can occur at early development stages and 
persist on the adult stage, or as reversible plasticity during 
the lifetime (Ashe et al. 2021; Pazzaglia et al. 2021). How-
ever, the process requires resource-intensive costs that may 
delay growth, development, yield, and risk of adaptive mem-
ory. On the other hand, resetting, even if it sustains the sus-
ceptibility to severe or recurrent stress with risk of fatality, 
maximizes growth under favourable conditions, increases 
yield, and avoids deleterious effects in the long-term of mal-
adaptive memories (Crisp et al. 2016). It becomes a balance 
between the optimization of the parental against the fitness 
and survival of the offspring when it is difficult to predict 
specific types of stress that occur in the following generation 
to determine the best choice. Moreover, even though factors 
that are most likely to affect the following generations as 
climate and soil properties changes, these memories may 
not necessarily mean physiological adaptation to these con-
ditions since a transgenerational aspect could increase seed 
dormancy to wait for more favourable conditions (Racette 
et al. 2019). The fixation of epigenetic marks enhancing 
acclimation could be considered a rapid adaptation due to 
the contribution to accumulated memory mechanism and 
altering plant-environment interactions. Adaptation implies 
a process of natural selection of better-suited genotypes to a 
new environment at the population level (Ashe et al. 2021; 
Pazzaglia et al. 2021).

An early epigenetic change (DNA methylation and his-
tone PTMs reprogramming) could allow survival through 
plasticity following the stress. Nevertheless, these variations 
would accumulate after the phenotypic fitness given by epi-
genetic modification exceeded the one by genetic variation 
(mutations, genetic recombination). However, the pheno-
typic alteration may not be visible until the accumulation 
of genetic mutations. Stress-induced changes of epigenetic 
variation may be visible in the first generation, but, lately, 
there could be reset in the next generations. Therefore, the 
dual inheritance of genetic and epigenetic variation ensures 
adaptation (Tricker 2015).

The epigenetic memory can promote the adaptation to 
specific stress. However, more than the adaptation to a spe-
cific stress, the potential and the desired goal is to induce 
a memory with a broad-spectrum-resistance that includes 
multiple stress factors, considering the crosstalk in the net-
work signaling stress responses. In nature, just one stress 
factor is almost non-existent, and the general condition is to 
have multiple factors in where the interaction of these deter-
mines the effect in the plant, so it is possible to develop a 
cross-tolerance to several factors related (Locato et al. 2018; 
Chang et al. 2020). Eustressors are probably more promising 
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as epigenetic memory inductor agents due to their impact 
on crosstalk in signal transduction pathways. As mentioned 
above, if the impact on plant physiology is critical for mem-
ory stability, the activation of multiple signaling networks 
could be a key point in the fine-tuning control of stress mem-
ory induction. As mentioned above, priming by one type of 
eustressor can sometimes enhance plant responses to other 
types of stress (called “cross-priming”) (Lämke and Bäurle, 
2017). For instance, enhanced immunity to bacterial patho-
gens can be induced by treatments with moderate-high or 
low temperature or by moderate salt treatments, associated 
with epigenetic histone PTMs marks in H3K14ac, H3K4me2 
and H3K4me3 (Lämke and Bäurle 2017). Moreover, histone 
H3K4 methylation is commonly correlated with different 
types of somatic stress memory (Lämke and Bäurle 2017).

The DNA methylation is pointed out as the more stable 
by their conservation in CG context during DNA replica-
tion. Recently it is suggested that balance in DNA methyla-
tion and demethylation pathways are essentials to preserve 
the transgenerational stability of the genome (Williams and 
Gehring 2017). Though, histone PTMs also can be main-
tained in replicating cells, as is the case of the H3K27me-
3mark, which is essential for the inheritance of silencing 
memory for the transition to flowering in vernalization 
(Jiang and Berger 2017). As several studies have shown, 
they are involved in the priming process. It is important to 
consider the epigenetic mechanism as complementary to 
each other, where the presence of multiple epigenetic marks 
could increase the opportunity for long-term transgenera-
tional memory.

Eustressors as plant breeding allies

Eustressors could be potential allies in stress management 
programs in agriculture in the near future due to their impact 
on the epigenetic plant state, and consequently, on plant fit-
ness and stress responses. The transgenerational stress mem-
ory may induce a broad-spectrum tolerance against stress 
factors due to the overlap of signaling pathways, changes 
in expression of stress-related genes and miRNAs, as well 
as changes in DNA methylation and histone alterations in 
cells. As we mentioned briefly, there are many eustressors, 
which could trigger eustress conditions in plants. Never-
theless, the capacity to induce desirable traits with a stable 
epigenetic base is unclear for each eustressor, and prob-
ably the effects on the plant are eustressor- dependent and 
specie-dependent. The most promising and practical to be 
used in fields are the chemical compounds, mainly natural 
occurring metabolites. Between these, the reactive oxy-
gen–nitrogen–sulphur species (RONSS) stand out as a key 
priming agent because of their role as a key messenger in 
the physiology, metabolism, and responses to stress, and the Ta
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crosstalk tolerance they could induce in plants (Locato et al. 
2018). By mention, recent studies have highlighted the use 
of sulfur fertilization to enhance drought tolerance (Chowd-
hury et al. 2020; Farman et al. 2021; Shafiq et al. 2021) and 
heavy metal exposure (Ragab and Saad-Allah 2021) in crops 
through the regulation of the enzymatic antioxidant system 
and photosynthetic efficiency. These suggest a degree of 
priming additional to the biostimulants effect in the yield. In 
addition, they might interact with other major S-containing 
compounds involved in the epigenetic marks metabolism, 
such as the S-adenosyl methionine, which is a donor of the 
-CH3 group necessary for the DNA methylation. Moreover, 
eustressors could play a critical function in regulating the 
epigenetic mechanisms in plants, considering various ele-
ments of the intermediary activities and enzymes involved 
in DNA methylation, histone PTMs, and other chromatin 
remodelling are mediated by redox metabolism as ROS and 
NO (Saravana Kumar et al. 2020).

To date, several studies have shown that the use of eus-
tressors has a positive effect on plants. On the one hand, it 
might have a biostimulant effect, as it is a growth promoter 
leading to increased crop yield. On the other, an increase 
in the presence of bioactive compounds, which in turn can 
favour a better response, to stress in plants, even promoting 
immunity through a certain degree of tolerance or resistance 
to stress. However, the permanence of this type of effect 
due to eustressors has not been studied in subsequent gen-
erations (Vázquez-Hernández et al. 2019; Jamiołkowska 
2020; Malik et al. 2020; Teklić et al. 2021). Therefore, more 
research is required on the eustressor-epigenetic topic. It is 
also essential to consider the priming agent, concentration, 
exposition time, doses, and application periods to generate 
the expected desired memory. The fixation of transgenera-
tional stress memory into a plant is still a highly variable 
phenomenon among plant species and even distinct geno-
types of the same species (Racette et al. 2019). In addition, 
the capacity of a plant to express primed resistance depends 
on multiple signal transduction pathways (Slaughter et al. 
2012), in combination with time life-cycle, genome-size, 
levels in genome-wide DNA methylation, and type of stress 
according to the plant natural life history (Weinhold 2018), 
severity of the stress, environmental conditions, and plant 
species (Ramírez-Carrasco et al. 2017). Therefore, studies 
aiming at these questions are needed.

In the first stage, it is necessary to determine the specific 
conditions of treatment for each particular case, due to the 
effects on the plant can vary according to the eustressor type 
applied, the application way, dose, number of treatments and 
interval between them, as well as the physiological stage of 
the plant and even the plant species. In addition, it is crucial 
to consider that combining two or more factors can have 
an interaction (synergist additive or antagonist) effect and 
modify the response in the plant (Baenas et al. 2014). It is 

then indispensable to identify the epigenetic alterations the 
eustressor induced, the impact on the phenotype, and the 
stability and heritability of the epigenetic marks for estab-
lishing an effective plant breeding strategy (Fig. 3A).

There has been mentioned that genome-wide manipula-
tion of epigenetic marks holds promise in plant breeding. 
However, the translation to crops remains determined due 
to the severe vegetative and development alteration result-
ing from genome-editing technologies (Taagen et al. 2020). 
Indeed, the genome-editing tools are potent tools for site-
specific epigenome editing and are more stochastic than the 
proposal of induction through eustressors. The side effects 
are more unpredictable in the first case as the molecular 
system is strained. In the second, the eustressor promotes a 
balance in the entire system before establishing epigenetic 
marks.

It is expected that eustressors become a tool that, together 
with traditional plant breeding techniques and genome-edit-
ing techniques, could take plant breeding to a new level. 
They have the potential to provide crops with broad-spec-
trum resistance to biotic and abiotic stresses to enhance 
phenotypic characteristic that allows the plants to cope with 
environmental conditions that, in another scenario, would 
cause severe damage, even death, and in consequence, yield 
losses. Additionally, if the eustressor induces specific epi-
genetic marks related to the adaptation to the environment, 
these characteristics may be conserved during the life cycle 
of the crop and if they are stable to be heritable, even though 
following generations (Fig. 3B). However, transgenerational 
stability becomes essential to determinate the re-application 
of the eustressor in the next generations and dose to keep the 
epigenetic marks stable and, consequently, the prolonged 
beneficial effects in plants and agronomic traits.

It is essential to maximize the phenotypic variations of 
resistance to stress, considering that overcoming climate 
change and growing population challenges is critical to 
the world population's wellbeing. We need to create a new 
approach based on the new knowledge of the mechanism of 
plant response to stress and adaptability to a defiant envi-
ronment. The use of eustressors combined with epigenetic 
regulation could stand as high potential in future agricultural 
systems due to their advances to the plant and the farmer 
(Fig. 4). It could be a time and cost-effective method, con-
sidering that eustressors are used at low concentrations to 
trigger the desirable effect; a higher concentration can be 
harmful to the plant, which means a low cost. Additionally, 
depending on the eustressor, some of them can be easily 
applied in the field conditions as part of the irrigation system 
or in foliar spraying, even as a seed priming before sow-
ing (i.e. phytohormones, plant growth-promoting bacteria, 
acoustic waves traveling in the irrigation system, etc.). In the 
case of other types of eustressor as some physical factors, 
they could be treated by mimetic agents or directly through 
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strategies in seeds or seedlings before planting. The applica-
tion of eustressors in general terms and most of the cases do 
not require specialized equipment and can be implemented 
in any production system.

Moreover, they could be innocuous to the environment, 
the users, and the adjacent organism, due to eustressors are 
expected to be much less toxic than agrochemicals (Iriti 
and Vitalini 2021). This is a favourable point since it is 
compatible with the sustainability objectives intended for 
agriculture in the coming decades. From the plant point 
of view, the eustressors allow conserving the genetic pool 
diversity of the population. However, it may only enhance 
epigenetic diversity selection, which in case it is not con-
venient or valuable to the plant fitness, it could be reverted 
to its original state. However, thinking in the resistance 
stress trails, the outcome will be favourable to generate a 

stable memory in the crop, which will improve the pro-
ductivity and the quality of agricultural products (Tirnaz 
and Batley 2019).

To date the understanding and application of epigenetic 
and stress memory in breeding strategies are limited, but 
they have a great potential for improving crop varieties 
through the production of new epialleles to controlling 
gene expression during development in response to the 
environmental pressure (Kakoulidou et al. 2021; Sun et al. 
2021). There are still challenges to reach regarding the use 
of stressor for fix characters of interest through memory, 
as plant and conditions specific protocols based on desir-
able goals, such that further research needs to be performed 
to elucidate the missing gaps to design suitable strategies, 
opening new fields of research as the primeomics (Srivastava 
et al. 2021).

Fig. 3  Eustressors perspectives in agriculture. A Eustressors-epige-
netic investigation process: the eustressor is tested in the plant at the 
physiological level (resistant phenotype) and epigenetic level (iden-
tify epigenetic alterations related to the desirable traits and their sta-

bility across generations) to determinate a plant breeding. B Field 
expectations of eustressor use: crop with resistance to the occurrence 
of environmental perturbations without yields reductions
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Concluding remarks and perspectives

Eustressors have a critical impact on the physiology, bio-
chemistry, genetic and epigenetic of plants, making them 
a powerful tool to use in agriculture to enhance the adapta-
tion of crops to a changing environment. However, further 
research needs to be carried out to solve transgenerational 
memory establishment and stability through eustressors 
and its effects on desirable plant traits for plants adapta-
tion to stress, and therefore use it wisely. There are many 
questions to answer: what is the ideal stimulus and dose 
to induce memory? Is it the same effect one long against 
multiple short stimuli? How many stimuli are necessary? 
How long can the memory remain in the descendants? These 
and other questions will be answered with future research 
in the field. Besides, once knowledge of transgenerational 
stability with elicitors is sufficient, it will be necessary to 
generate a broader epigenetic background in the germplasm 
of agronomic interest species to induce controlled changes 
useful for plant breeders. It is also important to mention 
that the controlled elicitation to induce transgenerational 
epigenetic changes does not replace traditional plant breed-
ing practices. Eustressors used in a controlled manner during 
plant cultivation are a potential tool to decrease the time and 
cost of selecting resistant crop varieties when climate change 
and accelerating population growth make it indispensable to 
improve world food security.
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